
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-24-2020

Support Efficient, Scalable, and Online Social Spam Detection in Support Efficient, Scalable, and Online Social Spam Detection in

System System

Hailu Xu
hxu@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Xu, Hailu, "Support Efficient, Scalable, and Online Social Spam Detection in System" (2020). FIU Electronic
Theses and Dissertations. 4499.
https://digitalcommons.fiu.edu/etd/4499

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F4499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4499?utm_source=digitalcommons.fiu.edu%2Fetd%2F4499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SUPPORT EFFICIENT, SCALABLE, AND ONLINE SOCIAL SPAM

DETECTION IN SYSTEM

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Hailu Xu

2020

To: Dean John L. Volakis
College of Engineering and Computing

We have read this dissertation and recommend that it be approved.

S. S. Iyengar

Deng Pan

Alex Afanasyev

Gang Quan

Liting Hu, Major Professor

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2020

ii

This dissertation, written by Hailu Xu, and entitled Support Efficient, Scalable,
and Online Social Spam Detection in System, having been approved in respect to
style and intellectual content, is referred to you for judgment.

Date of Defense: June 25, 2020

The dissertation of Hailu Xu is approved.

c© Copyright 2020 by Hailu Xu

All rights reserved.

iii

DEDICATION

I dedicate this dissertation work to my beloved parents.

Without their infinite love, support, patient, and understanding, nothing can be

accomplished.

iv

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my advisor, Dr. Liting

Hu, for her unlimited support and guidance during my Ph.D. journey. Liting guided

me into new research areas and taught me a lot of cutting-edge research experience.

She encouraged me to create novel ideas, guided me in preparing research draft, and

instantly introduced cutting-edge topics to me. She always encouraged me to attend

the top-tier conference and supported me to take the opportunity to communicate

with other researchers and scientists. Her unlimited support helps me to succeed in

my Ph.D. career and create many fantastic research work. She guided me to join

the cycle of systems research in computer science and trained me to be a young

scientist.

Second, I would like to thank my committees and professors at Florida Inter-

national University. Many thanks to my committees, Dr. S. S. Iyengar, Dr. Deng

Pan, Dr. Alex Afanasyev, and Dr. Gang Quan, for your great encouragement and

support during my research work and guided me to deeply explore unsolved prob-

lems. Many thanks to Dr. Ning Xie and Dr. Jason Liu, for your great support in

my work and guiding me in many details.

Third, I would like to express my thanks to my mentors during my summer

intern at Lawrence Livermore National Laboratory, Dr. Chunhua Liao and Dr.

Murali Emani. Thank you for your guidance and support in the summer of 2019,

which gave me a taste of frontier research across the industry and academia. Also

many thanks to Pei-Hung Lin, Tristan Vanderbruggen, Zifan Nan, Weijie Zhou,

Anjia Wang, Gleison Souza, and Alok Mishra, we enjoyed a wonderful summer!

Forth, I would like to thank my friends at FIU and Miami, who gave me warm

supports and brought colorful life during this special journey. Many thanks to

Pinchao Liu and Boyuan Guan, my teammates in Elves Lab. Many thanks to Yekun

v

Xu, Xiaolong Zhu, Shuai Xu, Wentao Wang, Yiming Liu, Hao Kang, Boyuan Guan,

Bingqian Li, Tianyi Wang, Huifeng Zhang, and to my friends that I encountered in

this beautiful city. Thank you all for being special parts during this journey.

Finally, from the bottom of my heart, I would like to express my gratitude to my

parents and family. My mother, Yufen Lu, who is a great teacher, gives me priceless

and infinite love and support, which helps me to be here. My father, Shanyao Xu,

who guides me with his actions and loves me unconditionally, supports me in any

kind of situation. Their love overwhelms everything I have and is so invaluable that

it exceeds anything in the world.

vi

ABSTRACT OF THE DISSERTATION

SUPPORT EFFICIENT, SCALABLE, AND ONLINE SOCIAL SPAM

DETECTION IN SYSTEM

by

Hailu Xu

Florida International University, 2020

Miami, Florida

Professor Liting Hu, Major Professor

The broad success of online social networks (OSNs) has created fertile soil for

the emergence and fast spread of social spam. Fake news, malicious URL links,

fraudulent advertisements, fake reviews, and biased propaganda are bringing serious

consequences for both virtual social networks and human life in the real world.

Effectively detecting social spam is a hot topic in both academia and industry.

However, traditional social spam detection techniques are limited to centralized

processing on top of one specific data source, but ignore the social spam correlations

of distributed data sources. Moreover, a few research efforts are conducting in

integrating the stream system (e.g., Storm, Spark) with the large-scale social spam

detection, but they typically ignore the specific details in managing and recovering

interim states during the social stream data processing.

We observed that social spammers who aim to advertise their products or post

victim links are more frequently spreading malicious posts during a very short period

of time. They are quite smart to adapt themselves to old models that were trained

based on historical records. Therefore, these bring a question: how can we uncover

and defend against these online spam activities in an online and scalable manner?

