974 research outputs found

    Hypersparse Neural Network Analysis of Large-Scale Internet Traffic

    Full text link
    The Internet is transforming our society, necessitating a quantitative understanding of Internet traffic. Our team collects and curates the largest publicly available Internet traffic data containing 50 billion packets. Utilizing a novel hypersparse neural network analysis of "video" streams of this traffic using 10,000 processors in the MIT SuperCloud reveals a new phenomena: the importance of otherwise unseen leaf nodes and isolated links in Internet traffic. Our neural network approach further shows that a two-parameter modified Zipf-Mandelbrot distribution accurately describes a wide variety of source/destination statistics on moving sample windows ranging from 100,000 to 100,000,000 packets over collections that span years and continents. The inferred model parameters distinguish different network streams and the model leaf parameter strongly correlates with the fraction of the traffic in different underlying network topologies. The hypersparse neural network pipeline is highly adaptable and different network statistics and training models can be incorporated with simple changes to the image filter functions.Comment: 11 pages, 10 figures, 3 tables, 60 citations; to appear in IEEE High Performance Extreme Computing (HPEC) 201

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Text Categorization Model Based on Linear Support Vector Machine

    Get PDF
    Spam mails constitute a lot of nuisances in our electronic mail boxes, as they occupy huge spaces which could rather be used for storing relevant data. They also slow down network connection speed and make communication over a network slow. Attackers have often employed spam mails as a means of sending phishing mails to their targets in order to perpetrate data breach attacks and other forms of cybercrimes. Researchers have developed models using machine learning algorithms and other techniques to filter spam mails from relevant mails, however, some algorithms and classifiers are weak, not robust, and lack visualization models which would make the results interpretable by even non-tech savvy people. In this work, Linear Support Vector Machine (LSVM) was used to develop a text categorization model for email texts based on two categories: Ham and Spam. The processes involved were dataset import, preprocessing (removal of stop words, vectorization), feature selection (weighing and selection), development of classification model (splitting data into train (80%) and test sets (20%), importing classifier, training classifier), evaluation of model, deployment of model and spam filtering application on a server (Heroku) using Flask framework. The Agile methodology was adopted for the system design; the Python programming language was implemented for model development. HTML and CSS was used for the development of the web application. The results from the system testing showed that the system had an overall accuracy of 98.56%, recall: 96.5%, F1-score: 97% and F-beta score of 96.23%. This study therefore could be beneficial to e-mail users, to data analysts, and to researchers in the field of NLP

    Evidence-based Cybersecurity: Data-driven and Abstract Models

    Get PDF
    Achieving computer security requires both rigorous empirical measurement and models to understand cybersecurity phenomena and the effectiveness of defenses and interventions. To address the growing scale of cyber-insecurity, my approach to protecting users employs principled and rigorous measurements and models. In this dissertation, I examine four cybersecurity phenomena. I show that data-driven and abstract modeling can reveal surprising conclusions about longterm, persistent problems, like spam and malware, and growing threats like data-breaches and cyber conflict. I present two data-driven statistical models and two abstract models. Both of the data-driven models show that the presence of heavy-tailed distributions can make naive analysis of trends and interventions misleading. First, I examine ten years of publicly reported data breaches and find that there has been no increase in size or frequency. I also find that reported and perceived increases can be explained by the heavy-tailed nature of breaches. In the second data-driven model, I examine a large spam dataset, analyzing spam concentrations across Internet Service Providers. Again, I find that the heavy-tailed nature of spam concentrations complicates analysis. Using appropriate statistical methods, I identify unique risk factors with significant impact on local spam levels. I then use the model to estimate the effect of historical botnet takedowns and find they are frequently ineffective at reducing global spam concentrations and have highly variable local effects. Abstract models are an important tool when data are unavailable. Even without data, I evaluate both known and hypothesized interventions used by search providers to protect users from malicious websites. I present a Markov model of malware spread and study the effect of two potential interventions: blacklisting and depreferencing. I find that heavy-tailed traffic distributions obscure the effects of interventions, but with my abstract model, I showed that lowering search rankings is a viable alternative to blacklisting infected pages. Finally, I study how game-theoretic models can help clarify strategic decisions in cyber-conflict. I find that, in some circumstances, improving the attribution ability of adversaries may decrease the likelihood of escalating cyber conflict

    Individual differences in working memory affect situation awareness

    Get PDF
    2011 Summer.Includes bibliographical references.Situation awareness (SA) is a construct that brings together theories of attention, memory, and expertise in an empirical effort to showcase what awareness is and how it is acquired by operators. Endsley (1995a) defined SA in a way that includes many theoretical associations between awareness and specific memory and attention mechanisms. Work characterizing these relationships has been sparse, however, particularly with regard to the influence of working memory (WM) on SA in novices. An experiment was devised which principally investigated novice SA as a theorized function of WM across two distinct tasks; one in which operator attention and perception (Level 1 SA) was assessed, and one in which an operator's ability to respond to events in the future (Level 3 SA) was implicitly assessed. Factors analysis was used and resulting outcomes from three WM tasks loaded well onto one overall WM factor. Findings from 99 participants indicate that WM does have a correlative and predictive relationship with Level 3, but not Level 1 SA. Results reported here contribute to ongoing theory and experimental work in applied psychology with regard to SA and individual differences, showing WM influences awareness in novice performance even in the case where SA measures are not memory-reliant

    Support Efficient, Scalable, and Online Social Spam Detection in System

    Get PDF
    The broad success of online social networks (OSNs) has created fertile soil for the emergence and fast spread of social spam. Fake news, malicious URL links, fraudulent advertisements, fake reviews, and biased propaganda are bringing serious consequences for both virtual social networks and human life in the real world. Effectively detecting social spam is a hot topic in both academia and industry. However, traditional social spam detection techniques are limited to centralized processing on top of one specific data source but ignore the social spam correlations of distributed data sources. Moreover, a few research efforts are conducting in integrating the stream system (e.g., Storm, Spark) with the large-scale social spam detection, but they typically ignore the specific details in managing and recovering interim states during the social stream data processing. We observed that social spammers who aim to advertise their products or post victim links are more frequently spreading malicious posts during a very short period of time. They are quite smart to adapt themselves to old models that were trained based on historical records. Therefore, these bring a question: how can we uncover and defend against these online spam activities in an online and scalable manner? In this dissertation, we present there systems that support scalable and online social spam detection from streaming social data: (1) the first part introduces Oases, a scalable system that can support large-scale online social spam detection, (2) the second part introduces a system named SpamHunter, a novel system that supports efficient online scalable spam detection in social networks. The system gives novel insights in guaranteeing the efficiency of the modern stream applications by leveraging the spam correlations at scale, and (3) the third part refers to the state recovery during social spam detection, it introduces a customizable state recovery framework that provides fast and scalable state recovery mechanisms for protecting large distributed states in social spam detection applications
    • …
    corecore