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ABSTRACT

Signed networks and balance theory provide a natural setting for real-world scenarios that show
polarization dynamics, positive/negative relationships, and political partisanship [1]. For example,
they have been proven effective in studying the increasing polarization of the votes in the two
chambers of the U.S. Congress from World War II on [1, 2].

To provide further insights into this particular case study, we propose the application of a pipeline to
analyze and visualize a signed graph’s configuration based on the exploitation of the corresponding
Laplacian matrix’ spectral properties [3]. The overall methodology is comparable with others based
on the frustration index [4], but it has at least two main advantages: first, it requires a much lower
computational cost; second, it allows for a quantitative and visual assessment of how arbitrarily small
subgraphs (even single nodes) contribute to the overall balance (or unbalance) of the network.

The proposed pipeline allows the exploration of polarization dynamics shown by the U.S. Congress
from 1945 to 2020 at different resolution scales. In fact, we are able to spot and point out the
influence of some (groups of) congressmen in the overall balance, as well as to observe and explore
polarization’s evolution of both chambers across the years.

Keywords signed networks · balance theory · network visualization · polarization

1 Introduction

Studying opinion and political polarization dynamics in social networks is considered crucial to understand how
individuals that belong to different communities can be exposed to a plurality of information and beliefs [5]. The
consequences of strong polarization, such as the emergence of the so-called “echo-chambers” [6] and increased
partisanship in politics [1], can represent a risk for modern democracies. They can lead to “filter bubbles” undermining
social media recommendation algorithms [7], accelerate the spreading of misinformation [8], among other things. There
is a general agreement that polarization is a negative consequence of network’s homophily, and explicit relationships
between individuals have been intensively used to study related phenomena in complex social systems. Friendship is
usually represented by means of positive relationships, even if in many different domains it is important to consider also
negative ties to better understand polarization dynamics [9].

Signed networks can effectively represent patterns of collaboration, friendship, or membership in a group, by means of
positive edges, as well as explicit disagreements, different opinions, antagonisms, by means of negative edges.
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In this type of networks, the coexistence of two forces inevitably leads to the formation of cohesive groups of
individuals, also called clusters. A balanced network represents a perfectly polarized system, where there are only
positive relationships between nodes of the same group and negative edges between nodes belonging to different
clusters. Perfectly balanced systems rarely manifest themselves in practice; however, we can have several shades of
unbalance.

In many analyses, we may want to check both the presence of homophily/heterophily due to the node attribute and how
far a network is from being balanced: these measures could help to understand the polarization dynamics of the system
from different points of view. Political systems, as roll call votes in the U.S. Congress, are paradigmatic: we can label
nodes as belonging to a party (e.g., Democrats or Republicans), and we expect that positive links are more frequent
than negative ones between intra parties representatives, as well as the opposite between inter parties nodes. Observing
how balance changes over time can help us understand polarization dynamics; monitoring homophily may support the
analyst to reveal signals of partisanship or anti-partisanship behaviors among (group of) nodes in the network.

1.1 Our contribution

Although there are several algorithms and measures in the literature that would support signed network analysis, a
pipeline that combines these techniques is still missing.

In this paper, we present an analytical pipeline that leverages techniques and metrics from the literature to efficiently
analyze and visualize signed networks in terms of both homophily and balance. We present the potential of this
pipeline to dissect parts of the network and assess their contribution to the overall structural balance, allowing for a
fine-grained analysis of the actors (and the parties they belong to) that make the network less balanced and unstable in
its configuration.

We showcase this analytical pipeline by studying the polarization of the votes in the two chambers of the U.S. Congress
from 1945 to 2020, where nodes have explicit attributes denoting their membership to a specific party. The results
are consistent with others in the literature, and a fine-grained analysis of Senator Manchin’s political transformation
demonstrates the new potential of this pipeline.

The measures adopted to support the analysis and visualization of the signed graph are based on the spectral analysis of
the Laplacian matrix. The computation of the smallest eigenvalue λn can be used to understand whether the network is
balanced and, if not, how far it is from being balanced. We compare the results and the computational cost to another
metric based on the frustration index [4]. Furthermore, the eigenvector vn corresponding to the smallest eigenvalue λn,
as suggested by Kunegis et al. [10] and Galimberti et. al. [3], can be used to i) study the influence of arbitrarily large
subgroups of nodes on the overall balance, and ii) display nodes in a Cartesian plane depending on their individual
contribution to the network’s balance.

Given the great opportunities of applying signed networks in real-world scenarios, a Python library containing the
analytics and visualizations underlying the pipeline presented in this study is being built and released. In this library,
called Sygno1, we intend to implement further functions to support the study of signed networks and balance theory.

Related work is reviewed in Section 2, while in Section 3: i) we summarize some basic definitions of signed networks,
spectral analysis, and structural balance; ii) we give a mathematical definition of the metrics used in this paper to
compute the structural balance. In Section 4, we describe the construction of signed networks starting from the voting
data of the U.S. Congress.