In this dissertation, we present there systems that support scalable and on-

line social spam detection from streaming social data: (1) the first part introduces

vii

Oases, a scalable system that can support large-scale online social spam detection,

(2) the second part introduces a system named SpamHunter, a novel system sup-

ports efficient online scalable spam detection in social networks. The system gives

novel insights in guaranteeing the efficiency of the modern stream applications by

leveraging the spam correlations at scale, and (3) the third part refers to the state

recovery during social spam detection, it introduces a customizable state recovery

framework that provides fast and scalable state recovery mechanisms for protecting

large distributed states in social spam detection applications.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.1.1 Social Spam Detection . 1
1.1.2 Stateful States in Social Stream Data Processing 3
1.2 Contributions . 4
1.2.1 Scalable and Online Social Spam Detection 4
1.2.2 Customizable State Recovery in Social Spam Detection 5
1.3 Summary and Roadmap . 6

2. BACKGROUND . 8
2.1 Previous Social Spam Detection in Online Social Networks 8
2.2 Distributed Social Data Processing . 9
2.3 State Management in Social Stream Data Processing 9
2.4 State Recovery in Social Stream Data Processing 11

3. SUPPORT ONLINE AND SCALABLE SPAM DETECTION 13
3.1 Introduction . 13
3.2 Design . 16
3.2.1 Overview . 16
3.2.2 Root . 18
3.2.3 Leaf Agent . 20
3.2.4 The Classified Algorithm . 21
3.2.5 Model Construction Tree . 22
3.2.6 Spam Processing Tree . 23
3.2.7 Self-adjustable Tree . 24
3.2.8 Benefits and Design Rationale . 25
3.3 Evaluation . 26
3.3.1 Testbed and Application Scenarios . 26
3.3.2 Spam Classification Results . 27
3.3.3 Data Shuffling Time and Data Processing Time 28
3.3.4 Aggregation Latency and Self-adjustable Tree 30
3.3.5 Runtime Overhead . 33
3.4 Summary . 34

4. ACHIEVE EFFICIENT SPAM DETECTION BY EXPLOITING SAPM
CORRELATIONS . 35

4.1 Introduction . 35
4.2 Design . 37
4.2.1 Overview . 37
4.2.2 Group Management . 39

ix

4.2.3 Online Social Spam Detection . 43
4.2.4 Group Coordination . 45
4.3 Evaluation . 47
4.3.1 System Performances with Scalability 48
4.3.2 Group Coordination and Spam Detection 51
4.4 Summary . 53

5. CUSTMOIZABLE STATE RECOVERY FOR SOCAIL STREAM DATA
PROCESSING . 54

5.1 Introduction . 54
5.2 Problem Statement . 58
5.3 Background . 59
5.4 Design . 60
5.4.1 The SR3 Overview . 61
5.4.2 The Star-structured Recovery Mechanism 62
5.4.3 The Line-structured Recovery Mechanism 64
5.4.4 The Tree-structured Recovery Mechanism 64
5.4.5 Mechanism Selection . 66
5.5 Evaluation . 69
5.5.1 Setup . 69
5.5.2 SR3 vs Checkpointing Recovery . 71
5.5.3 Load Balance . 76
5.5.4 Overhead Analysis . 77
5.6 Summary . 79

6. CONCLUSION AND FUTURE WORK 82
6.1 Conclusion . 82
6.2 Lessons Learned . 83
6.3 Future Work . 86

BIBLIOGRAPHY . 87

VITA . 103

x

LIST OF TABLES

TABLE PAGE

3.1 Results of spam classification with multiple classifiers. . . 26

3.2 The runtime overheads of Oases. It represents the CPU,
Memory, I/O, and context switch overheads. 31

5.1 Real-world application’s dataset. 70

xi

LIST OF FIGURES

FIGURE PAGE

3.1 Social rumors of the famous Charlie Hebdo shooting in 2015, Twitter [ZLP+16].
We present the activities of 14 rumors in the figure and show several ex-
ample statements. 14

3.2 Overall framework of Oases system. 16

3.3 Sample of the data classification in the Oases leaf agent. 18

3.4 Visualizaiton of the data classification in the Oases leaf agent. (a) shows the
original dataset which has no labels. (b) shows the dataset with labels
predicted by the model. 19

3.5 Oases Model Construction Tree. 21

3.6 Aggregation in the spam processing tree. 22

3.7 Time of the leaf agents receiving data blocks from root with various size of
data blocks and different number of agents. 27

3.8 Time of shuffling data from leaf agents to upper layer in the tree. 28

3.9 Training and test time in data processing with different size of data blocks. . 29

3.10 Average latency of root agent aggregates whole results in one process cycle. . 30

3.11 Average data delivery latency across the different trees. 31

3.12 Average fault recovery latency of failed agents in different trees. 32

3.13 CPU utilization in one server. 33

3.14 Memory utilization in one server. 33

4.1 The overview of the system design. 37

4.2 The server-overlay structure and group management. 39

4.3 The DHT-based functional tree. 41

4.4 The group coordination in the system. Group 1’s root shares the spam cor-
relations with group 2’s root. Besides, the group 1’s root communicates
with other groups’ roots via the overlay. 44

