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ABSTRACT OF THE DISSERTATION

SUPPORT EFFICIENT, SCALABLE, AND ONLINE SOCIAL SPAM

DETECTION IN SYSTEM

by

Hailu Xu

Florida International University, 2020

Miami, Florida

Professor Liting Hu, Major Professor

The broad success of online social networks (OSNs) has created fertile soil for

the emergence and fast spread of social spam. Fake news, malicious URL links,

fraudulent advertisements, fake reviews, and biased propaganda are bringing serious

consequences for both virtual social networks and human life in the real world.

Effectively detecting social spam is a hot topic in both academia and industry.

However, traditional social spam detection techniques are limited to centralized

processing on top of one specific data source, but ignore the social spam correlations

of distributed data sources. Moreover, a few research efforts are conducting in

integrating the stream system (e.g., Storm, Spark) with the large-scale social spam

detection, but they typically ignore the specific details in managing and recovering

interim states during the social stream data processing.

We observed that social spammers who aim to advertise their products or post

victim links are more frequently spreading malicious posts during a very short period

of time. They are quite smart to adapt themselves to old models that were trained

based on historical records. Therefore, these bring a question: how can we uncover

and defend against these online spam activities in an online and scalable manner?

In this dissertation, we present there systems that support scalable and on-

line social spam detection from streaming social data: (1) the first part introduces

vii



Oases, a scalable system that can support large-scale online social spam detection,

(2) the second part introduces a system named SpamHunter, a novel system sup-

ports efficient online scalable spam detection in social networks. The system gives

novel insights in guaranteeing the efficiency of the modern stream applications by

leveraging the spam correlations at scale, and (3) the third part refers to the state

recovery during social spam detection, it introduces a customizable state recovery

framework that provides fast and scalable state recovery mechanisms for protecting

large distributed states in social spam detection applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Social Spam Detection

Online social networks (OSNs) have been an integral part of human life. More

and more people are acquiring the latest news, advertisements, social activities,

and breaking topics directly from the current popular OSNs such as Facebook,

Twitter, and WeChat. For example, a report said that the percentage of US adults

who primarily receive news and information from OSNs is as high as 62% [AG17].

However, the openness of widespread OSNs couple with massive spam activities,

which are damaging as they cause public panic and social unrest. For example,

in February of 2019, social users in Paris watched a lot of photos of kidnappings

on Facebook and videos of vans speeding away on Snapchat and Twitter, all of

which hinted that the Roma (Gypsies) robbed children with vans in the suburbs

of Paris [Bre19]. Although the information proved to be wrong later, they brought

serious consequences to the Roma and the whole society: dozens of young men

wielding sticks and knives attacked a Roma camp and burned two vans, and tens

of people were arrested. Another example is that one latest report said the global

enterprise spam filter market was valued approximately USD 849 million in 2018 and

is expected to generate around USD 2,675 million by 2026 [zio19]. And it pointed

out that the increasing number of social spam is driving the enterprise spam filter

market globally.

The unprecedented success of online social networks has created tremendous

opportunities for the emergence and rapid spread of spam. By leveraging a large
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social user, social spam often dominates and influences social life in a short period

of time and can reach every corner of the social world. Therefore, quickly detecting

spam from large-scale social activities is an urgent need in the current situation.

Furthermore, as our observation, the spammers in the online social networks are

not only active on a single platform, but are often active on different social platforms,

by simultaneously manipulating dozens or hundreds of fake accounts. Naturally, the

information published by these fake accounts is highly similar. This phenomenon

has been pointed out by several former studies [XGL+18]. Spammers certainly desire

to spread similar posts on different platforms to attract as many people as possible

to target on these topics. A case study of social spam posts for multiple different

news sites also demonstrates that spam posts show a high degree of similarity in

content and topics during the same period of time and will immediately propagate

from one site to another [a16]. Therefore, this correlation between cross-platform

social spam is a common phenomenon in the current social media world. Although

there are not many direct relationships between users, geographic locations, creation

purposes, and regions in these various groups or platforms, the spam contents are

highly correlated within similar topics during the same period of time.

However, former studies rarely utilized the spam correlations to handle the large-

scale social data from distributed data servers. They either focused on the algo-

rithm side to achieve high accuracy in the detection [VBC+14, WP15, VT16, SS16,

HBSD17], or the entire processing only targeted on a small size of dataset without

the global view from similar data across large-scale data sources [GCL+12, XZJ+16,

CWZ+17, XSJ16].

2



1.1.2 Stateful States in Social Stream Data Processing

Today, we are undergoing a profound transformation with the use of large-scale, di-

verse, and distributed data sets that allow for data-intensive analytics and decision-

making. Stream processing is proposed and popularized as a “technology like

Hadoop but can give you results faster”, which lets users query a continuous data

stream and quickly get results within a very short time period from the time of

receiving the data. For that reason, stream processing technology has become a

critical building block of many applications, such as making business decisions from

marketing streams, identifying spam campaigns from social network streams, pre-

dicting tornados and storms from radar streams, and analyzing genomes in different

labs and countries to track the sources of a potential epidemic.

Over the last decade, a bloom of stream processing systems has been developed

including Storm [ad], Trident [af], Spark Streaming [am], TimeStream [QHS+13],

S4 [NRNK10], etc. However, while the progress has been encouraging, the exist-

ing efforts have dominantly centered around stateless stream processing, leaving

another urgent trend—stateful stream processing—much less explored. A driving

need is that the future stream applications need to store and update state along with

their processing, and process live data streams in a timely fashion from massive and

geo-distributed data sets. Unfortunately, existing systems are mainly designed for

low-latency intra-datacenter settings and do not scale well for running stream ap-

plications that contain large distributed states, suffering a significantly centralized

bottleneck and high latency.

A stream is an unbounded sequence of tuples (e.g., online social network’s mi-

croblog streams) generated continuously in time. A stream processing system creates

a logical topology of stream processing operators, connected in a directed acyclic

graph (DAG), processes the tuples of a stream as they flow through the DAG, and

3



outputs the results in a short time. Traditionally, stream processing pipelines are

stateless. A new trend is that more complex stream processing pipelines are stateful.

For example, a stateful operator maintains the value of state for some of the identi-

fied spam accounts so far and updates it with new inputted information, such that

the final output should accumulate all results that take into account both historical

records and the new input.

However, we are facing significant challenges in managing large distributed states

in stream processing systems. First, it is challenging for recovering from simultane-

ous failures of multiple stream operators for a large number of concurrently running

applications. Social stream data processing is by nature long running, and operators

refer to it may unexpected fails or lost, which cause state loses. Second, different

social stream data processing may have various runtime requirements, e.g., different

time sensitivity, deadline requirements, or computation depends, these lead to many

kinds of state management in dealing with different social stream data processing.

1.2 Contributions

1.2.1 Scalable and Online Social Spam Detection

We present two systems to support online and scalable social spam detection from

separate perspectives. Oases shows the system-level design in handling and sup-

porting scalable social spam detection. SpamHunter describes the details of achiev-

ing efficient online social spam detection by leveraging spam correlations from geo-

distributed sites or servers. We conclude the contributions as follows.
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sites.

 Second, in Oases, a scalable DHT-based tree overlay with spam detection re- 

lated protocols is presented. It uses many progressive aggregation trees for aggre- 

gating the properties of spam posts and creating new spam classifiers to actively 

filter out newest spam.

 Third, in the Chapter 4, we present a system named SpamHunter, based upon 

Oases, supports efficient online social spam detection in dealing with large-scale 

social stream data.

 Forth, in SpamHunter, a peer group communication structure is presented that al- 

lows multiple Spiral groups to exchange and utilize the spam correlations among 

distributed social data sources.

 Finally, comprehensive evaluations of Oases and SpamHunter performance and 

functionality on a large cluster using real-world social stream data are presented.

1.2.2 Customizable State Recovery in Social Spam Detec-

 tion

We next describe the contributions in achieving customizable state recovery in social 

stream data processing. We make the following contributions in Chapter 5.

 First, we show how existing techniques can lead to slow or resource-expensive 

state recovery in stream applications.

 Second, we propose SR3, a customizable State Recovery framework that provides 

fast and scalable failure recovery mechanisms for protecting large distributed states 

in social spam detection. It does not rely on a central master for recovering the 

state. The failure recovery process scales to the size of the lost state, offers a

 First, in the Chapter 3, an online spam detection system called Oases is pre- 

sented that defend against real-time spam activities that happen in geo-distributed



significant reduction in failure recovery time and can tolerate multiple simultaneous

node failures.

Third, we provide three different failure recovery mechanisms (Sec. 5.4). An

important novel aspect of SR3 is that it can host multiple distributed streams and

offer each application the recovery mechanism that best fits its requirements. The

goal is to cater to the needs of different stateful stream applications (e.g., different

stream processing computation models, quality of service requirements, state sizes,

and network environments).

Finally, we make a comprehensive evaluation of the scalability, fast recovery

and flexibility of the system on a large cluster using real-world stream processing

applications’ datasets (Sec. 5.5).

1.3 Summary and Roadmap

The rest of this dissertation is organized as follows. We introduce the details of

background in Chapter 2, then we describe the Oases system in Chapter 3. We next

show the design and details of the SpamHunter system in Chapter 4. The details of

design and implementation of SR3 system in Chapter 5. Finally, we conclude this

dissertation and describe the future work in Chapter 6.

The details of the dissertation are illustrated as follows.

1. Chapter 2. Sec. 2.1 shows the previous work that refer to the traditional

social spam detection. Sec. 2.2 describes the background about scalable stream

data processing. Sec. 2.3 and Sec. 2.4 introduce the state management and

recovery in social stream data processing.

2. Chapter 3. Sec. 3.1 describes the introduction of this work. Sec. 3.2 shows

the details of design and functionality of the system, which include the details

6



of different functional agent, the tree structures and design benefits. Sec. 3.3

introduces the detailed evaluation of the system performance with real-world

social stream data and the runtime overhead. Sec. 3.4 summarizes this work.

3. Chapter 4. Sec. 4.1 shows the introduction of the SpamHunter system.

Sec. 4.2 shows the details of design and functionality of the system, which in-

clude the details of overview of workflow, the group management, online data

processing, and the group coordination. Sec. 4.3 introduces the detailed eval-

uation of the system performance with real-world social stream data. Finally,

Sec. 4.4 summarizes this work.

4. Chapter 5. The introduction of this work is shown in Sec 5.1. Sec. 5.2

defines and describes the problem that is solved in this work. Sec. 5.3 in-

troduces detailed background of this work. Sec. 5.4 introduces the design

details, including the workflow, the three types of recovery mechanisms, and

mechanism selection. The evaluation part is shown in Sec. 5.5. Finally, Sec.

5.6 concludes this work.

5. Chapter 6. In this chapter, Sec. 6.1 concludes the entire dissertation work

and the future work is discussed in Sec. 6.2.
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CHAPTER 2

BACKGROUND

2.1 Previous Social Spam Detection in Online Social Net-

works

Offline social data processing. Many former studies had focused on offline meth-

ods in analyzing social data [LEC11, SS16, VT16], which utilized a limited historical

dataset. Based on the connection between users and user trusts, [TLGP14] identifies

victims in Twitter with a dataset that was collected in 10 months. By analyzing

several historical datasets, Spade [WIP14] presents that new spam can be detected

from one social network across other social networks.

Prior studies classified social spam from various perspectives, either from the

view of adult contents [CALS17], user behaviors [ZZPZ16], or from hashtags [SS16],

inherent features [WZLP15]. However, these studies still limit in a specific size of

historical data and are difficult to catch up the online latest features of social spam.

Centralized social data processing. Former studies normally focused on cen-

tralized processing [MK10, TLGP14, VT16, ZNJ+15]. [GCL+12] presents an online

spam filtering framework in a central server by using spam campaigns. TopicS-

ketch [XZJ+16] is a real-time framework that combines a sketch-based topic model

and a hashing-based dimension reduction to detect bursty topics. Lfun [CWZ+17]

is a real-time statistic features-based system which can extract spam from social

drifting data. Monarch [TGM+11] utilizes the online URL blacklists to detect URL

spam in real-time. The difference between our approach and these studies is that

they normally focused on centralized spam analysis, while we focus on social spam

detection in distributed manner.
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2.2 Distributed Social Data Processing

Recent applications had been cooperated with scalable methods to achieve efficient

processing [BML16, KI17, PIP16, SBJM17]. [CLQ11] presents a parallel spam fil-

tering system based upon MapReduce. To mitigate the accuracy degradation by

parallel SVM, they augment with ontology semantics. Different with them, we al-

low data training can be completely implemented in local agents and maintain the

desired accuracy. A model within CELAR cloud platform is designed to catalog

the distributed, dynamic and redundant cancer data [XJTG15]. ELF [HSAC14] is

a decentralized model for the streaming process and supports powerful program-

ming abstraction for batch, iterative and streaming processing. SSTD [ZZW+17] is

a dynamic truth discovery scheme which can discover Twitter data truth with scal-

ability. Different from above work, we use the latest data features as the feedback

and analyze social spam in a scalable way.