In Section 5, we present a comparative analysis of two structural balance computation metrics; we show how the
spectral analysis of the Laplacian matrix and the data visualization can support the study of the influence of individual
nodes on the network balance. We conclude by presenting a computational cost comparison of structural balancing
computation metrics.

2 Related works

2.1 Signed networks

Network science has many applications in social media and social networks analysis [11, 12]. Networks that only
represent relationships of friendships or following in social media can be seen as signed networks with only positive
edges. Many scholars have studied how to deal with the increased complexity of the models that also represent the
relations of antagonism through negative edges, Tang et al. [13] describe the process of mining social media data to

1https://github.com/alfonsosemeraro/draw_signed_networkx
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build signed networks based models. The increase in complexity makes modeling the network more difficult, but it also
provides many opportunities for further analyses.

Balance theory is central to many studies involving signed networks. The theory’s fundamental observation is that three
nodes linked to each other can show both stable and unstable configurations. For instance, the enmity between two
nodes in a friendly relationship with a third node is a source of contrast, and the triangle is defined unbalanced. Thus,
the structural balance of a signed network is the overall property of the network to be built upon stable triangles. In
social networks, the concept of balance was first formulated by Heider in 1946 [14]. He theorized that the relationships
that form the structure of social networks may be characterized by the dualism of friendship and hostility. Heider’s
studies influenced the social psychology of the years to come, but it was only in 1956 that the balance was modeled in
terms of signed graphs [15]; in fact, Cartwright and Harary’s intent was to mathematically formalize balance theory
and to extend it to other domains, such as communication networks, power systems, sociometric structures, systems of
orientations, or neural networks.

Nowadays many applications of this theory to signed networks can be found in the literature; e.g., it has been used to
analyze the interactions and polarization of users in social media [16, 17], or to study international relations between
countries [18], or biotic interactions in real ecosystems [19].

In particular, Leskovec et al. [20] tried to evaluate social-psychological theories on the balancing of social systems by
modeling large-scale datasets with signed networks. They also proved that positive link prediction can be improved by
using both positive and negative edges [21]. Other studies have focused on the application of signed networks with the
aim of improving the performance of recommendation systems [22, 23].

Some studies have modeled recommendation systems [24] or social networks [25] with time-varying signed networks.
In fact, real-world signed networks can change over time in many aspects, such as structure, node clustering, or
structural balance.

Another relevant field of application of signed networks concerns the study of the voting behavior of politicians and
voters. Porco et al. [26] tried to predict polarity and voting behavior by using a recommendation system-based approach.
Intal and Yasseri [27] analyzed the individual interactions of House of Commons Members of Parliament (MPs) in the
voting process. The purpose of their study was to predict how MPs would have voted in a forthcoming Brexit deal. They
computed pairwise similarity scores and calculated “rebellion” metrics based on eigenvector centrality obtaining an
accuracy of 90% in the prediction task. Eigenvector centrality has been shown to be an effective method for quantifying
the power and overall strength of a node in a signed network [28].

Several aspects of American politics and the U.S. Congress have been the subject of network science studies and
analyses. In 2015, Andris et al. [1] analyzed the evolution of partisanship in the United States Congress from 1949
to 2012. From roll-call voting they have created an undirected network of over 5 million pairs of representatives,
and showed that partisanship has increased exponentially over the past 60 years. In 2020, Neal [29] analyzed the
polarization in the U.S. Congress by applying the Stochastic Degree Sequence Model and creating signed networks of
political relationships among legislators. An increase in polarization in the U.S. Congress has been shown by using the
triangle index, a metric for computing partial structural balance of signed networks.

In 2021 Aref and Neal [2] studied polarization on political networks proposing new models for optimal clustering of
signed networks. They have confirmed the increase in polarization in the US Congress since 1979. They also found
that partisanship may positively influence the effectiveness of passing bills. In their study, they used two metrics for
measuring partial balance: triangle index, i.e., the fraction of positive cycles of length 3, and the frustration index, based
on the minimum number of edges that should be removed to get a balanced network.

Similar analyzes regarding political votes and polarization, involve among others the study of the European Parlia-
ment [30, 31], the U.S. Congress [32, 33] and the Brazilian House of Representatives [34].

2.2 Compute structural balance

The first formal definition of structural balance in terms of signed graphs is due to Cartwright and Harary [15]: a signed
network Γ is balanced if and only if its nodes can be partitioned into two disjoint subsets V1, V2 in such a way that each
positive edge of Γ joins two nodes of the same subset and each negative edge joins two nodes of different subsets.