4.5 Model delivery latency. 49

4.6 Latency of deliver and aggregate. 50

4.7 Results of spam detection. 50

xii

4.8 Average latency in creating functional tree with different nodes. 51

4.9 RUntime overhead of CPU and memory utilization. 52

4.10 Group communication latency. 53

5.1 Real-world examples of stateful stream processing. 55

5.2 The overview of SR3 design. 61

5.3 The star-structured recovery process. 63

5.4 The line-structured recovery process. 65

5.5 The tree-structured recovery process for a single failure. 66

5.6 The tree-structured recovery process for two failures. 67

5.7 Determining which state recovery mechanism. 68

5.8 The state recovery time by varying the size of state with no bandwidth
constraint. 70

5.9 The state recovery time by varying the size of state with bandwidth
constraint. 71

5.10 State save time by varying the size of state. 72

5.11 The state recovery time by varying star fan-out bit in SR3 star-structured
recovery. 73

5.12 The state recovery time by varying the path length in the SR3 line-
structured recovery. 74

5.13 The state recovery time by varying the branch depth in SR3 tree-
structured recovery. 75

5.14 The state recovery time by varying the tree fan-out in SR3 tree-structured
recovery. 76

5.15 State recovery time with different number of failures. 77

5.16 The distribution of state among the overlay when deploying 500 appli-
cations. 78

5.17 The distribution of state among the overlay when deploying 1,000 ap-
plications. 79

5.18 Normal probability of the number of shards per node. 80

5.19 The runtime CPU overhead. 80

xiii

5.20 The runtime memory overhead. 81

5.21 The network traffic overhead per node. 81

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Social Spam Detection

Online social networks (OSNs) have been an integral part of human life. More

and more people are acquiring the latest news, advertisements, social activities,

and breaking topics directly from the current popular OSNs such as Facebook,

Twitter, and WeChat. For example, a report said that the percentage of US adults

who primarily receive news and information from OSNs is as high as 62% [AG17].

However, the openness of widespread OSNs couple with massive spam activities,

which are damaging as they cause public panic and social unrest. For example,

in February of 2019, social users in Paris watched a lot of photos of kidnappings

on Facebook and videos of vans speeding away on Snapchat and Twitter, all of

which hinted that the Roma (Gypsies) robbed children with vans in the suburbs

of Paris [Bre19]. Although the information proved to be wrong later, they brought

serious consequences to the Roma and the whole society: dozens of young men

wielding sticks and knives attacked a Roma camp and burned two vans, and tens

of people were arrested. Another example is that one latest report said the global

enterprise spam filter market was valued approximately USD 849 million in 2018 and

is expected to generate around USD 2,675 million by 2026 [zio19]. And it pointed

out that the increasing number of social spam is driving the enterprise spam filter

market globally.

The unprecedented success of online social networks has created tremendous

opportunities for the emergence and rapid spread of spam. By leveraging a large

1

social user, social spam often dominates and influences social life in a short period

of time and can reach every corner of the social world. Therefore, quickly detecting

spam from large-scale social activities is an urgent need in the current situation.

Furthermore, as our observation, the spammers in the online social networks are

not only active on a single platform, but are often active on different social platforms,

by simultaneously manipulating dozens or hundreds of fake accounts. Naturally, the

information published by these fake accounts is highly similar. This phenomenon

has been pointed out by several former studies [XGL+18]. Spammers certainly desire

to spread similar posts on different platforms to attract as many people as possible

to target on these topics. A case study of social spam posts for multiple different

news sites also demonstrates that spam posts show a high degree of similarity in

content and topics during the same period of time and will immediately propagate

from one site to another [a16]. Therefore, this correlation between cross-platform

social spam is a common phenomenon in the current social media world. Although

there are not many direct relationships between users, geographic locations, creation

purposes, and regions in these various groups or platforms, the spam contents are

highly correlated within similar topics during the same period of time.

However, former studies rarely utilized the spam correlations to handle the large-

scale social data from distributed data servers. They either focused on the algo-

rithm side to achieve high accuracy in the detection [VBC+14, WP15, VT16, SS16,

HBSD17], or the entire processing only targeted on a small size of dataset without

the global view from similar data across large-scale data sources [GCL+12, XZJ+16,

CWZ+17, XSJ16].

2

1.1.2 Stateful States in Social Stream Data Processing

Today, we are undergoing a profound transformation with the use of large-scale, di-

verse, and distributed data sets that allow for data-intensive analytics and decision-

making. Stream processing is proposed and popularized as a “technology like

Hadoop but can give you results faster”, which lets users query a continuous data

stream and quickly get results within a very short time period from the time of

receiving the data. For that reason, stream processing technology has become a

critical building block of many applications, such as making business decisions from

marketing streams, identifying spam campaigns from social network streams, pre-

dicting tornados and storms from radar streams, and analyzing genomes in different

labs and countries to track the sources of a potential epidemic.

Over the last decade, a bloom of stream processing systems has been developed

including Storm [ad], Trident [af], Spark Streaming [am], TimeStream [QHS+13],

S4 [NRNK10], etc. However, while the progress has been encouraging, the exist-

ing efforts have dominantly centered around stateless stream processing, leaving

another urgent trend—stateful stream processing—much less explored. A driving

need is that the future stream applications need to store and update state along with

their processing, and process live data streams in a timely fashion from massive and

geo-distributed data sets. Unfortunately, existing systems are mainly designed for

low-latency intra-datacenter settings and do not scale well for running stream ap-

plications that contain large distributed states, suffering a significantly centralized

bottleneck and high latency.