2.3 State Management in Social Stream Data Processing

Existing state management solutions can be divided into three representative cate-

gories: in-memory, remote storage, in-memory+on-disk.

Category 1: in-memory. Many industrial stream processing systems either do

not support state (Heron [KBF+15], S4 [NRNK10], the early version of Storm [ad]),

or they rely on in-memory data structures such as hash tables and hash table variants

to store state. For example, Muppet [LLP+12] and Trident [af] store state via hash

tables. Spark Streaming [am] enables state computation via Resilient Distributed

Datasets (RDDs) [ZCD+12], the core data abstraction from Spark that distributes

read-only multiset data items. These techniques rely on a central master for state

9



management that results in a centralized bottleneck and, therefore, may be difficult

to scale to large states.

Category 2: remote storage. Some systems such as Millwheel [ABB+13] and

Dataflow [ABC+15a] choose to separate state from the application logic. They

have the state centralized in a remote storage [ABB+16, CCD+03, ACÇ+03] (e.g., a

database management system, HDFS or GFS) shared among applications, period-

ically checkpointing it for fault tolerance. Using external storage can scale well to

large distributed states, but it significantly increases latency in the critical path of

stream processing.

Category 3: in-memory+on-disk. A few other systems such as Kafka [ab],

Samza [ac, NPP+17], Spark Streaming [am], Flink [aa, CEF+17] try to overcome

this issue by using a combination of “soft state” stored in in-memory data struc-

ture along with “hard state” persisted in on-disk data store (e.g., RocksDB [al],

LevelDB [aj]). However, they sacrifice programming model transparency by requir-

ing programmers to declare and maintain state using built-in data structures (e.g.,

Spark’s RDDs [ZCD+12], Muppet’s slates [LLP+12]). The on-disk data store (used

by Kafka [ab], Samza [ac], Dataflow [ABC+15a]) incurs large I/O overhead due to

well-known high write amplification [DCG+17]. Finally, scaling to large distributed

states and recovering from failures in such systems is quite expensive, because when

a single node fails, the in-memory state and on-disk state for all dependent nodes

must be reset to the last checkpoint, and computation must resume from that point,

resulting in significant time and space overhead.
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2.4 State Recovery in Social Stream Data Processing

Existing stream processing systems offer failure recovery mainly through the use of

three approaches: replication recovery, checkpointing recovery, and DStream-based

lineage recovery, which are either not scalable, slow, resource-expensive or incapable

to handle multiple failures.

In the replication-based recovery approach, the system maintains a completely

separate set of hot failover nodes, which processes the same stream in parallel with

the primary set of nodes. The input records are sent to both. When there is a

failure or multiple failures in the primary nodes, the system automatically switches

over to the secondary set of nodes and the system can continue processing with

very little or no disruption. The replication recovery has been used in systems such

as Flux [SHB04] and Borealis [BBMS05]. The failover is fast and it can handle

multiple failures. However, the replication recovery scheme doubles the hardware

requirement.

11

 In checkpoint-based recovery, all nodes periodically checkpoint their states to 

remote storage such as HDFS or GFS. Each node in the stream pipeline has an 

in-memory buffer to retains a backup of the data that it has forwarded to the 

downstream nodes since the last checkpoint. The system also maintains standby 

nodes. When a primary node fails, a standby node retrieves the latest checkpoint 

from the persistent storage, and its upstream node essentially replays the backup 

records serially to this failover node to recreate the lost state. The checkpointing 

recovery has been used in systems such as TimeStream [QHS +13], Trident [af], 

Drizzle [VPO +17], and Multilevel Checkpointing [MBMDS10]. It avoids the 2× 

hardware cost. However, the failover is slower than the replication recovery because 



12
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it has to retrieve the checkpointed state from the remote storage and replay the

 Our previous work [LXDS +20] introduced FP4S, a decentralized approach for 

distributed state recovery based on erasure codes [LXDS +20] that leverages the 

availability of abundant network bandwidth between the nodes holding fragments of 

the state. In diverse network environments, the availability of network resources varies 

dynamically depending on which stream application workflows are active at a given 

moment; therefore the technique introduced in FP4S is not appropriate for supporting 

diverse stream workflows.

 To achieve both fast recovery and small hardware overhead, the DStream-based 

            

             

            

               

              

             

             

             

                 

               

           

lineage recovery was proposed. This approach has been used in Apache Spark-based 

systems [aa, CEF +17, ZDL +13, SGH +16]. Its key abstraction is the 

Discretized Stream (DStream, for short), a continuous stream of Spark RDDs [ZCD 

+12]. The most recent state is stored in each node’s memory — using RDDs — 

together with the lineage graph, that is, the graph of deterministic operators used to 

build RDDs. When nodes fail in the system, instead of preparing a standby 

node for failover, DStream re-runs the lost tasks in parallel on other reliable 

nodes in the cluster using the lineage graph. However, the entire recovery processing 

is linear, that is, the lost tasks need to be executed strictly in line with the original 

lineage graph. As such, the recovery process may be slow when the lineage graph is 

long and incur multiple uploads of checkpointed state, incurring substantial network 

traffic.



CHAPTER 3

SUPPORT ONLINE AND SCALABLE SPAM DETECTION

3.1 Introduction

The past few years have seen the rapid rise of Web-based systems incorporating

social features, such as online social networks (OSNs) (e.g., Facebook, Twitter).

These systems have a common feature that they rely on users as the primary source

of posts and enable users to comment on others’ posts. Unfortunately, such openness

and reliance on users also attract social spammers, who advertise commercial spam

messages, and disseminate malware [LCW10]. Reports show that nearly 10% of

tweets on Twitter are all spam [a15a], and Facebook usually blocks 200 million

malicious actions every day [a15b].

We observed that social spammers who aim to advertise their products or post

victim links are more frequently spreading malicious posts during a very short period

of time. They are quite smart to adapt themselves to spam classifiers which were

trained based on historical records. Fig. 3.1 shows the three days’ social rumor

activities that are extracted from a real-world dataset of the Charlie Hebdo shooting

in 2015 [ZLP+16]. X-axis and Y-axis present the time and the number of rumors,

respectively. Each peak with a color presents the activities of one specific rumor.

We can observe that: (1) once spam post is produced, it spreads in a very short

period of time and will soon reach its peak; (2) the content of spam post is always

”drifting”, and multiple peaks in different colors indicate that the contents of social

spam change rapidly.

Besides, recent surveys and research reported that social spam is normally fast

changing, and spam activities are usually concentrated in a short period of time [a18,

CWZ+17, ZRM15, ZZC+15].
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Figure 3.1: Social rumors of the famous Charlie Hebdo shooting in 2015, Twit-
ter [ZLP+16]. We present the activities of 14 rumors in the figure and show several
example statements.

Therefore, the major challenge for the spam detection system is enabling the up-

date of trained classifiers to keep pace of the collection of spam information promptly,

so as to uncover and defend against these social spammers.

Traditional techniques for discovering evidence of spam and spammers have the

following limitations: (1) they mainly focus on analyzing offline historical logs [CALS17,

LEC11, VT16, VBC+14, WIP14, XSJ16], limiting the capability to adapt to the

new spam emergence and resulting in failing to uncover the most recent spam; and

(2) they mainly focus on centralized data sources and ignore the fact that most

OSN logs are continuously generated in distributed web servers [LEC11, MK10,

TLGP14, VT16, WIP14, ZNJ+15], limiting the capability to take the advantage of

continuously processing the distributed data on the fly and resulting in centralized

bottleneck and load unbalance.

From the data mining point of view, the spam detection has three major steps:

(1) model construction where the spam classifier is created using a training dataset

with a specific algorithm, e.g., Random Forest [Bre01]; (2) model test where the

test dataset is used to validate the accuracy of the spam classifier; and (3) use

14



well-trained classifier with new social data to get predictions that identify new

spam [PZTH].

We propose a novel Online scalable spam detection system, namely Oases. The

key idea of Oases is to enhance the online feature and scalable feature into the

general spam detection processing, in which the spam detection model is continu-

ously constructed with the online training dataset and model testing, and the spam

detection is performed in a scalable fashion.

Oases operates in two phases. The first phase is the spam model construction.

We build a distributed hash table (DHT) [RD01] based aggregation tree to feed the

distributed data sources into a decentralized peer-to-peer overlay, which consists

of a root, branches and many leaves. The root is responsible for disseminating

the continuously updated training dataset and test dataset to the branches and

leaves. Each leaf node is responsible for spam model construction and spam model

test by applying the training dataset to a specific classifier such as Naive Bayes

algorithm [Ris01], Random Forest algorithm [Bre01], etc., and testing the spam

model using the test dataset. The intermediate results are aggregated by branches

to the root for validation and confirmation.

The second phase is the spam model application. Each leaf takes the new coming

streaming events from the distributed data sources (e.g., Twitter logs, Facebook logs,

etc.), analyzes them using the spam detection model from the first phase, outputs

spam and labels. The spam with their labels are then aggregated to the root and

reported to the end users.

The novelty of our work lies in that the posts are progressively aggregated for

actively filtering out new spam and publishing the training dataset to all distributed

leaf agents to update the classifiers in an online and scalable fashion. We believe

our system could promptly detect activities of spammers and classify various latest
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Figure 3.2: Overall framework of Oases system.

spam for social networks.

3.2 Design

In this section, we introduce the Oases system, discuss each functional component

of the system, and outline the details of workflows in the Oases system.

3.2.1 Overview

As shown in Fig. 3.2, the Oases system consists of four major components: (1) the

Oases root; (2) the Oases model construction tree; (3) the Oases leaf agent; and

(4) the Oases spam processing tree.

The first component is the Oases root. The Oases root is responsible for the

main control flows on other nodes, e.g., publishing the instructions from the Oases

root to branches and leaf agents to start training the classifier, delivering messages

to the Oases leaf agents to start classifications, etc. As shown in Fig. 4.1, for the first
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step, the Oases root manually divides the raw dataset into training dataset and test

dataset. The training dataset and test dataset are then disseminated by the Oases

root to all distributed Oases leaf agents through the Oases model construction tree

which is discussed next.

The second component is the Oases model construction tree. As shown in

Fig. 4.1, for the second step, the Oases model construction tree is responsible for cre-

ating efficient paths for the Oases root to disseminate the training dataset and test

dataset to the Oases leaf agents. The key idea is the use of a DHT-based application-

level multicast tree [CDKR02], similar to the IP multicast tree [DLL+00], to dis-

seminate copies in a progressively way following the tree path, without maintaining

N point-to-point connections for N leaf agents.

The third component is the Oases leaf agent. The Oases leaf agent is responsible

for the training of the spam detection model. As shown in Fig. 4.1, for the third

step, the leaf agent applies the received training dataset to the Random Forest

algorithm [Bre01] to practice the classifier, and uses the test dataset to enforce the

classifier. The trained classifier is used later by the fourth component to do the

online spam detection.

The fourth component is the Oases spam processing tree. The Oases spam

processing tree is responsible for orchestrating the distributed Oases agents to fulfill

the data mining tasks of online spam detection in a scalable fashion. The Oases

leaf agents are directly connecting to the web servers that generate user activity

logs, i.e., tweets, and classify spams out of these logs. As shown in Fig. 4.1, for the

fourth step, the workflow of Oases spam processing tree is as follows: a scalable

aggregation tree “rolls up” the classified results from the Oases leaf agents level by

level until the results reach the root. For example, if one tree has 7 spam processing

agents and each leaf agent classifies 10,000 social data, then after aggregation, the
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Figure 3.3: Sample of the data classification in the Oases leaf agent.

root agent receives 70,000 classified results.

3.2.2 Root

The Oases root is responsible for the main control flows of the whole system, in-

cluding (1) dividing the raw dataset into training dataset and test dataset; (2)

publishing the datasets from the Oases root to branches and leaf agents to start

training the classifier; and (3) aggregating the spam detection intermediate results

from the Oases leaf agents to the root.

The Oases root uses a DHT-based hierarchical tree as the main channel for

disseminating datasets and instructions. The DHT-based hierarchical trees are built

as follows:

1. Step 1: constructing a peer-to-peer overlay leveraging Pastry [RD01]. Each

Oases node is assigned a unique, 128-bit nodeId in a circular nodeId space

ranging from 0 ∼ 2128 − 1. All nodes’ nodeIds are uniformly distributed.

Given a message and a key, the message can be guaranteed to be routed to the

node with the nodeId numerically closest to that key, within dlog2bNe steps,

where b is a base with a normal value 4.
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(a) Unclassified data.