It is possible to determine whether a signed network is balanced or not in polynomial time [35]. When a signed network
is not balanced, it is possible to compute the partial structural balance, which is the distance of the network from being
balanced. Calculating how far a network is from being balanced is much more complex. Approaches based on the
computation of the least number of edges that must be dropped to obtain a balanced network, as the frustration index,
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are nondeterministic polynomial-time hard problems [35]. Other approaches are based on the spectral analysis of the
Laplacian matrix of the signed graph, and have a complexity of O(n2), like the algebraic conflict.

Some of the most common approaches are walk-based [36, 37, 38]. A walk of length k in Γ is a sequence of connected
nodes v0, . . . , vk. The sign of the walk is the product of the signs of the edges that connect the nodes v0, . . . , vk [39].
The walk is defined as closed (or as a cycle) if v0 = vk and if its length is equal to k. A signed network is walk-balanced
if every closed walk is positive [36]. Hence, a network is balanced if every closed walk has an even number of negative
edges [35].

2.3 Visualize structural balance

Many network visualization techniques are proposed in the literature, but very few approaches are designed to visualize
specifically signed networks. Kunegis et al. [10] showed how the properties of spectral analysis can be used to draw
signed graphs. In order to obtain an embedding of the nodes of a signed graph into a plane, they used the eigenvectors
of the two smallest eigenvalues as coordinates for drawing the nodes. Using this method, when the graph is balanced
(λ|V | = 0), all nodes are placed on two parallel lines, reflecting the perfect bi-partitioning present in the graph.

In our study we use another spectral analysis based algorithm called Structural-balance-viz [3]. If compared with a
generic force-based graph drawing layout where edges can be shown as positive/negative (for example as solid/dashed
lines), this visualization scheme has multiple advantages: i) it shows clearly whether the network is balanced or not;
ii) it allows to visually represent the partial balance; iii) it is capable of providing information on the contribution of
individual nodes to the balance of the entire network; iv) even a slight change to the graph would correspond to a visual
modification, allowing to spot and compare differences between different graphs. In Section 5.2 we provide an accurate
description of this method and we apply it to the U.S. Congress roll call votes dataset.

3 Methods

In this section we define the partial balance indices that we compute and compare in section 5 to analyze the temporal
dynamics of political polarization from 1941 to 2020 in the U.S. Congress.

3.1 Notations and metrics

Let Γ = (G, σ) be an undirected signed graph, where G = (V (G), E(G)) is a graph, and σ is the sign function
σ : E(G) → {−1,+1}. We define E+ as the set of positive edges, and E− as the set of negative edges. A is the signed
adjacency matrix of Γ, i.e., for each pair of nodes u, v ∈ V , A[u, v] = 1 if (u, v) ∈ E+, A[u, v] = −1 if (u, v) ∈ E−.
Let D̄ = diag(d̄u1, . . . , d̄u|V |) be the signed degree matrix of Γ, where d̄u =

∑
v∈V |A[u, v]|. Finally, we define the

signed Laplacian matrix L̄ ∈ RV×V of Γ as:
L̄(Γ) = D̄ −A (1)

The Laplacian matrix spectrum captures some characteristics of the relationship between the nodes. It is composed
by the |V | Laplacian eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λ|V |. Laplacian eigenvalues are all real and non-negative, and
contained in the interval [0,min{|V |, 2dmax}], where dmax is the maximum degree of Γ [40]. The second smallest
eigenvalue λ|V |−1 is equal to zero only if the graph is disconnected. If λ|V |−1 > 0, then its multiplicity indicates how
many connected components exist in Γ [41]. Furthermore, as we report below, the smallest eigenvalue captures some
structural balance properties of signed graphs.

In this study we apply and compare the following two approaches for computing partial structural balance:

• Frustration index (ϵ(Γ)): it is equal to the absolute value of the minimum detection set (|E∗|), that is the
lowest number of edges to be deleted from a signed network to obtain a balanced network. Computing this
metric is very expensive from a computational point of view: in the worst case, when all edges are negative,
the frustration index is NP-hard (it is equivalent to the MAX-CUT problem [42]). In this study we use the
normalized frustration index suggested in Aref [4]:

F (Γ) = 1− ϵ(Γ)

m/2
(2)

Where m is the number of edges of Γ.
• Algebraic conflict (λ|V |(Γ)): it is the smallest eigenvalue of the signed Laplacian matrix. In this study we use

the normalized algebraic conflict suggested by Aref [4]:

A(Γ) = 1−
λ|V |(Γ)

d̄max − 1
, d̄max = max

(u,v)∈E
(du + dv)/2 (3)
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Figure 1: A balanced signed network is represented on the left. The first cluster is composed by nodes 1,
2, and 3. The second cluster consist of nodes 4 and 5. On the right there is the visualization of the same
network created with the Structural-balance-viz algorithm. In both representations, positive edges are blue,
and negative edges are red.