A stream is an unbounded sequence of tuples (e.g., online social network’s mi-

croblog streams) generated continuously in time. A stream processing system creates

a logical topology of stream processing operators, connected in a directed acyclic

graph (DAG), processes the tuples of a stream as they flow through the DAG, and

3

outputs the results in a short time. Traditionally, stream processing pipelines are

stateless. A new trend is that more complex stream processing pipelines are stateful.

For example, a stateful operator maintains the value of state for some of the identi-

fied spam accounts so far and updates it with new inputted information, such that

the final output should accumulate all results that take into account both historical

records and the new input.

However, we are facing significant challenges in managing large distributed states

in stream processing systems. First, it is challenging for recovering from simultane-

ous failures of multiple stream operators for a large number of concurrently running

applications. Social stream data processing is by nature long running, and operators

refer to it may unexpected fails or lost, which cause state loses. Second, different

social stream data processing may have various runtime requirements, e.g., different

time sensitivity, deadline requirements, or computation depends, these lead to many

kinds of state management in dealing with different social stream data processing.

1.2 Contributions

1.2.1 Scalable and Online Social Spam Detection

We present two systems to support online and scalable social spam detection from

separate perspectives. Oases shows the system-level design in handling and sup-

porting scalable social spam detection. SpamHunter describes the details of achiev-

ing efficient online social spam detection by leveraging spam correlations from geo-

distributed sites or servers. We conclude the contributions as follows.

4

5

sites.

 Second, in Oases, a scalable DHT-based tree overlay with spam detection re-

lated protocols is presented. It uses many progressive aggregation trees for aggre-

gating the properties of spam posts and creating new spam classifiers to actively

filter out newest spam.

 Third, in the Chapter 4, we present a system named SpamHunter, based upon

Oases, supports efficient online social spam detection in dealing with large-scale

social stream data.

 Forth, in SpamHunter, a peer group communication structure is presented that al-

lows multiple Spiral groups to exchange and utilize the spam correlations among

distributed social data sources.

 Finally, comprehensive evaluations of Oases and SpamHunter performance and

functionality on a large cluster using real-world social stream data are presented.

1.2.2 Customizable State Recovery in Social Spam Detec-

 tion

We next describe the contributions in achieving customizable state recovery in social

stream data processing. We make the following contributions in Chapter 5.

 First, we show how existing techniques can lead to slow or resource-expensive

state recovery in stream applications.

 Second, we propose SR3, a customizable State Recovery framework that provides

fast and scalable failure recovery mechanisms for protecting large distributed states

in social spam detection. It does not rely on a central master for recovering the

state. The failure recovery process scales to the size of the lost state, offers a

 First, in the Chapter 3, an online spam detection system called Oases is pre-

sented that defend against real-time spam activities that happen in geo-distributed

significant reduction in failure recovery time and can tolerate multiple simultaneous

node failures.

Third, we provide three different failure recovery mechanisms (Sec. 5.4). An

important novel aspect of SR3 is that it can host multiple distributed streams and

offer each application the recovery mechanism that best fits its requirements. The

goal is to cater to the needs of different stateful stream applications (e.g., different

stream processing computation models, quality of service requirements, state sizes,

and network environments).

Finally, we make a comprehensive evaluation of the scalability, fast recovery

and flexibility of the system on a large cluster using real-world stream processing

applications’ datasets (Sec. 5.5).

1.3 Summary and Roadmap

The rest of this dissertation is organized as follows. We introduce the details of

background in Chapter 2, then we describe the Oases system in Chapter 3. We next

show the design and details of the SpamHunter system in Chapter 4. The details of

design and implementation of SR3 system in Chapter 5. Finally, we conclude this

dissertation and describe the future work in Chapter 6.

The details of the dissertation are illustrated as follows.

1. Chapter 2. Sec. 2.1 shows the previous work that refer to the traditional

social spam detection. Sec. 2.2 describes the background about scalable stream

data processing. Sec. 2.3 and Sec. 2.4 introduce the state management and

recovery in social stream data processing.

2. Chapter 3. Sec. 3.1 describes the introduction of this work. Sec. 3.2 shows

the details of design and functionality of the system, which include the details

6

of different functional agent, the tree structures and design benefits. Sec. 3.3

introduces the detailed evaluation of the system performance with real-world

social stream data and the runtime overhead. Sec. 3.4 summarizes this work.

3. Chapter 4. Sec. 4.1 shows the introduction of the SpamHunter system.

Sec. 4.2 shows the details of design and functionality of the system, which in-

clude the details of overview of workflow, the group management, online data

processing, and the group coordination. Sec. 4.3 introduces the detailed eval-

uation of the system performance with real-world social stream data. Finally,

Sec. 4.4 summarizes this work.

4. Chapter 5. The introduction of this work is shown in Sec 5.1. Sec. 5.2

defines and describes the problem that is solved in this work. Sec. 5.3 in-

troduces detailed background of this work. Sec. 5.4 introduces the design

details, including the workflow, the three types of recovery mechanisms, and

mechanism selection. The evaluation part is shown in Sec. 5.5. Finally, Sec.

5.6 concludes this work.

5. Chapter 6. In this chapter, Sec. 6.1 concludes the entire dissertation work

and the future work is discussed in Sec. 6.2.