Spam Posts
Ham Posts

(b) Classified data with labels

Figure 3.4: Visualizaiton of the data classification in the Oases leaf agent. (a) shows the
original dataset which has no labels. (b) shows the dataset with labels predicted by the
model.

2. Step 2: building a multi-cast tree leveraging Scribe [CDKR02] (more details

can be found in Section 3.2.5). Any node in the overlay can create a group

with a groupId which is the hash (SHA-1) the group’s name concatenated with

its creator’s name. Other nodes can join the group by routing a JOIN message

towards the groupId. The node which its nodeId is most near to the groupId

serves as the root. The tree multicasts a message to all members of the group

within O(logN) hops.

3. Step 3: enhancing the aggregation function on branches. The Oases root

and middle-level nodes jointly implement (1) the aggregation flow and (2) the

control flow. For example, for the social spam detection application, batches of

social logs are parsed as a map from hashed data contents (ID) to the classified

tags (labels), i.e., (DDA2, 1) and (F7B5, 0) in the Oases leaf agent (here the

classified tag 1 means the data is classified as spam, tag 0 represents non-spam,

and we use shortened hashes to indicate ID). Then the aggregation tree that

progressively ‘rolls up’ and reduces those ID-label pairs from the distributed

leaf agents to the root (more details can be found in Section 3.2.6). Besides,
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when necessary, the Oases root can multicast to its workers within the group,

to notify them to empty their sliding windows and/or synchronously start a

new batch.

3.2.3 Leaf Agent

The Oases leaf agent is responsible for the local data processing task by executing

the root’s instructions. Data processing task in the leaf agent consists of two roles:

(1) local data classification and; (2) local online social spam detection.

The local data classification is the first role of the leaf agent. Each leaf agent

trains a classifier by using the training dataset. Then it uses the test dataset to

examine the accuracy of the trained model. Besides, the leaf agent updates its

trained model periodically with the new delivered training and test datasets from

the root. This allows the trained model to detect spam efficiently with the latest

spam features.

Fig. 3.3 shows the processing of data classification in a leaf agent. Original social

data is normalized in dataset without labels. After the classification via the trained

model, each instance of the original data acquires a classified label, which identifies

spam or not.

Fig. 3.4 shows the visualization of data classification in one leaf agent. Fig. 3.4a

shows the original dataset without predicted labels. After the classification, this

dataset is classified as two groups, as shown in Fig. 3.4b, where the purple and

orange color represent Ham (non-spam) and Spam, respectively.

The local online social spam detection is the second role of the leaf agent. In

Oases, each leaf agent connects to a web server so as to collect the online social

streaming data from this server. Then the leaf agent completes the online data
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Figure 3.5: Oases Model Construction Tree.

analysis upon streaming data flow with the trained model and produces classified

results. Finally, all leaf agents collaborate to shuffle the classified results to the upper

layer via the spam processing tree. More details can be found in Section 3.2.6.

3.2.4 The Classified Algorithm

We next introduce the details of the classic algorithm that be implemented, Random

Forest algorithm [Bre01], in our training and test processing.

Why Random Forest? Random Forest algorithm is a classic data mining

algorithm and had been implemented with graceful performances in various works

of social spam detection [WZLP15, XSJ16, ZZC+15]. Random Forest constructs

a fixed number of decision trees for training during the training processing and

results in one final decision which is determined from multiple individual trees.

This algorithm is derived from decision tree learning and tree bagging.

21



Model Construction
Tree Multicast

R

LLLL

(ccde,?)
(mnk,?)

...
(ccde,?)
(mnk,?)

...
(mnk,?)
(xxy,?)

...
(mnk,?)
(xxy,?)

...
(you,?)
(xxy,?)

...
(you,?)
(xxy,?)

...
(mnk,?)
(you,?)

...
(mnk,?)
(you,?)

...

Distributed Web Servers

 Spam Processing 
Tree Aggregation

(2D17,0)
(788A,1)

...
(2D17,0)
(788A,1)

...
(788A,1)
(0DA4,0)

...
(788A,1)
(0DA4,0)

...
(788A,1)
(D1C6,1)

...
(788A,1)
(D1C6,1)

...
(D1C6,1)
(0DA4,0)

...
(D1C6,1)
(0DA4,0)

...

(2D17,0)
(788A,2)

...

(2D17,0)
(788A,2)

...
(0DA4,0)
(2D17,0)
(788A,2)

...
(0DA4,0)

(788A,1)
(D1C6,2)

...

(788A,1)
(D1C6,2)

...
(0DA4,0)
(788A,1)
(D1C6,2)

...
(0DA4,0)

(D1C6,2)
(788A,3)

...

(D1C6,2)
(788A,3)

...

(0DA4,0)
(D1C6,2)
(788A,3)

...

(0DA4,0)
(2D17,0)

(D1C6,2)
(788A,3)

...

(0DA4,0)
(2D17,0) R

LLLL

Distributed Web Servers

Training Data Set

Test Data Set

.

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..

.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

..

.

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

..

Figure 3.6: Aggregation in the spam processing tree.

In the training process, the classifier in each leaf agent receives the training

dataset from the root agent, then randomly samples N cases to create a subset of

the data. The subset usually about 66% of the total set. One subset of the samples

creates one decision tree. That is repeatedly to choose some different small subset

of attributes at random and creates all decision trees. When leaf agent starts the

test processing, trained classifier puts the test dataset into the forest. Then it runs

down all trees of the forest. The classification result is the majority vote among all

decision trees.

3.2.5 Model Construction Tree

The Oases model construction tree is responsible for creating efficient paths for

the Oases root to disseminate the training dataset and test dataset to the Oases

leaf agents. Here we use an example to illustrate the Oases model construction
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tree. The sample scenario is presented in Fig. 3.5. Assume there are 7 nodes in

the Oases system. The node with nodeId numerically closest to the topicId acts as

the rendezvous point for the associated multicast tree. For example, if hash(model)

equals to 0088, the node with same identifier or closest identifier like 0087 or 0089

will be the root of the model tree. The Oases model construction tree is shown in

Fig. 3.5. The tree is rooted at the rendezvous point and the other nodes subscribe

to this tree. The Oases root multicasts the training and test datasets to all leaf

agents in O(logN) hops. In the figure, (a, 1) means that the post “a” is a spam

post and (b, 0) means that the post “b” is a non-spam post. Then those leaf agents

are triggered to apply the received dataset to the local classifier to complete the

model training and test processing using the Random Forest algorithm [Bre01].

3.2.6 Spam Processing Tree

The Oases spam processing tree is responsible for coordinating distributed leaf

agents to accomplish the online spam detection globally. In this section, we use

a sample scenario to present the workflow of the Oases spam processing tree.

As shown in Fig. 3.6, the leaf agent processes the online social streaming data

with its trained classifier. For instance, after processing, original data (mnk, ?), in

which the question mark means it hasn’t been classified, is detected as spam and

marked as (mnk, 1). Then the leaf agent sends the hashed content, e.g., hash(mnk)

= 788A and its label formatting as (788A, 1), to the upper layer.

Further, the spam processing tree progressively rolls up and reduces those ID-

label pairs from the distributed leaf agents to the root. For example, 〈(788A, 1),

(2D17, 0)...〉, 〈(0DA4, 0), (788A, 1)〉, are reduced as 〈(788A, 2), (2D17, 0), (0DA4,

0)...〉 in the branches of tree. And then those pairs are reduced as 〈(788A, 3),
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(D1C6, 2), (2D17, 0), (0DA4, 0)...〉 to the root as the final results. The value of

labels indicates the number of leaf agents which detect this data as spam, e.g., (788A,

3) represents that there are 3 leaf agents classifying the data “mnk” as a spam post.

Those hashed IDs with larger values in labels indicate the higher possibility as spam

posts.

3.2.7 Self-adjustable Tree

Oases supports self-tuning in the tree structure level. By manipulating the parame-

ter n of the tree fan-out, with achieving 2n fan-outs per agent, it can format different

trees.

The design of this feature is to support multiple targets in spam processing. For

example, when an application is high latency sensitivity, it can modify the tree depth

by adjusting the value of tree fan-out. Assuming there are 10b agents in Oases, the

default depth of the tree is log2bN , where b = 4. By changing the default fan-out

from 24 to 25, the average depth of the tree is reduced from 5 to 4. So root-to-leaf

data transfer can achieve lower latency by across fewer layers.
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 When an application desires a good failure recovery, Oases can increase the 

depth of trees by reducing the tree fan-out. Using the same example above, Oases 

can change the fan-out from 32 to 16, resulting in that a tree’s depth increases from 

4 to 5. A deeper tree can benefit the agent’s failure recovery. This depends on the 

mechanism for failure recovery in Oases: once a child fails to receive a heartbeat 

message, it suspects its parent failed, and this agent will route the JOIN message to 

the group’s identifier. Oases then sends the message to a new parent to repair the 

tree. When a tree has a small fan-out and a large depth, the failure of one agent 
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can reduce this failure effects.

3.2.8 Benefits and Design Rationale

In this section, we discuss why Oases has the online and scalability benefits and the 

rationale behind the design.

 Online. Oases enables the progressive aggregation of the properties of the 

spam posts for creating new spam classifiers to actively filter out new spam posts 

and update the classifiers to all distributed data process agents. That ensures the 

spam classifiers to always keep pace with the latest social spam, and identify new 

spam with high efficiency.

 Exploring DHTs for Scalability. The Oases model construction tree and 

spam processing tree are self-organizing and self-repairing, and can be easily ex- 

panded in a distributed manner. The use of DHT guarantees that the cost of 

multicast and aggregation can be fulfilled within O(logN) hops. Moreover, multiple 

groups (e.g., model construction tree and spam processing tree) are supported in 

one single overlay, which means that the overhead of maintaining a complex overlay 

can be amortized over all groups’ spinning trees [RD01]. Specifically, all agents in 

overlay are viewed as equal peers, so, each agent can be a root, parent, leaf agent 

or any combination of the above, which leads to well balance of the computation 

loads.

 Handling Nodes’ Failures. The Oases system uses leaf sets to handle node 

failure [CDKR02]. Each node maintains a leaf set. The leaf set is the set of l nodes 

which nodeIds that are numerically closest to the present nodeId, with l/2 larger and 

l/2 smaller. A typical value of l is nearly 8⌈log 2bN ⌉, where N is the total number 

of nodes in the system. Neighboring nodes in node’ leaf set exchange keep-alive

can only affect the performances of the following sub-agents, while fewer sub-agents



Table 3.1: Results of spam classification with multiple classifiers.

Classifiers Accuracy F1 FPR

Random Forest 94.8% 0.962 0.26
SVM 94.5% 0.937 0.446
KNN 91% 0.911 0.374
Logistic 92% 0.908 0.303
Naive Bayes 86% 0.871 0.477

messages periodically. An agent is presumed as a failure if it is unresponsive for a

period. Then those members in the left set of failed node’s leaf set are notified and

they update their leaf sets. Once the node recovers, it will contact the node in its

last known leaf set, obtains their current leaf sets, updates its own leaf set and then

notifies the members in the new leaf set of its recovery.

3.3 Evaluation

We evaluate the Oases system with the real-world online social network streaming

data. Experimental evaluations answer the following questions:

• What are the spam detection accuracy rates of the Oases system (Sec. 3.3.2)?

• What are the performances of data shuffling, processing and delivery latency

in Oases (Sec. 3.3.3 & Sec. 3.3.4)?

• What is the overhead and resource consumption of the system at runtime

(Sec. 3.3.5)?

3.3.1 Testbed and Application Scenarios

Experiments are conducted on a testbed of 800 agents hosted by 16 servers running

on Linux. Each server has a QEMU Virtual CPU with 3.4GHz processor, 4G of
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Figure 3.7: Time of the leaf agents receiving data blocks from root with various size of
data blocks and different number of agents.

memory and 30 GB hard drives. The system was implemented in Java by using

Java SE Development Kit 7 in x64, version 1.7.

Oases’s functionality is evaluated by running an online social data application.

Nearly 3,000,000 tweets from Twitter streaming API had been collected and evalu-

ated via our system from 12.2016 to 02.2017. The application’s purpose is to identify

social spam, such as posts used by malicious links or contents to draw users’ clicks

and spread malware. We use the straightforward content features (URL, words, etc.)

to predict labels. Oases uses test dataset to examine the model which is trained

with training dataset. The application is implemented to produce predicted labels

from online data streams via the Oases leaf agents.