In positively weighted graphs, when the smallest eigenvalue λ|V |(Γ) is nonzero, the corresponding eigenvector u|V |
provides the embedding coordinates of each vertex [43]. In signed networks, the sign of the elements in u|V | can be
used for partitioning the nodes into two clusters [44, 3], and the value can be used as coordinates [17].

The normalized frustration index equals to one if the signed network is perfectly balanced; otherwise, a value less than
one measures the partial structural balance.

If a signed graph is balanced, the corresponding Laplacian matrix is proved to be positive semidefinite (all its eigenvalues
are non-negative), and λ|V |(Γ) = ϵ(Γ) = 0 [17, 45]. If a signed graph is unbalanced, the corresponding Laplacian
matrix is proved to be positive-definite, and an algebraic conflict greater than zero estimates how much the signed
network is far from being balanced [46]. Furthermore, it has been proved that λn(Γ) ≤ ϵ(Γ) [45].

3.2 Spectral analysis and structural balance

A balanced signed network is shown in Figure 1. The vertices can be divided into two subsets, with only negative
edges between them and only positive edges within them. The first subset consists of vertices 1, 2 and 3, the second
of vertices 4 and 5. The equation in 4 shows the computation of L as D − A. The vector of the eigenvalues of L,
and the eigenvector u|V | corresponding to the smallest eigenvalue are shown in equation 5. The smallest eigenvalue
(λ|V |(Γ)) of the signed Laplacian matrix L is equal to zero and this confirms that the network is perfectly balanced. The
equation shows also the computation of the partial structural balance using the normalized algebraic conflict (Eq. 3).
The network is balanced, so A(Γ) is equal to 1.

3. 0. 0. 0. 0.
0. 3. 0. 0. 0.
0. 0. 4. 0. 0.
0. 0. 0. 3. 0.
0. 0. 0. 0. 3.

−


0 1 1 −1 0
1 0 1 0 −1
1 1 0 −1 −1
−1 0 −1 0 1
0 −1 −1 1 0

 =


3. −1. −1. 1. 0.
−1. 3. −1. 0. 1.
−1. −1. 4. 1. 1.
1. 0. 1. 3. −1.
0. 1. 1. −1. 3.

 (4)

λ(Γ) = [0. 3. 5. 3. 5.] , u|V | =


0.4472
0.4472
0.4472
−0.4472
−0.4472

 (5)

A(Γ) = 1− 0

d̄max − 1
= 1, d̄max = 3.5 (6)
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The visualization on the right of Figure 1 is created with the Structural-balance-viz (SBV) algorithm [3]. SBV creates
reproducible visualizations that show the degree of partial network balancing and clearly identify clusters of nodes.
The eigenvector u|V | is used to show the contribution of each single node to the structural balance of the network. In
Structural-balance-viz the nodes of the network are drawn on a Cartesian plane and the coordinates are calculated as it
follows:

• x of node u is equivalent to the element of the eigenvector corresponding to u.

• y is calculated in such a way as not to overlap the nodes with the same x coordinate.

Structural-balance-viz shows two types of edges:

• Frustrated edges decrease the structural balance of the network. These edges can be negative (in red) if they
connect nodes in the same cluster (i.e., in the same quadrant of the Cartesian plane); or positive (in blue) if
they connect two nodes of different clusters (i.e., in different quadrants of the Cartesian plane).

• Non-frustrated edges represent an agreement between two nodes of the same cluster (positive edge), or a
disagreement between two nodes of different clusters (negative edge). Positive and negative non-frustrated
edges increase the structural balancing of the network.

The computational time required to execute the SBV algorithm is the same as that required to compute the algebraic
conflict.

Since the network in Figure 1 is perfectly balanced, the nodes are represented in two distinct clusters and there are no
positive edges between the two clusters nor negative edges within the clusters, so there are no frustrated edges.

Figure 2: An unbalanced signed network is represented on the left. This network is obtained by adding to the
network in Fgure 1 a positive edge between nodes 2 and 5. On the right there is the visualization of the same
network created with the Structural-balance-viz algorithm.

In Figure 2 we show a variation of the same network introduced above, but with a negative edge between vertices 2 and
5. In this case, the network is no longer balanced as shown in Eq. 8 by a value of A(Γ) less than 1. In Figure 2 it is
shown the visualization created with the Structural-balance-viz algorithm. The positive frustrated edge between 2 and 5
is colored in blue and connects the two clusters, and it actually crosses the y-axis, instead of increasing inter-group
clustering. Even a small variation in the network (and its balance) produces a significant difference in the corresponding
visualization, making comparisons self-explanatory.