7

CHAPTER 2

BACKGROUND

2.1 Previous Social Spam Detection in Online Social Net-

works

Offline social data processing. Many former studies had focused on offline meth-

ods in analyzing social data [LEC11, SS16, VT16], which utilized a limited historical

dataset. Based on the connection between users and user trusts, [TLGP14] identifies

victims in Twitter with a dataset that was collected in 10 months. By analyzing

several historical datasets, Spade [WIP14] presents that new spam can be detected

from one social network across other social networks.

Prior studies classified social spam from various perspectives, either from the

view of adult contents [CALS17], user behaviors [ZZPZ16], or from hashtags [SS16],

inherent features [WZLP15]. However, these studies still limit in a specific size of

historical data and are difficult to catch up the online latest features of social spam.

Centralized social data processing. Former studies normally focused on cen-

tralized processing [MK10, TLGP14, VT16, ZNJ+15]. [GCL+12] presents an online

spam filtering framework in a central server by using spam campaigns. TopicS-

ketch [XZJ+16] is a real-time framework that combines a sketch-based topic model

and a hashing-based dimension reduction to detect bursty topics. Lfun [CWZ+17]

is a real-time statistic features-based system which can extract spam from social

drifting data. Monarch [TGM+11] utilizes the online URL blacklists to detect URL

spam in real-time. The difference between our approach and these studies is that

they normally focused on centralized spam analysis, while we focus on social spam

detection in distributed manner.

8

2.2 Distributed Social Data Processing

Recent applications had been cooperated with scalable methods to achieve efficient

processing [BML16, KI17, PIP16, SBJM17]. [CLQ11] presents a parallel spam fil-

tering system based upon MapReduce. To mitigate the accuracy degradation by

parallel SVM, they augment with ontology semantics. Different with them, we al-

low data training can be completely implemented in local agents and maintain the

desired accuracy. A model within CELAR cloud platform is designed to catalog

the distributed, dynamic and redundant cancer data [XJTG15]. ELF [HSAC14] is

a decentralized model for the streaming process and supports powerful program-

ming abstraction for batch, iterative and streaming processing. SSTD [ZZW+17] is

a dynamic truth discovery scheme which can discover Twitter data truth with scal-

ability. Different from above work, we use the latest data features as the feedback

and analyze social spam in a scalable way.

2.3 State Management in Social Stream Data Processing

Existing state management solutions can be divided into three representative cate-

gories: in-memory, remote storage, in-memory+on-disk.

Category 1: in-memory. Many industrial stream processing systems either do

not support state (Heron [KBF+15], S4 [NRNK10], the early version of Storm [ad]),

or they rely on in-memory data structures such as hash tables and hash table variants

to store state. For example, Muppet [LLP+12] and Trident [af] store state via hash

tables. Spark Streaming [am] enables state computation via Resilient Distributed

Datasets (RDDs) [ZCD+12], the core data abstraction from Spark that distributes

read-only multiset data items. These techniques rely on a central master for state

9

management that results in a centralized bottleneck and, therefore, may be difficult

to scale to large states.

Category 2: remote storage. Some systems such as Millwheel [ABB+13] and

Dataflow [ABC+15a] choose to separate state from the application logic. They

have the state centralized in a remote storage [ABB+16, CCD+03, ACÇ+03] (e.g., a

database management system, HDFS or GFS) shared among applications, period-

ically checkpointing it for fault tolerance. Using external storage can scale well to

large distributed states, but it significantly increases latency in the critical path of

stream processing.

Category 3: in-memory+on-disk. A few other systems such as Kafka [ab],

Samza [ac, NPP+17], Spark Streaming [am], Flink [aa, CEF+17] try to overcome

this issue by using a combination of “soft state” stored in in-memory data struc-

ture along with “hard state” persisted in on-disk data store (e.g., RocksDB [al],

LevelDB [aj]). However, they sacrifice programming model transparency by requir-

ing programmers to declare and maintain state using built-in data structures (e.g.,

Spark’s RDDs [ZCD+12], Muppet’s slates [LLP+12]). The on-disk data store (used

by Kafka [ab], Samza [ac], Dataflow [ABC+15a]) incurs large I/O overhead due to

well-known high write amplification [DCG+17]. Finally, scaling to large distributed

states and recovering from failures in such systems is quite expensive, because when

a single node fails, the in-memory state and on-disk state for all dependent nodes

must be reset to the last checkpoint, and computation must resume from that point,

resulting in significant time and space overhead.

10

2.4 State Recovery in Social Stream Data Processing

Existing stream processing systems offer failure recovery mainly through the use of

three approaches: replication recovery, checkpointing recovery, and DStream-based

lineage recovery, which are either not scalable, slow, resource-expensive or incapable

to handle multiple failures.

In the replication-based recovery approach, the system maintains a completely

separate set of hot failover nodes, which processes the same stream in parallel with

the primary set of nodes. The input records are sent to both. When there is a

failure or multiple failures in the primary nodes, the system automatically switches

over to the secondary set of nodes and the system can continue processing with

very little or no disruption. The replication recovery has been used in systems such

as Flux [SHB04] and Borealis [BBMS05]. The failover is fast and it can handle

multiple failures. However, the replication recovery scheme doubles the hardware

requirement.