3.3.2 Spam Classification Results

We evaluate the spam classification results of Oases and compare the performance

with several popular classifiers. Evaluations rely on a sample dataset which consists
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Figure 3.8: Time of shuffling data from leaf agents to upper layer in the tree.

of 50,000 posts (37465 posts are Ham and 12535 posts are Spam). The results are

shown in Table 3.1. Random Forest is default implemented in Oases and other clas-

sifiers include K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Logistic

Regression, and Naive Bayes. F1-score (F-Measure) responses for an important fac-

tor in measuring the classification performance. The results show that Random

Forest achieves promising performance with the F-measure up to 96.2% and the ac-

curacy up to 94.8%. Combined with these key indicators, Random Forest achieves

the best performance among all classifiers.

3.3.3 Data Shuffling Time and Data Processing Time

The Oases model construction tree, as the efficient paths for dataset distribution,

directly influences the local data processing time. On the other hand, after the

data processing, the classified intermediate results propagate from distributed leaf

agents, to the upper layer for aggregation, until they reach the Oases root. The

aggregation tree, as the structure for shuffling classified results from the leaves to
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Figure 3.9: Training and test time in data processing with different size of data blocks.

the root, directly influences total online spam processing latency. Therefore, we

first report the time of the leaf agents receiving data blocks (datasets) from the root

in Fig. 3.7, and then report the time of intermediate results aggregating from the

leaves to the root in Fig. 3.8. Finally, we show the data processing time of each leaf

agent in Fig. 3.9.

Data Shuffling Time. Here we classify the data shuffling time into two parts:

(1) the time of the leaf agents receiving data blocks from the root; and (2) the time

of results aggregating from the leaf agents to the root. The number of the Oases

agents varies from 25 to 800. Simultaneously, various sizes of data blocks are used

for evaluation.

Fig. 3.7 and Fig. 3.8 show that, when the system uses the same datasets but

with a different number of agents, the time of delivery and reception linearly in-

creases, rather than fold increases. This is because that the linear increment of the

delivery or reception time is strictly determined by the tree depth O(logN), which

further reflects that the tree topology in the overall performance exhibits a very
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Figure 3.10: Average latency of root agent aggregates whole results in one process cycle.

good balance.

Data Processing Time. Fig. 3.9 shows the time of model training and test

processing in one agent with various sizes of data blocks. Result shows that with

the increment of the size of data blocks, the training processing time also increasing

rapidly, especially when the data block has 20k and 25k posts. It indicates that over-

large size of data blocks can be the bottleneck of the whole system when considering

the size reaches to 25k with the training time up to 1150s. Costly time in the training

processing will cause the whole system looks like in “busy-waiting” - though the leaf

agent is working on the training processing, the root cannot get any useful results in

a long time. Therefore, the choice of a suitable size of the data block can promote

the best performance of the system.

3.3.4 Aggregation Latency and Self-adjustable Tree

Performance impact due to large data blocks. After the hashed ID-label

pairs are shuffled to the upper level, the Oases root actively aggregates the data
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Figure 3.11: Average data delivery latency across the different trees.

Table 3.2: The runtime overheads of Oases. It represents the CPU,
Memory, I/O, and context switch overheads.

VSD
CPU Memory I/O C-switch
%used %used wtps cswsh/s

5k 47.6% 38.0% 2.23 322.72
10k 51.1% 43.8% 3.20 280.69
15k 51.0% 44.2% 2.78 304.57
20k 50.9% 45.1% 1.80 314.06
VSD : various size of data blocks.

wtps: write transactions per second.

cswsh/s: context switches per second.

stream into the final result pool. Although the Oases architecture ensures that the

aggregation processing can be completed with logN hops. However, many factors

may impact the performance of the root aggregation, such the size of the data blocks,

the network bandwidth, and the traffic interference.

As shown in Fig. 3.10, the size of the data blocks (training and test datasets) has

an important effect on the latency. In the case of reasonable dataset size, e.g., 5k,

the average latency is nearly 100 seconds. However, when using large data blocks
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Figure 3.12: Average fault recovery latency of failed agents in different trees.

(e.g., 20k), the latency grows much faster than the size increment of the data block.

We believe that the increased latency indicates that the system has reached a

limited overload when processing with extra large data blocks. In this case, some

agents are still active but other agents may be blocked to wait for the server’s

resources. In addition, oversized dataset exacerbates the burden of each leaf agent

during the training and testing processing that causes the overload even further

overload.

Tree Structure Adjustment. Fig. 3.11 and Fig. 3.12 represent the perfor-

mances of delivery latency and recovery latency with different tree structures. In

Fig. 3.11, tree bit decides the tree fan-out of each agent. For example, when tree bit

= 4, the fan-out is 16, which means each agent has 16 following agents. Results in

Fig. 3.11 show that delivery latency increases when the tree layer increases (small

tree bit), in which delivering a data block from the leaf to the root need to cross

more layers.
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Figure 3.14: Memory utilization in one server.

3.3.5 Runtime Overhead

Table. 3.2 shows the runtime overhead of Oases. As the result shows, the Oases

system has similar overheads in the utilization of CPU, memory, I/O, and context

switches when dealing with the data blocks of different sizes. This is because the

Oases system uses a decentralized architecture to distribute the management load

evenly over the distributed servers, and the hierarchical tree structure facilitates

communication across multiple agents and servers.

We also evaluate the server’s resource consumption, with each server supporting

five leaf agents at the same time. As shown in Fig. 3.13 and Fig. 3.14, the processing

cycle time is close to 140 seconds, with the CPU and memory utilization reaching
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a higher level from 15s to 155s. In addition, the processing performance is quite

consistent with the former results.

3.4 Summary

In this chapter, we present the online scalable spam detection system (Oases), a

distributed and scalable system which detecting the social network spam in an online

fashion. By periodically updating the trained classifier through a decentralized

DHT-based tree overlay, Oases can effectively harvest and uncover deceptive online

spam posts from social communities. Besides, Oases actively filters out new spam

and updates the classifiers to all distributed leaf agents in a scalable way. Our large-

scale experiments using real-world Twitter data demonstrate scalability, attractive

load-balancing, and graceful efficiency in online spam detection.
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CHAPTER 4

ACHIEVE EFFICIENT SPAM DETECTION BY EXPLOITING

SAPM CORRELATIONS

4.1 Introduction

Online social networks (OSNs) have been an integral part of human life. More

and more people are acquiring the latest news, advertisements, social activities,

and breaking topics directly from the current popular OSNs such as Facebook,

Twitter, and WeChat. For example, a report said that the percentage of US adults

who primarily receive news and information from OSNs is as high as 62% [AG17].

However, the openness of widespread OSNs couple with massive spam activities,

which are damaging as they cause public panic and social unrest. For example,

in February of 2019, social users in Paris watched a lot of photos of kidnappings

on Facebook and videos of vans speeding away on Snapchat and Twitter, all of

which hinted that the Roma (Gypsies) robbed children with vans in the suburbs

of Paris [Bre19]. Although the information proved to be wrong later, they brought

serious consequences to the Roma and the whole society: dozens of young men

wielding sticks and knives attacked a Roma camp and burned two vans, and tens

of people were arrested. Another example is that one latest report said the global

enterprise spam filter market was valued approximately USD 849 million in 2018 and

is expected to generate around USD 2,675 million by 2026 [zio19]. And it pointed

out that the increasing number of social spam is driving the enterprise spam filter

market globally.

The unprecedented success of online social networks has created tremendous

opportunities for the emergence and rapid spread of spam. By leveraging a large

social user, social spam often dominates and influences social life in a short period
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of time and can reach every corner of the social world. Therefore, quickly detecting

spam from large-scale social activities is an urgent need in the current situation.

Furthermore, as our observation, the spammers in the online social networks are

not only active on a single platform, but are often active on different social platforms,

by simultaneously manipulating dozens or hundreds of fake accounts. Naturally, the

information published by these fake accounts is highly similar. This phenomenon

has been pointed out by several former studies [XGL+18]. Spammers certainly desire

to spread similar posts on different platforms to attract as many people as possible

to target on these topics. A case study of social spam posts for multiple different

news sites also demonstrates that spam posts show a high degree of similarity in

content and topics during the same period of time and will immediately propagate

from one site to another [a16]. Therefore, this correlation between cross-platform

social spam is a common phenomenon in the current social media world. Although

there are not many direct relationships between users, geographic locations, creation

purposes, and regions in these various groups or platforms, the spam contents are

highly correlated within similar topics during the same period of time.

However, former studies rarely utilized the spam correlations to handle the

large-scale social data from distributed data servers. They either focused on the

algorithm side to achieve high accuracy in the detection [VBC+14, WP15, VT16,

SS16, HBSD17], or the entire processing only targeted on a small size of dataset

without the global view from similar data across large-scale data sources [GCL+12,

XZJ+16, CWZ+17, XSJ16]. In this paper, to explore the efficient method in dealing

with large-scale social data sources, we present a new social spam detection system,

named SpamHunter, to take advantage of the spam correlation among distributed

data sources for efficient large-scale social spam detection. SpamHunter implements

multiple groups, where each group contains a DHT-based functional tree that jointly
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Figure 4.1: The overview of the system design.

connecting multiple data sources (e.g., servers, datasets, etc.) to share the spam cor-

relations (e.g., updated spam features) in a distributed manner. The DHT-based

functional trees response to data delivery, spam identification, and correlation ex-

changes. Besides, the group-level coordination ensures multiple groups or clusters

can instantly exchange and share the correlated features during the processing, that

is, they collectively leverage the latest spam correlations to enhance the performance

of spam detection.

4.2 Design

4.2.1 Overview

Figure 4.1 shows the designed architecture of the SpamHunter system. SpamHunter

is built upon a peer-to-peer DHT-based Pastry overlay [RD01]. The overlay is

utilized to orchestrate large-scale distributed social servers. As shown in the first

37



step of Figure 4.1, these data servers can be grouped by various kinds of features

(e.g., geo-location, topic tags, or institutions), and the large amount of servers are

connected to the DHT-based overlay. In the second step, SpamHunter creates a

functional tree upon Pastry for each group, where nodes jointly route around a

specific key (see details in subsection 4.2.2). The functional tree for each group will

respond to the primary workload during processing, for example, data dissemination,

spam detection, and results aggregation.

In the third step, SpamHunter deploys online social spam detection within the

group management. In each group, SpamHunter manages the functional tree to

fulfill the online social data processing. The root of the tree is responsible for the

data/model dissemination and in charge of the entire workflow. The distributed leaf

nodes will complete the processing of spam detection by following the root’s instruc-

tions by coordinating the classified models. The root of the tree also aggregates the

identified results from the following nodes, updates the spam dataset, and extracts

the latest spam. Furthermore, as shown in the fourth step of Figure 4.1, after the

online spam detection, multiple groups in SpamHunter will periodically exchange

and share the latest spam with others, so that all groups have a global view of

the newest social spam and then utilize the correlated new spam in the continuing

processing, as shown in the fifth step of the Figure 4.1.

Next, we will introduce the system’s functionality and implementations details.

We first introduce the deployment of SpamHunter and the group management. Then

we introduce the online social spam processing. Finally, we propose the group coor-

dination and communication in enhancing the detection performance by leveraging

the large-scale spam correlations.
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Figure 4.2: The server-overlay structure and group management.

4.2.2 Group Management

We first present the details of the overlay in SpamHunter. SpamHunter is built

upon the peer-to-peer Pastry overlay [RD01], where each node has a unique 128-bit

nodeId with a nodeId space ranging from 0 ∼ 2128 − 1. Note that all nodeIds are

evenly distributed, so that the deployment of nodes can be flexibly scaled to a large

amount of instances. The message is the main link between nodes: nodes can route

messages towards a specific key, for example, the key can be a target nodeId, a

groupId, or a specific topic concatenates with a groupId. With the targeted key,

messages can be routed to the node which nodeId is numerically closest to the key

in dlog2bNe steps, where the default value of b is 4.

By leveraging Scribe [CDKR02], each node in SpamHunter can create a group

by a groupId. Typically, the groupId is obtained by hashing (SHA-1) the name of

the group with the name of its creator. Other nodes can randomly join a group by

routing a JOIN message towards the groupId as the key, which enables flexible group
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membership. The nodeId of the rendezvous node in the group is closest in value

to the groupId. Each group constitutes a functional tree which creates valid paths

for the root to communicate with multiple layer nodes. The key idea is the use of

a DHT-based application-level multicast tree [CDKR02] to propagate data/model

replicas through the tree path, which has the advantage of not maintaining N point-

to-point connections for N leaf nodes. For example, assuming there are 7 nodes

jointly work as group ”video”, if hash(video + creator name) equals to EA34, the

node whose nodeId is closest to it, such like EA34 or EA35, will serve as the root of

the functional tree. The other six nodes will then subscribe to this tree and follow

the root node. Due to the tree structure, the tree root can multicast the messages,

instructions, or models to all leaf nodes in O(logN) hops.