λ(Γ) = [0.5505 1.5857 4. 4.4142 5.4494] , u|V | =


−0.5411
−0.2979
−0.4865
0.5411
0.2979

 (7)
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A(Γ) = 1− 0.5505

d̄max − 1
= 0.7797, d̄max = 3.5 (8)

This visualization paradigm allows for spotting intra-groups and inter-groups dynamics as well; for example, nodes’
attributes could be represented by means of different colors or shapes. Intra-groups and inter-groups edges can be
compared to each other to measure homophily. For example, if negative frustrated edges are established between nodes
belonging to the same group, or, conversely, if positive frustrated edges connect nodes belonging to different groups, we
can detect signals of inverse homophily that contribute to reduce the polarization in the system, making the network
less balanced. In the next two sections we show how we can consider inter-groups and intra-groups positive/negative
edges to observe both homophily and balance.

4 Creation of the Congress network

In this study, we use congressional roll call votes to analyze the dynamics of political polarization in the U.S. Congress
from 1945 (77th Congress) to 2020 (117th Congress). The polarization of the U.S. Congress has been extensively
studied in the literature, both through the paradigm of unsigned networks [1] and through the paradigm of signed
networks [29, 2]. Our paper proposes a quantitative and visual analysis at a new level of detail, namely of individual
nodes. Furthermore, using political voting as an emblematic case study, we show how it is possible to analyze
polarization in terms of both homophily and structural balance. In this section, we present the vote processing and
network construction pipeline for both the House of Representatives and U.S. Senate.

The data are available by the Voteview Project2. In a roll call vote, a representative can vote ’yay’ or ’nay’, and we
consider non-attendances as ’nay’. A complete signed network (Gv) is created for each vote. A node in the network
represents a politician, and there is a positive edge between two nodes if they voted similarly, otherwise there is a
negative edge. Trivially, the network representing a single roll call vote is always balanced by construction, since the
’yay’ voters are grouped together in one cluster and the ’nay’ voters are grouped together in another cluster. Within a
cluster, there are only positive edges. Between the clusters there are only negative edges.

For each two-year Congress, we collapse the networks representing each vote into a single weighted network (Gc),
where the weight of an edge represents the number of collapsed edges. The sum of the weights of the edges connecting
two politicians is equal to the number of times they have participated in the same roll call votes. Furthermore, in a
similar way to [1], an edge is labeled as “inter-party” if it connects two representatives of two different parties, and as
“intra-party” if they are from the same party.

Gc is not always a complete network: in fact, if two politicians have never taken part in the same vote, then there is
neither a positive nor a negative edge between them. Such cases occur, for example, when a politician joins the House
of Representatives or the U.S. Senate at the end of a Congress.

For each pair of nodes of Gc we compute the percentage of votes in agreement (p+) as the weight of the positive edges
divided by the sum of the weights of the positive and negative edges (see equations 9). The same process is used to
compute the percentage of disagreements (p−).

p+ = e+/(e+ + e−)

p− = e−/(e+ + e−)
(9)

Where e+ and e− are respectively the positive and negative edges between two nodes. For each pair of nodes we keep
only the edge with the highest percentage p+ or p−.

In order to keep only the edges that represent a clear positive or negative relationship between two politicians, two
thresholds are computed for each Congress: one for the positive edges and one for the negative edges. The threshold for
the positive edges is defined as the crossing point between the kernel density estimation (KDE) of the percentage of
votes in agreement of the “intra-party” and “inter-party” edges. The threshold for negative edges is computed similarly.
An example is shown in Figure 3. In [1], the authors apply a similar approach to the same dataset in terms of network
homophily, without considering structural balance.

The yellow areas of Figure 3 are respectively the KDE of the distributions of negative “inter-party” edges (on the left)
and positive “inter-party” edges (on the right). A positive “inter-party” edge represents the case when a politician votes
in the same way as another politician of a different party. This is a type of frustrated edge, i.e., an edge that reduces
polarization by reducing the partial structural balance of the network.

2https://voteview.com/
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Figure 3: For each node pair, we compute a percentage of agreement and a percentage of disagreements as
shown in 9. The plots show the kernel density estimation (KDE) of each percentage for “inter-party” and
“intra-party” edges. The figure on the right refers to the percentage of disagreements (negative edges) of
the House of Representatives of 78th U.S. Congress, and the figure on the right refers to the percentage of
agreement (positive edges) of the House of Representatives of 82nd U.S. Congress.

The blue areas in Figure 3 are respectively the KDE of distributions of negative “intra-party” edges and positive “intra-
party” edges. The edges labeled as “intra-party” connect two politicians of the same party, so a negative “intra-party”
edge is an example of a frustrated edge, while a negative one is not.

The red vertical lines in Figure 3 represent the thresholds for positive and negative edges of the House of Representatives
of the 78th and 82th U.S. Congresses.

Considering all the Congresses, for the House of Representatives there are a total of 3, 436 unique nodes, 1, 984, 618
“inter-party” edges, and 2, 055, 660 “intra-party” edges. For the U.S. Senate, there are a total of 707 unique nodes,
107, 843 “inter-party” edges, and 108, 513 “intra-party” edges.