11

 In checkpoint-based recovery, all nodes periodically checkpoint their states to

remote storage such as HDFS or GFS. Each node in the stream pipeline has an

in-memory buffer to retains a backup of the data that it has forwarded to the

downstream nodes since the last checkpoint. The system also maintains standby

nodes. When a primary node fails, a standby node retrieves the latest checkpoint

from the persistent storage, and its upstream node essentially replays the backup

records serially to this failover node to recreate the lost state. The checkpointing

recovery has been used in systems such as TimeStream [QHS +13], Trident [af],

Drizzle [VPO +17], and Multilevel Checkpointing [MBMDS10]. It avoids the 2×

hardware cost. However, the failover is slower than the replication recovery because

12

buffered data on the last state to recompute the new state.

it has to retrieve the checkpointed state from the remote storage and replay the

 Our previous work [LXDS +20] introduced FP4S, a decentralized approach for

distributed state recovery based on erasure codes [LXDS +20] that leverages the

availability of abundant network bandwidth between the nodes holding fragments of

the state. In diverse network environments, the availability of network resources varies

dynamically depending on which stream application workflows are active at a given

moment; therefore the technique introduced in FP4S is not appropriate for supporting

diverse stream workflows.

 To achieve both fast recovery and small hardware overhead, the DStream-based

lineage recovery was proposed. This approach has been used in Apache Spark-based

systems [aa, CEF +17, ZDL +13, SGH +16]. Its key abstraction is the

Discretized Stream (DStream, for short), a continuous stream of Spark RDDs [ZCD

+12]. The most recent state is stored in each node’s memory — using RDDs —

together with the lineage graph, that is, the graph of deterministic operators used to

build RDDs. When nodes fail in the system, instead of preparing a standby

node for failover, DStream re-runs the lost tasks in parallel on other reliable

nodes in the cluster using the lineage graph. However, the entire recovery processing

is linear, that is, the lost tasks need to be executed strictly in line with the original

lineage graph. As such, the recovery process may be slow when the lineage graph is

long and incur multiple uploads of checkpointed state, incurring substantial network

traffic.

CHAPTER 3

SUPPORT ONLINE AND SCALABLE SPAM DETECTION

3.1 Introduction

The past few years have seen the rapid rise of Web-based systems incorporating

social features, such as online social networks (OSNs) (e.g., Facebook, Twitter).

These systems have a common feature that they rely on users as the primary source

of posts and enable users to comment on others’ posts. Unfortunately, such openness

and reliance on users also attract social spammers, who advertise commercial spam

messages, and disseminate malware [LCW10]. Reports show that nearly 10% of

tweets on Twitter are all spam [a15a], and Facebook usually blocks 200 million

malicious actions every day [a15b].

We observed that social spammers who aim to advertise their products or post

victim links are more frequently spreading malicious posts during a very short period

of time. They are quite smart to adapt themselves to spam classifiers which were

trained based on historical records. Fig. 3.1 shows the three days’ social rumor

activities that are extracted from a real-world dataset of the Charlie Hebdo shooting

in 2015 [ZLP+16]. X-axis and Y-axis present the time and the number of rumors,

respectively. Each peak with a color presents the activities of one specific rumor.

We can observe that: (1) once spam post is produced, it spreads in a very short

period of time and will soon reach its peak; (2) the content of spam post is always

”drifting”, and multiple peaks in different colors indicate that the contents of social

spam change rapidly.

Besides, recent surveys and research reported that social spam is normally fast

changing, and spam activities are usually concentrated in a short period of time [a18,

CWZ+17, ZRM15, ZZC+15].

13

0

70

140

210

280

Jan/07 Jan/08 Jan/09

@WSJ: At least 12 dead in the Paris shooting.
Updated story and background info: http://t.co/QlPpQ2ss8j
#CharlieHebdo http://t.co/DwMlaf

@Mama4Obama1: @JeffersonObama: R.I.P.
Ahmed Merabet, a French #Muslim Cop, first victim
of #CharlieHebdo attack http://t.co/TMQsJCCKB5

@Reuters:
BREAKING: One
person seriously
wounded, six taken
hostage in incident at
kosher supermarket in
Paris: police source

Figure 3.1: Social rumors of the famous Charlie Hebdo shooting in 2015, Twit-
ter [ZLP+16]. We present the activities of 14 rumors in the figure and show several
example statements.

Therefore, the major challenge for the spam detection system is enabling the up-

date of trained classifiers to keep pace of the collection of spam information promptly,

so as to uncover and defend against these social spammers.

Traditional techniques for discovering evidence of spam and spammers have the

following limitations: (1) they mainly focus on analyzing offline historical logs [CALS17,

LEC11, VT16, VBC+14, WIP14, XSJ16], limiting the capability to adapt to the

new spam emergence and resulting in failing to uncover the most recent spam; and

(2) they mainly focus on centralized data sources and ignore the fact that most

OSN logs are continuously generated in distributed web servers [LEC11, MK10,

TLGP14, VT16, WIP14, ZNJ+15], limiting the capability to take the advantage of

continuously processing the distributed data on the fly and resulting in centralized

bottleneck and load unbalance.