SpamHunter Tree’s Functions. SpamHunter creates multiple groups to sup-

port the scalability of social data processing. Each group constitutes as a functional

tree, where the spam detection is fulfilled in this tree. As shown in Figure 4.3, the

group’s functional tree mainly has four functions: spam detection, aggregate func-

tion, spam extract, and external/inner tunnel. We next present the details of these

functions.

The spam detection is fulfilled by the coordination of the root and leaf nodes. In

the group’s tree, the tree root is in charge of the workflow of spam identification via

the inner tunnel in root and leaf. The root of the tree will build a spam detection

model by training the model using the training data set and then testing the model

using the test data set. In addition, it manages the processing workflow by propa-

gating instructions and models through the functional tree to the following branches

and leaf nodes. By following the instructions of the tree root, the leaf nodes com-

plete the pre-data processing and spam identification with the model. Details are

presented in subsection 4.2.3.
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Figure 4.3: The DHT-based functional tree.

The SpamHunter functional tree supports aggregate function during the pro-

cessing to collect the interim results after spam detection. The tree branches and

middle-level nodes are able to jointly work with the tree root to fulfill the aggrega-

tion. We next use an example to present it. After the local social spam classifications

in the leaf nodes, batches of social logs are parsed as mappings from the content

(posts) to categorical tag (labels), i.e., (post 1, 0) and (post 2, 1) in leaf nodes (here

the tag 1 represents spam and the tag 0 represents non-spam). The leaf node will

first filter out the identified spam data, (i.e., the social data has been detected as

spam and marked with label 1), then sends the paired instances, e.g., (post i, 1), to

the upper layer via the deliver tunnel.

The third function supported in SpamHunter tree is the spam extract. After

results aggregation, the tree root will accumulate the latest spam posts from the

collected interim results and identify the prospected posts which are most highly

be spam. For example, in a specific case, when 6 servers’ interim results notify
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that the social post post k as spam post, after the aggregation, the root will acquire

the final votes for this post as (post k, 6). The root node will extract this new

identified spam post and join this post into the new training dataset, a set of data

with identified spam and ham post which is used for creating spam models. After

the default batch size, the root node will generate a new dataset consisting of latest

spam posts and then periodically create a new spam model upon this dataset. After

that, the tree root will disseminate the newly trained model to all following nodes

in the continuing processing. Besides, when necessary, the tree root can multicast

to its nodes within the group, to notify them to empty their sliding windows and/or

synchronously start a new batch [XHL+18].

As shown in Figure 4.4, after the date processing in the tree-level, the exter-

nal tunnel ensures multiple groups’ roots exchanging and sharing the latest spam

posts at the runtime, which means that each group can leverage spam correlation

to enhance its own processing and get better performance. As mentioned earlier,

in order to allow distributed data servers to obtain a global view of spam informa-

tion, SpamHunter allows the root of the group to send its aggregated spam to the

roots of other peer groups. Details of data delivery among groups can be seen in

Section 4.2.2. Each group’s root can periodically update and exchange its extracted

spam data with other groups.

SpamHunter ensures the entire spam detection in flexible processing granular-

ity, including both globally large-scale data processing and locally distributed data

processing. To support multiple processing targets, such as high latency sensitivity

or good failure recovery, the functional tree is able to self-tune at the tree structure

level by adjusting the tree fan-out element n, with achieving 2n fan-outs per node.

Specifically, when the latency is the prime target of the users’ defined appli-

cations, SpamHunter can customize the depth of functional tree by adjusting the
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fan-out element n. For instance, when 10b (i.e., b = 4) nodes exist in the system,

the original depth of the functional tree is log2b(10b). By adjusting the fan-out el-

ement from 4 (24) to 5 (25), the average depth of the tree can be pruned from 5

to 4. Consequently, the overall latency of root-to-leaf transmission will obtain 20%

decrement.

In another case, when the application is defined to require a strong failure recov-

ery, SpamHunter can tune to construct deeper functional trees to ensure this. Using

the same example above mentioned, SpamHunter can change the fan-out parameter

from 5 (25) to 4 (24), resulting in that the average tree’s depth increases from 4 to

5. A deeper tree can achieve more robust performance when multiple nodes’ fail.

This depends on the mechanism for failure recovery in SpamHunter: once a child

fails to receive a heartbeat message, it suspects its parent failed, and this node will

route the JOIN message towards its belonging groupId. SpamHunter then sends the

message to a new parent to repair the tree. When a tree has a small fan-out and a

large depth, the failure of one node can only affect the performances of the following

sub-agents, which fewer sub-agents (smaller fan-out) can reduce the deficiency due

to parent node’s failure.

4.2.3 Online Social Spam Detection

The SpamHunter leaf node is responsible for two functionality: (1) social raw log col-

lection and normalization and (2) local spam detection. Each leaf node collects the

social network logs (i.e., social posts, images, news, Tweets, and so on) from the dis-

tributed web servers. The leaf node can utilize the openly APIs (e.g., Twitter API,

Facebook API) to collect the online/real-time streaming social logs. The logs will be

collected from scripts and saved to the local server, which can be utilized next by the
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Figure 4.4: The group coordination in the system. Group 1’s root shares the spam
correlations with group 2’s root. Besides, the group 1’s root communicates with other
groups’ roots via the overlay.

leaf node that connected to this server. Furthermore, the leaf node will pre-process

and normalize the raw social logs into the same formatted separate set. The majority

of posts contain URLs, typically, to confuse the malicious URLs, spammers will add

white spaces and unicode characters into them [GHW+10]. This is a simple but effec-

tive way to bypass the filters that blacklist URLs only by simple string matching. In-

spired by [GHW+10], we de-confuse URLs by removing whitespace padding and nor-

malizing the encoded characters (e.g., “subsexvideo%26ip%3Dauto%26click%3D1”

becomes “subsexvideo&ip=auto&click=1”). For social contents, specifically, we re-

move punctuation, tokenize each word, and remove stopwords. We extract the tf-idf

values of the terms in each document. The tf-idf weight of the term represents the

frequency at which the term appears throughout the document [ZHC07].

After the data collection, SpamHunter leaf node will first normalize the original

data into unified formats. The SpamHunter leaf node extracts the posts’ contents
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from the JSON formatted log. Then it divides these social data into same sized

datasets for the local online spam detection. Next, the leaf node will utilize the

trained spam model which is disseminated from SpamHunter root to complete the

local data processing task. Original data which consists of unprocessed social logs

without identified labels. After the spam classification with the trained model, an

identified label will be created to each instance of the original social logs (here 1

presents spam and 0 presents non-spam). Besides, the SpamHunter leaf node will

facilitate completing the results aggregation flow by sending intermediate results to

the upper layers. Note that the leaf nodes will instantly process the collected social

logs without long latency. Besides, they will follow the root’s instructions to clean

its slides and start new batches with the updated spam model.

The online social spam detection is completed by coordinating both tree-level and

group-level. The tree-level processing has been presented before, we next introduce

the group-level coordination in online processing, which primarily relies on group

communications.

4.2.4 Group Coordination

The group communications in SpamHunter are responsible for the main function

of spam correlated model update and data exchange among the entire detection.

We fulfill the group communication by implementing diffusion broadcasting group.

We now present the details of this functional component. SpamHunter group pro-

vides two major functions: multicast and anycast. Multicast is used to construct

a hierarchical functional tree, which acts as a fundamental frame for scalability in

SpamHunter. multicast allows messages or instructions can be delivered to all the

members in one group. As presented before, any nodes can create a group in the

45



overlay; and other nodes can flexibly join the group and then multicast messages

from the rendezvous point to all member of the group along the functional tree.

Anycast can be used for group communications and model transmissions among

multiple groups. It is implemented by the distributed depth-first search (DFS).

Each node in the overlay (may in/out of group k) can anycast to the group k by

routing a message towards the group k ’s groupId [RD01]. The convergence of local

routing in Pastry guarantees that this message can highly reach a group member

near the sender’s nodeId. Anycast can also be used to serve the communications

between multiple groups, such as exchanging the updated dataset and exploring the

spam correlations among them.

SpamHunter supports group-level communications to allow multiple groups to

exchange their updated models to enhance the final performances. Once a group

finishes its whole processing in the leaf nodes, the root node aggregates the results

that contain the newest spam information and then updates its model. Further,

root nodes in groups exchange the updated models by disseminating their updated

models to other peer-groups. Then all groups own the newest models from other

groups and can utilize the new models in the continuing processing.

SpamHunter originally supports star group that allows each root of one group

anycasts the updated model to other groups. Given a graph G with N nodes, one

root needs to send n − 1 messages during one round time. In this case, SpamHunter

group has to send out m = 1/2×n×(n−1) messages which takes O(n2) time. To di-

minish the group communication latency, we design diffusion group in SpamHunter.

We now present the details of this type of group communication.

The diffusion group communication lies in: each root node in a group holds a

table where contains the model version and the original group, which denotes as a

<groupID, versionNum>. The root within updated model in one group randomly
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chooses two other groups to disseminate the model with the new version number.

The root of these two groups will check its model table to see if the current received

model is the latest one. If the versionNum is larger than the value in the table,

they will save the model and update the model table with the new version number.

If not, they will return a message to the original group to notify they already own

the newest one. These two roots will act as new propagators and begin to deliver

the latest model to other groups. Finally, all groups’ roots will receive the updated

model and update their model tables. It’s easy to refer that the number of rounds

to propagate a single update model to all groups is O(logn), where n is the number

of groups in SpamHunter.

4.3 Evaluation

The experimental evaluation of the system is carried out with online real-world

streaming data from social media. We utilize the data which is collected from

Twitter streaming APIs [XHL+18]. We manually labeled the dataset for examining

the performance of spam detection. These data were labeled based on the posts’

URL, content, and Twitter official identifications. The dataset contains 60,000 posts

which including of 43,897 ham posts and 26,100 spam posts. The application’s

purpose is to identify social spam posts, which produces predicted labels from online

data streams via the system. Note that near 1’000,000 posts are used for evaluating

the scalability of the system.

Experiments are conducted on a testbed of 10,000 nodes hosted by 10 servers.

Each server has a 3.4GHz CPU, 4G of memory and 30 GB hard drives. Our evalu-

ations mainly answer the following questions:
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• What are the performances of system metrics in the scale, such as the delivery

and aggregation latency, functional tree construction latency, and runtime

overhead (Sec. 4.3.1)?

• What are the performances of group coordination and online spam detection

by utilizing the spam correlations (Sec. 4.3.2)?

4.3.1 System Performances with Scalability

SpamHunter achieves effective spam detection in large-scale online social data sources,

therefore, scalability is a major part of the overall evaluation. To evaluate SpamHunter,

we deploy the system with the nodes ranging from 1,000 to 10,000, which consists

of ten groups (functional trees) in the cluster of servers.

SpamHunter implements functional tree to complete the local distributed social

spam detection, which means that the functionality of the tree directly affects the

final performance of the process. We first look at the tree paths in the group. The

functional tree responses for the message routing, delivery, and communications

between multiple layers of nodes, therefore, the average hops (steps) among node

communication should affect the performances within scaling to a large amount of

data sources. The evaluated average hops are shown in Figure 4.5. From this figure,

we can see that the average hops between multiple layers of nodes are consistent

when the system scales to large amount of nodes. The typical hops among the

functional tree are around 2 to 3. This demonstrates that SpamHunter can flexibly

and conveniently support large-scale data sources and servers, and can guarantee

the total communication between servers/instances in a relatively small distance,

which indicates the low latency in handling node interactions and communications.
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Figure 4.5: Model delivery latency.

The communication latency among SpamHunter is mainly from two parts: the

delivery latency from the root and the aggregations latency from the leaf. The deliv-

ery latency refers to the root node of the functional tree disseminating the messages,

data, spam model, and instructions to all following nodes. The aggregation latency

generally refers to the root node aggregates the interim results (i.e., identified social

spam posts) from the leaf nodes. The results of these two kinds of latency are shown

in the Figure 4.6. From this figure, we can observe that when scaling the nodes to

a large scale (up to 10,000), the latency is slowly increased with a few hundreds

of milliseconds. This is reasonable since a large amount of nodes will cause part

of delay in the message delivery and results aggregation. The difference between

these two kinds of latency is usually from the delivered data size, for example, the

delivered spam model is up to several megabytes, which causes the delivery latency

is higher than the result aggregation latency.
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Figure 4.6: Latency of deliver and aggregate.

Figure 4.7: Results of spam detection.

Model F1 Precision Recall

RF 0.951 0.951 0.951
SVM 0.942 0.945 0.944
RT 0.927 0.928 0.927
Logistic 0.859 0.866 0.855
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number of nodes. As shown in Figure 4.8, when the nodes scale from 1,000 to 

10,000 (note that these are ten trees here, for each tree, the nodes scale from 100 

to 1,000), the construction latency is linearly increased with the nodes’ increment. 