5 Results

The first step in the study of the dynamics of polarization in the U.S. Congress is the analysis of network homophily. By
construction, each node has a membership cluster, i.e., its party; in a signed network, network homophily is manifested
by positive edges between nodes of the same party, and negative edges between nodes of different parties. The dynamics
of homophily over time can be understood by comparing the frequency distributions of agreement and disagreement
percentages. The overlap between the two kernel density estimation (red area in Figure 3) shows that i) the number
of votes in agreement with the affiliation party and the number of votes in agreement with the opposing party are
comparable (Figure 3 on the left); ii) the number of votes in disagreement with the affiliation party and those in
disagreement with the opposing party are also comparable (Figure 3 on the right). This overlap can be interpreted as a
tendency of politicians to reduce polarization by challenging their own party and cooperating with the opposing party,
thus reducing the network homophily.

Figure 4 shows the variation of this overlap over time, from Congress 77 to Congress 116, for the House of Represen-
tatives and the U.S. Senate. The overlap between the frequency distribution of “inter-party” edges and “intra-party”
edges tends to decrease dramatically over time. This suggests an increase in polarization and a decrease in cooperation
among politicians. In the next Section we verify that the increase in network homophily over time is consistent with an
increase in structural balance.

Sections 5.1 and 5.2 address polarization in terms of balance, both quantitatively and visually. In Section 5.3, we show
how decomposing the eigenvalues of the Laplacian matrix can bring the analysis to a level of detail not previously
available in the U.S. Congressional polarization literature. Finally, Section 5.4 shows the computational advantages of
algebraic conflict, both with respect to the case study of the American Congress and with respect to artificially created
networks. Emphasis is placed on the relationship between the percentage of frustrating edges and the computational
cost of both the frustration index and the algebraic conflict.
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Figure 4: Overlap between “inter-party” and “intra-party” positive edges frequency distributions over the
congresses (U.S. Senate on the left and House of the Representatives on the right).
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Figure 5: Comparison across Congress of frustration index, algebraic conflict, and the values of the eigenvector
corresponding to the least eigenvalue. The plot on the left refers to the U.S. Senate, the plot on the right to the
House of the Representatives.

5.1 Frustration index and algebraic conflict

In order to study the dynamics of polarization through the analysis of partial structural balance, we focus on two metrics:
frustration index and algebraic conflict (see section 3).

Figure 5 shows the partial structural balance of the Congresses from 1941 to 2021 computed with frustration index
(red line) and algebraic conflict (green line). The blue line represents the mean of the values of the eigenvector u|V |
corresponding to the smallest eigenvalue λ|V |(Γ). The blue area represents the confidence interval computed as the
standard deviation of the mean of the eigenvector u|V |. Each element of the eigenvector u|V | refers to a node of the
network. Nodes can be divided into two clusters using the sign of the elements of the eigenvector. The influence of
each node on the structural balance of the whole network can be quantified by means of its corresponding value in
u|V |. A node not involved in frustrated edges has a corresponding eigenvector value of one. Conversely, a node with a
corresponding value close to zero is involved in a process of balance reduction. Therefore, the higher the mean of the
eigenvector, the more cohesive are the node clusters. A larger standard deviation indicates a greater tendency of nodes
to autonomously interact with the rest of the network.

Furthermore, in Section 3 we discuss how the eigenvector of the smallest eigenvalue can be used for partitioning and
positioning the nodes in a signed network visualization. In the visualizations based on the Structural-balance-viz
algorithm in Figure 11, the reduction in the standard deviation of the eigenvector u|V | over time is clearly represented
by the fact that the nodes become less scattered along the x-axis over time.
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Figure 6: Network created with the Structural-balance-viz algorithm and representing the votes of the House
of Representatives of Congress 82 (1951). Non-frustrated edges (82440) are colored in gray, positive frustrated
edges in blue (6836), and negative frustrated edges in red (10605). Nodes are color-coded according to the
corresponding party: red nodes are Republicans, and blue nodes are Democrats. It is striking that a tendency
to polarization is slowed down by nodes belonging to different parties whose position in the x-axis is mixed,
no matter the clusters determined by the structure of the underlying signed network. The partial balance of
the network partial balance computed with the algebraic conflict is 0.832, and computed with the frustration
index is 0.765.

Pearson’s correlation is computed for all the combinations of frustration index, algebraic conflict, and the mean of the
eigenvector u|V |. For both the U.S. Senate and the House of the Representatives, Pearson’s correlation coefficients are
between 0.92 and 0.98, with all p-values below 0.005.

The frustration index and the algebraic conflict increase significantly since Congress 90 (1967) for the U.S. Senate and
since Congress 91 (1967) for the House of Representatives. The progressive increase in political polarization, computed
in terms of both homophily and structural balance, is consistent with the literature [29, 32, 34, 2, 47].