From the data mining point of view, the spam detection has three major steps:

(1) model construction where the spam classifier is created using a training dataset

with a specific algorithm, e.g., Random Forest [Bre01]; (2) model test where the

test dataset is used to validate the accuracy of the spam classifier; and (3) use

14

well-trained classifier with new social data to get predictions that identify new

spam [PZTH].

We propose a novel Online scalable spam detection system, namely Oases. The

key idea of Oases is to enhance the online feature and scalable feature into the

general spam detection processing, in which the spam detection model is continu-

ously constructed with the online training dataset and model testing, and the spam

detection is performed in a scalable fashion.

Oases operates in two phases. The first phase is the spam model construction.

We build a distributed hash table (DHT) [RD01] based aggregation tree to feed the

distributed data sources into a decentralized peer-to-peer overlay, which consists

of a root, branches and many leaves. The root is responsible for disseminating

the continuously updated training dataset and test dataset to the branches and

leaves. Each leaf node is responsible for spam model construction and spam model

test by applying the training dataset to a specific classifier such as Naive Bayes

algorithm [Ris01], Random Forest algorithm [Bre01], etc., and testing the spam

model using the test dataset. The intermediate results are aggregated by branches

to the root for validation and confirmation.

The second phase is the spam model application. Each leaf takes the new coming

streaming events from the distributed data sources (e.g., Twitter logs, Facebook logs,

etc.), analyzes them using the spam detection model from the first phase, outputs

spam and labels. The spam with their labels are then aggregated to the root and

reported to the end users.

The novelty of our work lies in that the posts are progressively aggregated for

actively filtering out new spam and publishing the training dataset to all distributed

leaf agents to update the classifiers in an online and scalable fashion. We believe

our system could promptly detect activities of spammers and classify various latest

15

R

L

L

L

L

R

L

L

L

L

1. Oases Root

2. Oases Model
Construction Tree

3. Oases Leaf Agent

4. Oases Spam
Processing Tree

Multicast flow

R Oases Root

Intermediate resultsIntermediate resultsTrained classifierTrained classifierUntrained classifierUntrained classifier

L Oases Leaf AgentL Oases Leaf Agent

Aggregation flowAggregation flow

LegitimateLegitimate

LegitimateLegitimate

SpammerSpammerSpammer

FacebookFacebookFacebook

TwitterTwitterTwitter

Training
Data Set

Test
Data Set

D
H

T-
b

as
ed

O

ve
rl

ay
D

H
T-

b
as

ed

O
ve

rl
ay

Ham
Posts

Ham
Posts
Ham
Posts
Ham
Posts
Spam
Posts

Figure 3.2: Overall framework of Oases system.

spam for social networks.

3.2 Design

In this section, we introduce the Oases system, discuss each functional component

of the system, and outline the details of workflows in the Oases system.

3.2.1 Overview

As shown in Fig. 3.2, the Oases system consists of four major components: (1) the

Oases root; (2) the Oases model construction tree; (3) the Oases leaf agent; and

(4) the Oases spam processing tree.

The first component is the Oases root. The Oases root is responsible for the

main control flows on other nodes, e.g., publishing the instructions from the Oases

root to branches and leaf agents to start training the classifier, delivering messages

to the Oases leaf agents to start classifications, etc. As shown in Fig. 4.1, for the first

16

step, the Oases root manually divides the raw dataset into training dataset and test

dataset. The training dataset and test dataset are then disseminated by the Oases

root to all distributed Oases leaf agents through the Oases model construction tree

which is discussed next.

The second component is the Oases model construction tree. As shown in

Fig. 4.1, for the second step, the Oases model construction tree is responsible for cre-

ating efficient paths for the Oases root to disseminate the training dataset and test

dataset to the Oases leaf agents. The key idea is the use of a DHT-based application-

level multicast tree [CDKR02], similar to the IP multicast tree [DLL+00], to dis-

seminate copies in a progressively way following the tree path, without maintaining

N point-to-point connections for N leaf agents.

The third component is the Oases leaf agent. The Oases leaf agent is responsible

for the training of the spam detection model. As shown in Fig. 4.1, for the third

step, the leaf agent applies the received training dataset to the Random Forest

algorithm [Bre01] to practice the classifier, and uses the test dataset to enforce the

classifier. The trained classifier is used later by the fourth component to do the

online spam detection.

The fourth component is the Oases spam processing tree. The Oases spam

processing tree is responsible for orchestrating the distributed Oases agents to fulfill

the data mining tasks of online spam detection in a scalable fashion. The Oases

leaf agents are directly connecting to the web servers that generate user activity

logs, i.e., tweets, and classify spams out of these logs. As shown in Fig. 4.1, for the

fourth step, the workflow of Oases spam processing tree is as follows: a scalable

aggregation tree “rolls up” the classified results from the Oases leaf agents level by

level until the results reach the root. For example, if one tree has 7 spam processing

agents and each leaf agent classifies 10,000 social data, then after aggregation, the

17

2

4

1 Oh my? http://t.co/X35zecCo

3

Text

@experikalm3:TW always show
her sex as porn why it’s here.

http://wesfsa/da..

@ALLCAPSTEENWOLF:
Trouble // here let we see it

@NICKIMINAK taylor swift is
queen

@ALLCAPSTEENWOLF:
Trouble // here let we see it

3

Oh my? http://t.co/
X35zecCo1

@NICKIMINAK taylor swift
is queen 0

0

1

Label

2

4

@experikalm3:TW always
show her sex as porn why
it’s here. http://wesfsa/da..