The latency is usually from the hash of nodeId and the joining of the overlay. Note 

that the functional tree only needs to be built once at the beginning, and it will not 

cause other latency during the data processing.

 Further, we evaluate the runtime overhead of the system in deploying the func- 

tionality. Results of the CPU and memory utilization are shown in Figure 4.9. The 

values of utilization present the overhead in one server and here they leave out the

           Moreover, we evaluate the latency in constructing functional trees with a different



1 0 0 0 5 0 0 0 1 0 0 0 01 0 0 0 1 0 0 0 0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

0

3 5 0

La
ten

cy 
of 

tre
e c

on
str

uc
tio

n (
s)

N u m b e r  o f  n o d e s

 S p a m H u n t e r

Figure 4.8: Average latency in creating functional tree with different nodes.

processing of spam detection since the data processing will periodically cost lots

of computations and will make the overhead confusing in evaluating the functional

tree’s performances. From this figure, we can see that with the number of nodes

scales to 10,000, the runtime overhead linearly increases by 16% in CPU and 7% in

memory. It presents that SpamHunter achieves relatively lightweight overhead in

guaranteeing the tree and group functions at runtime. And it can be beneficial for

the large-scale data processing in the future.

4.3.2 Group Coordination and Spam Detection

SpamHunter supports multiple groups to exchange and share the latest spam posts

with each other. In this subsection, we present the experimental results of group

coordination and the performance of spam detection.

Figure 4.10 shows the latency of communication among multiple groups’ roots.

Here we use two sizes of dataset, with 1,000 and 5,000 posts separately. From
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Figure 4.9: RUntime overhead of CPU and memory utilization.

the figure, we can see that the latency of communication is consistent with the

increment of groups from 10 to 100. When deployed with a large number of groups,

for instance, 100 groups, the average latency has linear increment. In general, the

latency mainly depends on the size of the delivered data. When the root shares a

large size of spam posts, it will incur longer latency.

Table 4.7 presents the performances of spam detection in SpamHunter. We im-

plement several classical algorithms such like RF (Random Forest), SVM (Support

Vector Machine), RT (Random Tree), and Logistic in the detection with the labeled

dataset. We present the major parameters of the performance including F1, Preci-

sion, and Recall, where the F1 score responses for an important factor in measuring

the performance. From the table we can see the Random Forest (RF) achieves the

best performance with the F1 score near 95%. This presents that SpamHunter can

achieve good performances in dealing with the online real-world social spam data.
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Figure 4.10: Group communication latency.

4.4 Summary

Social spam has become an inevitable part of the current social world. Various

garbage activities surround people and cause huge negative impacts on both virtual

and real life. In this chapter, we present an online social spam detection system,

named SpamHunter [XHLG19], which leverages the spam correlations among large-

scale distributed data sources to enable efficient spam detection in a scalable manner.

SpamHunter supports multiple groups to manage social data from various topics,

areas, and geo-location. Each group forms a functional tree that guarantees flexible

management across a large number of data servers/instances. Moreover, group

coordination in SpamHunter allows multiple groups to exchange and share spam

correlations from distributed data sources, enabling efficient processing with the

latest social spam from online data streams.
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CHAPTER 5

CUSTMOIZABLE STATE RECOVERY FOR SOCAIL STREAM

DATA PROCESSING

5.1 Introduction

Stream processing (e.g., social spam detection) is proposed and popularized as a

“technology like Hadoop but can give you results faster” [Per18], which lets users

query a continuous data stream and get results shortly after receiving the data.

Stream processing technology has become a critical building block of many sci-

entific applications, such as predicting tornadoes and storms from radar streams,

real-time imaging of cement hardening from x-ray beam data [BGK+17], and ana-

lyzing nanometer-scale dynamics of materials using x-ray photon correlation spec-

troscopy [Sut16]. Upcoming frameworks to accelerated discovery in material sci-

ences [TBH+19] will require distributed stream services in their workflows.

While in the early days stream operators were used for simple computations

which are stateless, such as filter, sort, today’s stream operators are capable of

powering more complex computations and evaluating more complex scientific logic

which are stateful, such as mapWithState. This requires today’s stream processing

systems to offer “state handling” – i.e., operators that can remember past input and

use it to influence the processing of upcoming input.

However, stream processing applications may be highly dynamic due to factors

such as variable data rates, network congestions, and application-specific data source

characteristics. Stream processing applications are also often subject to instabilities

and failures, where multiple streaming operators may fail at the same time, resulting

in severe state loss that may break or hinder the progress of scientific application

workflows.
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Figure 5.1: Real-world examples of stateful stream processing.

In this paper, we explore customizable state recovery mechanisms for protecting

large distributed states in stream processing systems, in order to cater the needs

for different stream processing applications that have different stream processing

computation models, state sizes, and network environments.

Figure 5.1 shows the real-world examples of stateful stream processing. When

we are shopping at e-commerce websites, our user activities (e.g., clicks, likes, buys,

reviews) are going to be continuously logged by these sites. On the backend, many

stateful stream applications are concurrently running on top of these user activity

streams to create insights and make business decisions. For example, Figure 5.1

top is a “micro-promotion” application, which analyzes the live page views of its

products, groupby-aggregates them, and then sorts them to find the top-k prod-

ucts with the most clicks to apply discount. Here the “state” is the stored knowl-
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edge base of key-value pairs consisting of product names and corresponding clicks.

Figure 5.1 middle is a “product-bundling” application, which extracts users’ buys,

creates graphs of vertices and edges to get an idea of what products are usually

purchased together, then makes online recommendations such as “you like this, you

may also like that”. Here the “state” is the stored knowledge base of connected

graphs consisting of product names and bundlings. Figure 5.1 bottom is a “click

fraud-detection” application, which identifies ad clicks as fraudulent by deploying

a space-efficient probabilistic data structure like a Bloom filter [ag] to memorize

the IP addresses or the cookies of previous clicks, and comparing them to the new

coming click stream to detect duplicate clicks in a short time. Here the “state” is

the stored knowledge base in the Bloom filter.

However, we are facing significant challenges in managing these large distributed

states in stream processing systems.

• Challenge 1: how to recover from simultaneous failures of multiple stream op-

erators for a large number of concurrently running applications? Streaming

computations are, by nature, long-running. Their workloads, as well as the

runtime environment, may change in unpredictable ways. A stream compu-

tation is usually represented as a logical directed acyclic graph (DAG), where

vertices denote operators and edges denote data dependencies between them.

This means that if one operator fails and loses state, the dependent operators

may also fail and lose their states. What makes it particularly challenging is

that many stream processing applications run concurrently on the same HPC

infrastructure and consume the same data source. We need to be able to re-

cover lost state for large numbers of concurrently running applications on the

same HPC infrastructure.
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• Challenge 2: how to customize the failure recovery mechanism for different

types of stream processing applications? For example, Spark Streaming based

systems [aa, CEF+17, ZDL+13, SGH+16] treat streaming computations as a

series of batch computations, whereas Storm based systems [ad, af, KBF+15]

treat streaming computations as a dataflow graph in which vertices asyn-

chronously process incoming records. The state size for batch applications is

usually large, whereas the state size for stream applications are usually small.

Some applications run on an HPC infrastructure that has abundant uploading

bandwidths, whereas some applications run on an HPC infrastructure that

has bandwidth constraints [GAB+15, PACT18]. Therefore, different stateful

stream processing applications need different state recovery mechanisms that

best meet their needs.

Over the last decade, there has been a boom of stream processing systems, includ-

ing Storm [ad], Trident [af], Spark Streaming [am], Borealis [AAB+05], TimeStream

[QHS+13], and S4 [NRNK10]. However, there is a lack of fast and scalable fail-

ure recovery mechanisms for protecting the large distributed states for these sys-

tems. The reasons are as follows: (1) they mostly inherit MapReduce’s “single

master/many workers” architecture, where the central master is responsible for all

scheduling activities. As such, they do not scale well to a large number of concur-

rently running applications due to the inherent centralization bottleneck; (2) these

systems offer failure recovery mainly through three approaches: replication recov-

ery [SHB04, BBMS05], checkpointing recovery [ad, af, QHS+13] and DStream-based

lineage recovery [aa, CEF+17, ZDL+13, SGH+16], which are either slow, resource-

expensive or fail to handle multiple simultaneous failures. Replication recovery

adds high hardware cost because multiple copies must concurrently run on dis-

tinct nodes for failover. In distributed streaming, checkpointing recovery is known
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to be prohibitively expensive, leading users in many domains to disable this fea-

ture [MMI+13, ABB+16, PD10, PLGC15, GXD+14]. The third approach, DStream-

based lineage recovery, is slow when the lineage graph is long (i.e., the streaming

involves long sequences of operators) and falls short in handling multiple simultane-

ously failures; and (3) these systems are limited to a fixed computation model, e.g.,

asynchronous stream processing like Storm [ad], synchronous mini-batch processing

like Spark [am], and they do not have customizable state recovery mechanisms.

5.2 Problem Statement

We follow a generic stream query model [ABC+15b, CKE+15, LFQ+16, MMI+13,

ZDL+13]. A stream processing application’s query is a directed acyclic graph (DAG)

that specifies the dataflow, denoted as Q = (V, E ). DAGs can be implemented

via many execution models, such as the partition/aggregate model which scales

out by partitioning tasks into many sub-tasks (e.g., Dryad [IBY+07]), the sequen-

tial/dependent model in which streams are processed sequentially and subsequent

streams depend on the results of previous ones (e.g., Storm [ad]), and the hybrid

model with sequential/dependent and partition/aggregate components (e.g., Spark

Streaming [am], Naiad [MMI+13]).

A vertex v ∈ V corresponds to a stream operator fv that consumes input streams

i from its predecessor (upstream) vertices and produces output streams o to its

successor (downstream) vertices (o = fv(i)). Each edge e ∈ E represents a data

flow between two vertices. The stream operator fv can be stateless or stateful. A

stateless operator consumes one input record at a time and outputs each result based

solely on that last input record. A stateful operator maintains state that captures

characteristics of some of the records processed so far and updates it with each new
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input, such that the output takes into account both historical records and the new

input. Stateless operators are easy to recover because, by definition, input records

are handled independently, and upon failure we can simply start a new operator

instance. In contrast, stateful operators are much more difficult to recover.

The problem is: how to achieve a scalable and fast failure recovery framework

that protects large distributed states for concurrently running applications deploy-

ing diverse execution models? These applications run concurrently on a shared

distributed environment. Their operators are stateful. The applications comprise

several DAGs, deploy diverse execution models, and vary on their requirements of

CPU, memory, and network bandwidth.

5.3 Background

For maintaining and recovering state, our solution leverages peer-to-peer (P2P)

overlay networks, more specifically, the Distributed Hashtable(DHT)-based con-

sistent ring overlay with routing. The primary purpose of the P2P model (e.g.,

Pastry [RD01], Chord [SMK+01]) is to enable all nodes to work collaboratively to

deliver a specific service. In such model, all nodes have similar roles, both serving

and requesting services. For example, in BitTorrent [Coh03], if someone downloads

some file, the file is downloaded to her computer in bits and parts that come from

many other computers in the system that already have that file. At the same time,

the file is also sent (uploaded) from her computer to others who ask for it. Similarly

to BitTorrent, where many machines work collaboratively to download and upload

files, our solution enables all distributed nodes to work collaboratively to achieve

state management, relieving the task scheduler (often implemented as a centralized
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service) from handling state. For this purpose, we leverage the following three data

structures from DHT-based consistent ring overlays:

• Routing table: The routing table consists of node characteristics (IP address,

Node Id) organized in rows by the length of common prefixes in the represen-

tation of a Node Id. When routing a message to nodeId, a node forwards it to

the node in its routing table with the longest prefix in common with nodeId.

State are associated with keys and nodes are responsible for a range of keys.

In a system where N nodes store state, it is guaranteed that queries can be

routed to the appropriate nodeId within O(logN) hops. We use the routing

table for locating state and in the line-structured recovery mechanism (Section

5.4.3).

• Leaf set : The leaf set for a node is a fixed number of nodes that have the nu-

merically closest nodeIds to that node. This assists nodes in routing messages

and in rebuilding routing tables when nodes fail. We use the leaf set for the

star-structured recovery mechanism (Section 5.4.2).

• Multicast : Any node in the overlay can create a communication group; other

nodes can join the group and then multicast message to all members of the

group. Multicast messages are disseminated through a multicast tree. We use

multicast for constructing in the tree-structured recovery (Section 5.4.4).

5.4 Design

In this section, we introduce the SR3 framework, which includes the system overview

(Sec. 5.4.1), the star-structured recovery mechanism (Sec. 5.4.2), the line-structured

recovery mechanism (Sec. 5.4.3), the tree-structured recovery mechanism (Sec. 5.4.4),

and how SR3 determines which mechanism to use (Sec. 5.4.5).
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Figure 5.2: The overview of SR3 design.