5.2 Visualize the U.S. Congress

The analysis of the polarization in terms of homophilia and balance can be supported by the visualization of the
structural properties of the network. Structural-balance-viz [3] algorithm, is not only computationally efficient, but also
provides an at-a-glance view of network balance and which nodes are most interested in frustrated edges.

Figure 6 shows the Structural-balance-viz applied to the voting network of the House of Representatives of Congress
82 (1951). A large number of frustrated edges (17441, while e.g. Congress 117 has only 118 frustrated edges), both
positive (blue edges) and negative (red edges), are clearly visible in the visualization. Since we are interested in
highlighting the edges that reduce the partial balance of the network, we color all non-frustrated edges light gray. In
addiction, the two clusters, represented by the two upper quadrants of the Cartesian plane, are heterogeneous. The nodes
are highly scattered along the x-axis, although the right quadrant cluster has more blue nodes (Democratic politicians)
and the left quadrant cluster has more red nodes (Republican politicians). The visualization of a highly unbalanced
network is characterized by nodes scattered along the x-axis, and a significant number of frustrated edges.

Figure 7 shows the voting network of the House of Representatives of Congress 108 (2003). In this case, it is immediately
apparent that the situation is very different from that shown in Figure 6: there are few positive (in blue) and negative (in
red) frustrated edges, and the nodes are represented in two cohesive and homogeneous clusters. These clusters almost
exactly represent the two parties, the Democrats in the right quadrant and the Republicans in the left quadrant. These
are the characteristics of a highly balanced network view; the partial balance is equal to 0.995, computed with the
algebraic conflict, and to 0.992 computed with the frustration index (see Figure 5). Homophily emerges more clearly in
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Figure 7: Network created with the Structural-balance-viz algorithm and representing the votes of the House of
Representatives of Congress 108 (2003). Non-frustrated edges are colored in gray (96435), positive frustrated
edges in blue (247), and negative frustrated edges in red (319). Nodes are color-coded according to the
corresponding party: red representatives are republicans, and blue ones are democrats. The strong signal of
polarization is shown by the almost perfect match between nodes’ colors and their positions at opposing sides
of the x-axis.

this scenario: nodes in the same party agree more often than nodes in different parties. Analogously, nodes in different
parties disagree more likely than nodes in the same party.

The network would be almost totally balanced if it were not for the two nodes (a Republican and a Democrat) in the
right quadrant which are spatially located closer to the origin of the x-axis, w.r.t. the nodes of their own parties.

Figure 11 shows an overview of the Structural-balance-viz algorithm applied to the voting networks of 20 congresses of
the U.S. Senate between the years 1943 and 2019. Over time there is a clear progressive reduction in frustrated edges
and a separation of the two clusters into increasingly polarized positions.

In the next section, we propose an analysis of the political behavior of Democratic Senator Joe Manchin over 3
Congresses (from 2015 to 2021). This fine-grained analysis is supported by the networks’ visualizations created with
the Structural-balance-viz algorithm.

5.3 Linking visualization, unbalance metric, and intra/inter-parties dynamics

The possibility to study the influence of each node on the partial network balance and to follow the intra- and inter-group
dynamics is one of the main advantages of studying the network balance through the spectral analysis of the Laplacian
matrix. By exploiting the eigenvector v|V |, the algorithm Structural-balance-viz shows which are the nodes that most
influence the network structure. As an example, below we show how it is possible to trace the political behavior of a
Senator through the analysis of his position in three different visualizations.

The networks in Figure 8 represent the votes of the U.S. Senate in Congresses 114, 115, and 116. The node representing
Democratic Senator Joe Manchin is highlighted with a red rectangle. His political stance has changed dramatically
over the years. According to the Senate Vote Network for the 114th Congress, on average, Senator Manchin has taken
positions very close to his party, with a slight tendency to cooperate with Republicans. In the next Congress, the 115th
(2017-2019), the Senator moved closer to the positions of the Republican Party. In fact, the node representing Joe
Manchin, while remaining in the quadrant containing the Democrat cluster, is located closer to the origin of the x-axis.

In the last Congress shown in Figure 8, the 116th (2019-2021), the highlighted node is in the right quadrant, meaning it
is closer to the cluster of Republican nodes than to the Democratic nodes.
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Figure 8: Networks created with the Structural-balance-viz algorithm and representing the votes of the Senate
from Congress 114 (2015) to Congress 116 (2019). The node representing Democratic Senator Joe Manchin
is highlighted with a red rectangle. In only 3 congresses (6 years) he comes closer to the Republican cluster
than to his party cluster.
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Figure 9: The y-axis represents the computation time in seconds to compute the frustration index and the
smallest eigenvalue for each congress. The networks that represent the Congresses are sorted on the x-axis
according to the number of frustrated edges. The Figure on the left refers to the U.S. Senate, the one on the
right to the House of Representatives.

