17 research outputs found

    Visualizing Structural Balance in Signed Networks

    Get PDF
    Network visualization has established as a key complement to network analysis since the large variety of existing network layouts are able to graphically highlight different properties of networks. However, signed networks, i.e., networks whose edges are labeled as friendly (positive) or antagonistic (negative), are target of few of such layouts and none, to our knowledge, is able to show structural balance, i.e., the tendency of cycles towards including an even number of negative edges, which is a well-known theory for studying friction and polarization. In this work we present Structural-balance-viz: a novel visualization method showing whether a connected signed network is balanced or not and, in the latter case, how close the network is to be balanced. Structural-balance-viz exploits spectral computations of the signed Laplacian matrix to place network's nodes in a Cartesian coordinate system resembling a balance (a scale). Moreover, it uses edge coloring and bundling to distinguish positive and negative interactions. The proposed visualization method has characteristics desirable in a variety of network analysis tasks: Structural-balance-viz is able to provide indications of balance/polarization of the whole network and of each node, to identify two factions of nodes on the basis of their polarization, and to show their cumulative characteristics. Moreover, the layout is reproducible and easy to compare. Structural-balance-viz is validated over synthetic-generated networks and applied to a real-world dataset about political debates confirming that it is able to provide meaningful interpretations

    Analyzing and Visualizing American Congress Polarization and Balance with Signed Networks

    Get PDF
    Signed networks and balance theory provide a natural setting for real-world scenarios that show polarization dynamics, positive/negative relationships, and political partisanships. For example, they have been proven effective for studying the increasing polarization of the votes in the two chambers of the American Congress from World War II on. To provide further insights into this particular case study, we propose the application of a framework to analyze and visualize a signed graph's configuration based on the exploitation of the corresponding Laplacian matrix' spectral properties. The overall methodology is comparable with others based on the frustration index, but it has at least two main advantages: first, it requires a much lower computational cost; second, it allows for a quantitative and visual assessment of how arbitrarily small subgraphs (even single nodes) contribute to the overall balance (or unbalance) of the network. The proposed pipeline allows to explore the polarization dynamics shown by the American Congress from 1945 to 2020 at different resolution scales. In fact, we are able to spot and to point out the influence of some (groups of) congressmen in the overall balance, as well as to observe and explore polarization's evolution of both chambers across the years

    Dynamical Stability of Threshold Networks over Undirected Signed Graphs

    Full text link
    In this paper we study the dynamic behavior of threshold networks on undirected signed graphs. While much attention has been given to the convergence and long-term behavior of this model, an open question remains: How does the underlying graph structure influence network dynamics? While similar papers have been carried out for threshold networks (as well as for other networks) these have largely focused on unsigned networks. However, the signed graph model finds applications in various real-world domains like gene regulation and social networks. By studying a graph parameter that we call "stability index," we search to establish a connection between the structure and the dynamics of threshold network. Interestingly, this parameter is related to the concepts of frustration and balance in signed graphs. We show that graphs that present negative stability index exhibit stable dynamics, meaning that the dynamics converges to fixed points regardless of threshold parameters. Conversely, if at least one subgraph has positive stability index, oscillations in long term behavior may appear. Finally, we generalize the analysis to network dynamics under periodic update schemes and we explore the case in which the stability index is positive for some subgraph finding that attractors with superpolynomial period on the size of the network may appear

    Unpacking polarization: Antagonism and Alignment in Signed Networks of Online Interaction

    Full text link
    Online polarization research currently focuses on studying single-issue opinion distributions or computing distance metrics of interaction network structures. Limited data availability often restricts studies to positive interaction data, which can misrepresent the reality of a discussion. We introduce a novel framework that aims at combining these three aspects, content and interactions, as well as their nature (positive or negative), while challenging the prevailing notion of polarization as an umbrella term for all forms of online conflict or opposing opinions. In our approach, built on the concepts of cleavage structures and structural balance of signed social networks, we factorize polarization into two distinct metrics: Antagonism and Alignment. Antagonism quantifies hostility in online discussions, based on the reactions of users to content. Alignment uses signed structural information encoded in long-term user-user relations on the platform to describe how well user interactions fit the global and/or traditional sides of discussion. We can analyse the change of these metrics through time, localizing both relevant trends but also sudden changes that can be mapped to specific contexts or events. We apply our methods to two distinct platforms: Birdwatch, a US crowd-based fact-checking extension of Twitter, and DerStandard, an Austrian online newspaper with discussion forums. In these two use cases, we find that our framework is capable of describing the global status of the groups of users (identification of cleavages) while also providing relevant findings on specific issues or in specific time frames. Furthermore, we show that our four metrics describe distinct phenomena, emphasizing their independent consideration for unpacking polarization complexities
    corecore