5.4.1 The SR3 Overview

Figure 5.2 shows the overview of the SR3 system. It consists of several layers as

follows.

Layer 1: DHT-based overlay. In our system, we introduce a new abstract

concept called “node” to facilitate state management. Each stream operator is

associated with a node. The association is unrelated to where operators execute;

operators at the same vertex may be associated with different nodes. Each node

is randomly assigned a globally unique identifier known as the “nodeId” in a large

circular node ID space (e.g., 0-2128). We organize these nodes into a P2P overlay

network. The overlay is self-organizing and self-repairing.
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Layer 2: State partitioning and replication. The node’s state is stored in an

in-memory hashtable data structure. Periodically, we divide each node’s state into m

shards, each of which is then replicated to n replicas and distributed to peer nodes.

The peer nodes are preferably chosen as to enable high bandwidth communication.

The parameters of m and n are determined by the adopted recovery mechanism

(we offer three alternatives) and application characteristics. Our design ensures

that when a failure happens, different sets of available shards can reconstruct failed

state in parallel, thereby reducing the failure recovery time while tolerate multiple

simultaneous node failures.

Layer 3: State recovery. Applications differ in state sizes, execution models

and QoS requirements such as latency and throughput. Some applications, such as

simulations that can adjust to data errors, can tolerate lower accuracy in exchange

for efficiency in accessing state and quick recovery other tasks, such as state visu-

alization for application debugging, cannot. We design three state recovery mech-

anisms to satisfy the needs from different applications. SR3 tracks user-defined re-

quirements (e.g., latency sensitivity) and the application’s characteristics (e.g., size

of the state) to select the most appropriate mechanism (see Sec. 5.4.2, Sec. 5.4.3

and Sec. 5.4.4 for more details).

Layer 4: SR3 API. SR3 is currently integrated into Apache Storm [ad]. We

provide a high-level API that exposes to users configuration parameters and enables

SR3’s portability to other stream processing systems.

5.4.2 The Star-structured Recovery Mechanism

Figure 5.3 shows a straightforward implementation of star-structured recovery mech-

anism. Each node has a routing table and a leaf set. In this example, the state of
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Figure 5.3: The star-structured recovery process.

node N5 is divided into 3 shards and each shard has two replicas. They are dis-

tributed to the leaf set nodes to ensure that the original state can be reconstructed

from 3 shards of the 9 total shards. As shown in Figure 5.3, the nine shards s0,0,

s0,1, ..., s2,2 are stored in N0, N1, ..., N5 respectively. When N5 fails, N0, N1, and

N2 upload s0,0, s1,0, and s2,0 to N6 to recompute the state of N5.

The benefits are: (1) the recovery process is fast. Different nodes from non-

overlapping leaf set nodes can work in parallel to recompute the lost state, which

is much faster than retrieving the state from the remote storage (e.g., HDFS). (2)

We achieve data locality because the leaf set contains nodes that are geographically

close to the original node (e.g., within the same rack in the same site) that have

abundant upload bandwidth.
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5.4.3 The Line-structured Recovery Mechanism

The star-structured recovery works fine when the state is small. However, when the

state is large, the replacing node needs to do all the downloading and reconstructing

work, suffering a centralized bottleneck that increases the recovery latency, which

we aim to avoid. We design the line-structured state recovery to fix this issue, where

shards are transmitted and combined through a line covering the replacing node and

all providing nodes. As shown in Figure 5.4, the nine shards s0,0, s0,1, ..., s2,2 are

stored in N0, N1, ..., N5 respectively. When N5 fails, N3 uploads s2,0 to N0. N0

merges s2,0 with s1,0, reconstructs it, and then uploads the result to N1. N1 merges

the result with s0,0, reconstructs it, and uploads the final result to N6 to replace

of N5. The benefit is that, the downloading and computing load are well balanced

among all involved nodes which helps recover large state. However, it can only

recover one node at a time. When recovering multiple node failures, it may incur

multiple times of network traffic and recovery time. Besides, the line-structured

recovery disregards the bandwidth asymmetry in cloud environment.

5.4.4 The Tree-structured Recovery Mechanism

We design a shard-based parallel recovery mechanism to tolerate multiple node fail-

ures, where shards are transmitted and combined through a spanning tree covering

the replacing node and all providing nodes. This spanning tree is built on top of

a scalable application-level multicast infrastructure, called Scribe [CDKR02]. The

key idea is to divide the state into many shards (e.g., based on key ranges), and

use different sets of available replicas of shards scattered across leaf set nodes to

reconstruct unavailable shards in parallel. By doing this, all nodes storing available

shards can work as providing nodes and each of them only needs to participate in
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Figure 5.4: The line-structured recovery process.

the recovery of some unavailable shards. This means a providing node only needs

to upload some of the shards it stores. Thus, the amount of data a providing node

uploads is reduced in a way that respects bandwidth asymmetry. The download-

ing and computing load are well balanced among all involved nodes without any

centralized bottleneck.

Figure 5.5 & Figure 5.6 show the recovery process from a single failure and two

failures in the tree-structured mechanism. N6 and N7 are the replacing nodes for

recovering the state when N4 and N5 fail. We can see that the state is divided into

3 shards, s0, s1 and s2. Each shard is further divided into 3 sub-shards and the

replication factor is two. So for one shard, it has total 6 sub-shards. For example,

s2,0,1 denotes the second replica of the first sub-shard in s2, and s2,1,0 denotes the

second replica of the second sub-shard in s2. In the tree-structured recovery process,

the providing node only needs to upload 3 out of the 6 total sub-shards to reconstruct

each shard. The recovery from multiple failures is similar with the recovery from a
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Figure 5.5: The tree-structured recovery process for a single failure.

single failure. The difference is that every reconstructing node needs to reconstruct

multiple shards and sends them to multiple replacing nodes.

5.4.5 Mechanism Selection

Which mechanism to use? Determining the optimal state recovery mechanism

is difficult since it needs to consider various factors and application specifics. Thus,

we rely on a heuristic approach that adapts mechanism based on (1) state sizes,

(2) application QoS requirements, (3) network environments (e.g., bandwidth bot-

tleneck), and (4) computation models (e.g., synchronous micro-batch processing

model or asynchronous stream processing model) .

Figure 5.7 shows how we determine which mechanism to use. In the case of

stateless operator failures, it will simply resume the whole execution pipeline since
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Figure 5.6: The tree-structured recovery process for two failures.

there is no overhead for recovering states. In the case of stateful operator failures,

SR3’s state recovery mechanisms may not always outperform the traditional check-

pointing recovery if the state size is too small or if the application can tolerate the

checkpointing overhead of writing state to the remote storage. Thus, we use SR3

only with stateful operators for (1) applications that have strict QoS requirements

for low recovery latency and (2) high probability of simultaneous failures that will

involve large distributed states.

This information about application’s QoS requirements and state size is typi-

cally available as part of the job submission information. If the state size is small,

we choose star recovery in priority. On the other hand, if the state size is large,

we further consider if the execution is constrained by the network bottleneck. In

the case of abundant bandwidth, we choose line-structured recovery in priority by
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Figure 5.7: Determining which state recovery mechanism.

adjusting the recovery path length to deal with different sizes of state and latency

requirements. In the case of limited bandwidth, we further consider application’s

QoS requirements. If it is latency insensitive, we still choose line-structured recovery

in priority. Otherwise, we choose tree-structured recovery in priority by adjusting

the tree fan-out and the depth of each branch to deal with different sizes of state,

latency requirements, and concurrent failures that occur at the same time.
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5.5 Evaluation

We evaluate SR3 on emulation testbed in a distributed network environment. We

explore its performance for a variety of real-world stream processing applications.

Our evaluation answers the following questions:

• Does SR3 improve the state save and recovery performance when deploying

different stream applications with various sizes of states?

• Does SR3 support flexible state recovery in handling various sizes of states

with different network environments?

• Does SR3 scale with the number of concurrently running stream applications?

• What is the runtime overhead of SR3?

5.5.1 Setup

Evaluation deployment. Emulation experiments are conducted on a testbed of 50

virtual machines (VMs) running Linux 3.10.0, all connected via Gigabit Ethernet.

Each virtual machine has 4 cores and 8GB of RAM, and 60GB disk. Specifically,

to evaluate SR3’s scalability, we use one JVM to emulate an SR3 node and emulate

up to totally 5,000 SR3 nodes in our testbed. Linux VMs are equipped with LANs

with high bandwidth diversity set by traffic control.

Baseline. We used Apache Storm [ad] as the stream processing engine baseline.

We use Apache Storm 2.0.0 [ae] configured with 10 TaskManagers, each with 4 slots

(maximum parallelism per operator = 36). We use Pastry 2.1 [ak] configured with

leaf set size of 24 and transport buffer size of 32MB.

Benchmark and applications. To demonstrate generality across diverse com-

putations and streaming operators, we evaluate SR3 in state recovery with the real-
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Table 5.1: Real-world application’s dataset.
Application Dataset Size

Bargain Index Google Finance [ai] >1TB

Word Count Wikimedia Dumps [an] 9GB

Traffic Monitoring Dublin Bus Traces [ah] 4GB
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Figure 5.8: The state recovery time by varying the size of state with no bandwidth
constraint.

world stream applications (see Table 5.1). These stream applications contain various

representative streaming operators: stateless streaming transformations (e.g., map,

filter), stateful operators (e.g., incremental join), and various window opera-

tors (e.g., sliding window, tumbling window and session window).

We compare SR3 with a state-of-the-art failure recovery solution: the check-

pointing recovery approach commonly used in TimeStream [QHS+13], Storm [ad],

and Trident [af]. We choose the checkpointing recovery approach as the baseline

approach because of two reasons: (1) the replication recovery already costs 2×

hardware, and (2) the DStream-based lineage recovery approach is not generalized

for users. Because DStream-based lineage recovery sacrifices programming model

transparency by forcing programmers to manage state using RDDs [ZCD+12].
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Figure 5.9: The state recovery time by varying the size of state with bandwidth
constraint.

Metrics. We focus on the performance metrics such as latency of state save

and recovery. The latency measurement is separated by the state save and recovery.

The latency is evaluated by deploying different size of state shards and various size

of states of stream application. To evaluate the scalability of SR3, we measure

how much state shards are distributed in each node with deploying different stream

applications. To the runtime overhead of SR3, we focus on the CPU and memory

utilizations during the state recovery.

5.5.2 SR3 vs Checkpointing Recovery

We compare the state recovery time of SR3 with Storm by varying the size of state

with no bandwidth constraint. As Figure 5.8 shows, SR3 generally achieves 35.5%

∼ 65% less state recovery time compared to Storm. More specifically, when a state

is relatively small (<32MB), the star-structured recovery mechanism achieves the

fastest recovery. Line-structured recovery and tree-structured recovery take a little
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Figure 5.10: State save time by varying the size of state.

longer due to the introduction of redundant calculations in their state recovery

paths. When the state grows larger than a threshold (e.g., 64MB), line-structured

recovery leads to the longest recovery time due to the longest lineage path. On the

contrary, since tree-structured recovery has many paths for recovering at the same

time in parallel, the time is reduced.

Figure 5.9 shows the state recovery time comparison of SR3 with Storm under

bandwidth constraint. Note that the upload bandwidth is limited to 100Mb/s per

server. Results show that SR3 generally achieves 29.8% ∼ 42.5% less state recovery

time compared to Storm. More specifically, when the state is relatively large (>

64MB), due to the constraint of the upload bandwidth, the star-structured recovery

has a centralized bottleneck because all traffic flows to a single node, which leads to

the slowest state recovery. On the contrary, the line-structured recovery and tree-

structured recovery avoid this bottleneck, and thus are much faster. However, when

the state becomes extremely large, the tree-structured recovery performs the best

because it has many paths to recover state at the same time in parallel. This gives
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Figure 5.11: The state recovery time by varying star fan-out bit in SR3 star-
structured recovery.

us insight that we should decide which mechanism to use based on the application

characteristics, the network environment, and the size of state.

Figure 5.10 shows the state saving time comparison of SR3 with Storm. The state

saving cost includes the time cost for dividing the state into shards, replicating each

state, and then writing the shards into leaf set nodes. We write them into the leaf

set nodes serially to enable a fair comparison with the checkpointing recovery. We

can see that for a small state (<64MB), it takes more time for SR3 to save the

state, while for large state (>64MB), it takes less time for SR3 to save the state.

This is because, for small state, the overhead of partitioning and replication is not

negligible compared to the total time. However, in the case of large state, many

nodes in the leaf set take part in the partitioning and replication that balance the

workload.