Senator Manchin’s political transformation toward greater openness to Republicans has been a source of political debate
in the newspapers since 202034. The analysis of the eigenvector v|V | of the two previous Congresses (114th and 115th)
shows that this process is not unexpected, and results from a slow approach over the years to the political counterpart.
Some of the interpretations justify this approach to the Republican Party with the electoral need to be re-elected. Elected
in the red state of West Virginia, the Senator seems to be moving closer and closer to the demands of his potential
electorate, even if they are not in line with the rest of the Democratic Party. It is also interesting that in the less polarized
system observed in 1951, this behavior would have been interpreted as normal, whereas in 2020 it is clearly seen as an
outlier. (Figure 6).

5.4 Unbalance metrics computational costs

The time and space complexity of computing the algebraic conflict is governed by the complexity required by the
decomposition of the eigenvalues of the Laplacian matrix. In this study, for the decomposition of the eigenvalues, we
use the implementation in the Python library Scipy 5. The algebraic conflict is normalized as in 3.

The theoretical formulation of the frustration index is NP-hard. An approximation based on simulated annealing
implemented in the R library Signnet6 is used in this study.

3https://www.theguardian.com/us-news/2021/oct/29/senate-manchin-sinema-biden-democrats-outsize-
influence

4https://www.washingtonpost.com/politics/2022/01/26/manchin-sinema-democrats-legislation/
5https://docs.scipy.org/
6https://cran.r-project.org/web/packages/signnet/
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Figure 10: Each cell of the heatmap shows the computation time in seconds required for computing the
frustration index (on the left) and the eigenvalue decomposition of the Laplacian matrix (on the right). Note
the difference in scale between the two heatmaps.

Figure 9 shows the computation time required to compute the frustration index and the algebraic conflict for the U.S.
Senate and the House of Representatives. The computations are performed on a computer with 8 GB of RAM and the
Intel Core i5-6200U as CPU. The computation time for the frustration index is orders of magnitude greater than the
computation time for the algebraic conflict.

Furthermore, the computation time required to compute the frustration index increases as the number of frustrated
edges in a network increases (on the x-axis the networks are sorted by the number of frustrated edges). Since the
frustration index is defined as the minimum number of edges whose removal results in balance, it is clear therefore that
its computation time depends on the number of frustrated edges to remove. The same phenomenon is not observed for
the computation of the smallest eigenvalue: eigenvalue decomposition of the Laplacian matrix is independent of the
edge types.

In order to generalize this concept, we generate ten random signed networks each composed of an increasing number of
nodes, from 100 to 1000. For each network we vary the number of frustrated edges, from 10% of the total number of
edges, up to 90%.

The process of creating a random signed network is shown below:

1. Two different Erdős-Rényi networks are created (named A and B respectively).
2. Each node of the two networks is assigned an attribute based on the network it belongs to.
3. Networks A and B are merged, and edges are added between the nodes of networks A and B.
4. Each edge connecting two nodes of the same network is assigned the positive sign. Each edge between network

A and network B is assigned the negative sign.
5. The network is now perfectly balanced. Based on the percentage of frustrated edges out of the total, some

edges between A and B have their sign changed to positive (positive frustrated edges), and some edges inside
A and inside B have their sign changed to negative (negative frustrated edges).

We compute both the frustration index and the smallest eigenvalue to verify that only the former has a computation time
influenced by the number of frustrated edges. The results of the computation times required for each of the network
configurations are shown in Figure 10, with the frustration index on the left and the eigenvalue decomposition of the
Laplacian matrix on the right. For both indices, the number of nodes in the network has an effect on the computation
time. However, only the computation of the frustration index is significantly affected by the percentage of frustrated
edges in the network.

6 Conclusion and future work

Signed networks are a powerful model for representing relationships between individuals. Community detection, as
a consequence of network homophily by attribute, and partial balance computation offer the possibility to analyze
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conflicts and polarization between communities in a signed network of relationships. The analytical pipeline we present
is based on the synergy of methods known in the literature for the study of partial structural balance. The advantages of
applying this pipeline are numerous and significant: i) it offers results comparable to those obtainable with an approach
based on the frustration index (Figure 5); ii) it allows to visualize and analyze in fine grain the influence of every single
node on the structural balance of the entire network (Figures 8); iii) it is very advantageous from a computational point
of view (Figures 9).
The application of this approach to the study of political polarization in the U.S. Congress has revealed implications
missing from previous studies in the literature [29, 1]. This is exemplified by the case of Senator Manchin. Although it
has only been in the newspapers in recent years, we show and quantify that his much-discussed political transformation
began much earlier. We examine the intra-group dynamics of the senators and how this affected the partial balance of
the networks over three Congresses.

In addition, since many researchers in the field of complex networks use Python as a programming language, a library
for the analysis and visualization of the structural balance of the signed network is being built and released.7.
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