Figure 5.11 shows the state recovery time by varying star fan-out bit in SR3

star-structured recovery. Results show that the state recovery time does not change

much as the star fan-out changes. This is because the depth of the star structure
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Figure 5.12: The state recovery time by varying the path length in the SR3 line-
structured recovery.

always equals to one and thus the latency is only related to the state size and the

transmission speed. However, in extreme cases, e.g., very large state size, increasing

fan-out will share the pressure on bandwidth and significantly reduce latency.

Figure 5.12 shows the state recovery time by varying the path length in the SR3

line-structured recovery. Results show that the state recovery time increases as the

path length increases. This is because the longer the path, the more stages of the

computation required, and the higher the latency. However, when the state is too

large to be finished within one or two stages, we need a longer path that has many

stages to distribute the computation.

Figure 5.13 shows the state recovery time by varying the branch length in SR3

tree-structured recovery. Similar to Figure 5.12, given the same state size, the state

recovery time increases as the branch length increases. This is because the longer

the branch, the more stages of the computation required, and the higher the latency.

Figure 5.14 shows the state recovery time by varying the tree fan-out in SR3 tree-

structured recovery. Note that the tree fan-out n determines the fan-out of each node
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Figure 5.13: The state recovery time by varying the branch depth in SR3 tree-
structured recovery.

with 2n. Given the same state size, when the tree has larger fan-out bit, the depth

of the tree will be less and the recovery involves fewer layers, which introduces lower

latency for recovering the original state. In addition, larger fan-out trees can tolerate

more concurrent node failures or shard loss. Therefore, we should choose different

tree structures for different applications based on their latency requirements and

fault tolerance requirements.

Failure tolerance is evaluated with methods that use human intervention. To

cause simultaneous failures, we deliberately remove some shards of application’s

state in some nodes to evaluate how fast SR3 can recover the state. Figure 5.15

shows the average recovery time for different number of simultaneous failures in

the tree-structured recovery. The two curves show that the recovery time slightly

increase with increasing number of shards failures. This is because, when a shard

fails, the tree-structured mechanism can quickly retrieve the relevant shards from its

leaf set and rebuild the failed shard, and the tree architecture can evenly distribute
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Figure 5.14: The state recovery time by varying the tree fan-out in SR3 tree-
structured recovery.

the recovery overhead for recovering multiple simultaneous failures.

5.5.3 Load Balance

SR3 has attractive load balance property because it distributes state across all nodes

in the overlay, which is especially beneficial when deploying a large number of con-

current applications. We evaluate SR3’s load balance by deploying 500 stream

processing applications and 1,000 stream processing applications on 5,000 Pastry

nodes, respectively. The replication factor is set to be two. The state for each ap-

plication is 32 MB, and the size for each shard is 512KB. As shown in Figure 5.16,

each node has around 25 shards (red dash line) when deploying 500 applications.

As shown in Figure 5.17, each node has around 40 shards (red dash line) when de-

ploying 1,000 applications. This is because the P2P model of SR3’s star-structured

recovery, line-structured recovery and tree-structured recovery ensures that all peers

can participate in the state saving process and the state recovery process.
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Figure 5.15: State recovery time with different number of failures.

Figure 5.18 shows the normal probability of the number of shards stored per

node. Results show that when deploying 500 applications, around 95% nodes store

less than 50 shards (25MB), and around 95% nodes store less than 100 shards

(50MB) when deploying 1,000 applications. This demonstrates that the large volume

of states from concurrently running applications are almost evenly distributed in

the overlay with no centralized bottleneck. This demonstrates that SR3 achieves

good load balance when recovering state for large numbers of concurrently running

applications.

5.5.4 Overhead Analysis

We evaluate SR3 runtime overhead and compare them with Storm’s checkpointing

approach.

CPU overhead. Figure 5.19 shows the per-node CPU runtime overhead com-

parison of SR3’s three state recovery mechanisms with Storm’s checkpointing ap-

proach. The CPU overhead of SR3 is around 26.8% ∼ 44.3% less than the check-
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Figure 5.16: The distribution of state among the overlay when deploying 500 appli-
cations.

pointing recovery. This is because SR3 evenly distributes the recovery load across

many peer nodes which reduces the per-node overhead, while the checkpointing

recovery only relies on one or several centralized nodes for recovery.

Memory overhead. Figure 5.20 shows the per-node memory runtime overhead

comparison of SR3’s three state recovery mechanisms with Storm’s checkpointing

approach. The memory overhead of SR3 is around 30.9% ∼ 35.6% less than the

checkpointing recovery. This is because checkpointing recovery involves a coordi-

nation service such as Zookeeper that needs to continuously maintain connections

with all other nodes while SR3 avoids it.

Network overhead. Figure 5.21 shows the additional network traffic imposed

by SR3 with varying the number of nodes without managing any state (showing

purely the maintenance overhead). Results show that the number of bytes sent per

node increase only linearly, with an exponential increase in the number of nodes.

This is because most network traffics are ping-pong messages used for maintaining

the overlay and routing (e.g., initialization and keep alive). So in most cases, each
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Figure 5.17: The distribution of state among the overlay when deploying 1,000
applications.

node pings to a limited set of nodes in the leaf set.

5.6 Summary

In this chapter, we have described and evaluated SR3, a state recovery framework

that provides fast and scalable failure recovery mechanisms for protecting large

distributed states in stream processing systems. Unlike existing failure recovery

approaches in modern stream processing systems, which rely on the central master

to perform replication recovery, checkpointing recovery, or DStream-based lineage

recovery, SR3 introduces a distributed state recovery framework by leveraging DHT-

based consistent ring overlay and routings. SR3 provides three different mechanisms

to cater the needs for different stream applications that have diverse computation

models and sizes of state.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

How should we design computing platform for supporting the next-generation social

stream data processing? This dissertation shows a possible solution perspective:

a distributed and easy-to-use system, with defined processing abstract, instantly

collaborates with the online data information, can provide useful knowledge that

people need and promising performances in functionality.

In this dissertation, three research works are introduced from different perspec-

tives of social stream data processing. More specifically, they mainly focus on the

system-level design in supporting scalable, online, and efficient social spam detec-

tion.

Specifically, Oases can effectively harvest and uncover deceptive online spam

posts from social communities, which is fulfilled by periodically updating the trained

classifier through a decentralized DHT-based tree overlay. Besides, to guarantee

online social spam detection, Oases actively filters out new spam and updates the

classifiers to all distributed leaf agents in a scalable way.

In SpamHunter, it leverages the spam correlations among large-scale distributed

data sources to enable efficient spam detection in a scalable manner. SpamHunter

supports multiple groups to manage social data from various topics, areas, and geo-

location. Each group forms a functional tree that guarantees flexible management

across a large number of data servers/instances. Moreover, group coordination al-

lows multiple groups to exchange and share spam correlations from distributed data

sources, enabling efficient processing with the latest social spam from online data

streams.
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SR3 is a state recovery framework that provides fast and scalable failure re-

covery mechanisms for protecting large distributed states in the social stream data

processing/applications. SR3 introduces a distributed state recovery framework by

leveraging DHT-based consistent ring overlay and routings. SR3 provides three dif-

ferent mechanisms to cater the needs for different stream applications that have

diverse computation models and sizes of state.

In conclusion, the first work, a system named Oases, is introduced to support

online and scalable social spam detection in the system. The second work, a system

named SpamHunter, is introduced to achieve efficient social spam detection by lever-

aging the online spam correlations from large-scale social stream data. The third

work, SR3, is introduced to guarantee customizable state recovery in social stream

data processing. They correspond to specific but interrelated functions of next-

generation streaming data processing/applications, which can be used to support

more different streaming applications in different environments.

6.2 Lessons Learned

The importance of system support. Most of the previous research work fo-

cused on context, format, the platforms, or they explored useful information from

public information (such as accounts, users, or community activities). To a certain

extent, these can be very useful for detecting and identifying spam activities (such

as spam activities, social robots, or fake news). However, they did not consider

how to fully integrate the system to achieve the entire work. Most previous works

did not distinguish the differences between different platforms. For example, we

can identify and detect social spam activities from streaming systems, distributed

systems, centralized systems, batch systems, and parallel systems. However, how to
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combine different applications with different platforms to make full use of the entire

system Performance has not received sufficient attention.

We witness that the modern systems such as Apache Spark [am], Storm [ad],

and Kafaka [ab] have greatly improved the performance of deployed applications and

many companies had transferred their computation and workload into these systems.

This is certain that more and more large scale computation and applications should

be allocated with appropriate system supports to ensure better performance and

create more profits.

The views from data. Undoubtedly, data, is the key to social applications.

The era of big data has brought a lot of excellent research work, and has continued

to have a profound impact on our daily lives. In my research projects, extracting

the appropriate social data for the system is a very important part, and it greatly

affects the overall performance. Not only is the context of the collected data, but we

should also pay more attention to data validity. Further, the pattern of the collected

data will determine the main methods applied in the system. For example, data

with contexts requires natural language processing models, and data composed of

spatial and social relationships requires graph-based models. Therefore, the design

of the system should consider the overall format of the data and the application to

adapt to the data deployed in the system.

Not limited to a single data source. Results from research projects provide

a valuable hint for the social data application, that is, the data source should not be

limited to a single source. Unlike previous work that only focused on a single data

source or platform, SpamHunter’s results show that social data from multiple sources

or platforms can greatly improve overall performance. This is because multiple data

sources can provide a comprehensive view of valuable information, such as spam

activity, and can improve performance.
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Moreover, the research innovation of this project is not limited to social spam

detection. It can be combined with various streaming applications and other per-

spectives of big data processing. The core of the entire study is focused on sup-

porting scalable, efficient, and online streaming data applications, which means it

can be extended to any other streaming applications that pursue high throughput,

scalable processing, and high performance. In the next step, it is an interesting and

promising realization to seamlessly migrate our system to more scenarios.

We learn to know that the next-generation stream system should flexibly support

many different kinds of big data applications with minor or no modifications. Be-

sides, it still comprehensively includes diverse functionalities to accommodate many

kinds of applications with different requirements. Portability, flexibility, and avail-

ability should be considered in the design of system architecture and functionality.

Optimize the system bottleneck. One interesting lesson is how to carefully

design the system architecture and avoid the bottleneck in deploying with the dis-

tributed system. This is an important part when designing systems to support new

applications and scenarios.

Diverse systems may lead to different bottlenecks when faced with data appli-

cations such as social rumor detection, data trends analysis, and product review

analysis. For example, when deploying the data application in a centralized server

or platform, the computational overhead and processing latency of the server dom-

inate the overall performance; when deploying the application in a large-scale dis-

tributed system, the data consistency and process management are key parameters

for evaluation.
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6.3 Future Work

Many open questions and challenges are needed further consideration and research

efforts in supporting scalable, efficient, and online social stream data applications,

as shown in following:

1. System-level design. Additional implementation steps can be developed,

e.g., to implement new specification/configuration APIs for end users, achieve

high-availability by exploring checkpointing/failover approaches, reduce run-

time overhead, all with goals of achieving both good performance and high

resource efficiency for large-scale online spam detection. Besides, how to inte-

grate the system performance with the spam detection model is an interesting

questions, e.g., balance the model costs and the system overhead, tolerate the

failed data processing in distributed servers, recover processing failures in each

server, etc.

An interesting question for future work is how to recovery the state from

stragglers in the social stream data processing. Stragglers are slow nodes.

Stragglers are inevitable in large clusters. The root causes for stragglers can be

disk failures, CPU contention, memory pressure, network congestion, or other

internal factors such as unfair input partitioning. Left unchecked, stragglers

will cause serious problems such as state inconsistency. We plan to explore

speculation approach to address this challenge, in which speculative backup

copies of slow tasks could be run in DHT’s leaf set nodes.

2. Exploiting deep neural networks. Deep neural networks (DNNs) have

been implemented in rumor and fake news detection without the traditionally

tedious and time-consuming feature engineering [MGM+16], and this leads to

promising applications in the social spam detection areas. In the future, we
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will explore the roles of DNNs in the large-scale online social spam detection

and try to use the different characteristics of social data (e.g., time series,

temporal patterns, propagation characteristic, etc) to enhance the detection

accuracy and performances.

3. Detecting social spam across various data formats, platforms, sources,

and languages. The various kinds of social networks bring the prosperity of

the social life. Interesting, though various social networks or platforms have

tremendous differences in the data/content formats, organization of accounts,

or languages, they have significant correlations and similarities in the specific

topics, news, headlines, pictures, and videos. Therefore, how to use these

kinds of correlations and similarities in the next-generation social spam detec-

tion system desires more research efforts in the future. Besides, system-level

design in dealing with large-scale online data streams from distributed sources

needs solid and well-rounded implementations and leaves many open problems

to be solved.

We hope that the continuous research experience of system support in streaming

data applications can help us solve these problems and challenges. We also wish

more research efforts can be conducted to design innovative next-generation big data

stream systems.
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