Text

1

Leaf Agent

Random
Forest

Classifier

Figure 3.3: Sample of the data classification in the Oases leaf agent.

root agent receives 70,000 classified results.

3.2.2 Root

The Oases root is responsible for the main control flows of the whole system, in-

cluding (1) dividing the raw dataset into training dataset and test dataset; (2)

publishing the datasets from the Oases root to branches and leaf agents to start

training the classifier; and (3) aggregating the spam detection intermediate results

from the Oases leaf agents to the root.

The Oases root uses a DHT-based hierarchical tree as the main channel for

disseminating datasets and instructions. The DHT-based hierarchical trees are built

as follows:

1. Step 1: constructing a peer-to-peer overlay leveraging Pastry [RD01]. Each

Oases node is assigned a unique, 128-bit nodeId in a circular nodeId space

ranging from 0 ∼ 2128 − 1. All nodes’ nodeIds are uniformly distributed.

Given a message and a key, the message can be guaranteed to be routed to the

node with the nodeId numerically closest to that key, within dlog2bNe steps,

where b is a base with a normal value 4.

18

(a) Unclassified data.

Spam Posts
Ham Posts

(b) Classified data with labels

Figure 3.4: Visualizaiton of the data classification in the Oases leaf agent. (a) shows the
original dataset which has no labels. (b) shows the dataset with labels predicted by the
model.

2. Step 2: building a multi-cast tree leveraging Scribe [CDKR02] (more details

can be found in Section 3.2.5). Any node in the overlay can create a group

with a groupId which is the hash (SHA-1) the group’s name concatenated with

its creator’s name. Other nodes can join the group by routing a JOIN message

towards the groupId. The node which its nodeId is most near to the groupId

serves as the root. The tree multicasts a message to all members of the group

within O(logN) hops.

3. Step 3: enhancing the aggregation function on branches. The Oases root

and middle-level nodes jointly implement (1) the aggregation flow and (2) the

control flow. For example, for the social spam detection application, batches of

social logs are parsed as a map from hashed data contents (ID) to the classified

tags (labels), i.e., (DDA2, 1) and (F7B5, 0) in the Oases leaf agent (here the

classified tag 1 means the data is classified as spam, tag 0 represents non-spam,

and we use shortened hashes to indicate ID). Then the aggregation tree that

progressively ‘rolls up’ and reduces those ID-label pairs from the distributed

leaf agents to the root (more details can be found in Section 3.2.6). Besides,

19

when necessary, the Oases root can multicast to its workers within the group,

to notify them to empty their sliding windows and/or synchronously start a

new batch.

3.2.3 Leaf Agent

The Oases leaf agent is responsible for the local data processing task by executing

the root’s instructions. Data processing task in the leaf agent consists of two roles:

(1) local data classification and; (2) local online social spam detection.

The local data classification is the first role of the leaf agent. Each leaf agent

trains a classifier by using the training dataset. Then it uses the test dataset to

examine the accuracy of the trained model. Besides, the leaf agent updates its

trained model periodically with the new delivered training and test datasets from

the root. This allows the trained model to detect spam efficiently with the latest

spam features.

Fig. 3.3 shows the processing of data classification in a leaf agent. Original social

data is normalized in dataset without labels. After the classification via the trained

model, each instance of the original data acquires a classified label, which identifies

spam or not.

Fig. 3.4 shows the visualization of data classification in one leaf agent. Fig. 3.4a

shows the original dataset without predicted labels. After the classification, this

dataset is classified as two groups, as shown in Fig. 3.4b, where the purple and

orange color represent Ham (non-spam) and Spam, respectively.

The local online social spam detection is the second role of the leaf agent. In

Oases, each leaf agent connects to a web server so as to collect the online social

streaming data from this server. Then the leaf agent completes the online data

20

Model Construction
Tree Multicast

R

LLLL

(ccde,?)
(mnk,?)

...
(ccde,?)
(mnk,?)

...
(mnk,?)
(xxy,?)

...
(mnk,?)
(xxy,?)

...
(you,?)
(xxy,?)

...
(you,?)
(xxy,?)

...
(mnk,?)
(you,?)

...
(mnk,?)
(you,?)

...

Distributed Web Servers

 Spam Processing
Tree Aggregation

(2D17,0)
(788A,1)

...
(2D17,0)
(788A,1)

...
(788A,1)
(0DA4,0)

...
(788A,1)
(0DA4,0)

...
(788A,1)
(D1C6,1)

...
(788A,1)
(D1C6,1)

...
(D1C6,1)
(0DA4,0)

...
(D1C6,1)
(0DA4,0)

...

(2D17,0)
(788A,2)

...

(2D17,0)
(788A,2)

...
(0DA4,0)
(2D17,0)
(788A,2)

...
(0DA4,0)

(788A,1)
(D1C6,2)

...

(788A,1)
(D1C6,2)

...
(0DA4,0)
(788A,1)
(D1C6,2)

...
(0DA4,0)

(D1C6,2)
(788A,3)

...

(D1C6,2)
(788A,3)

...

(0DA4,0)
(D1C6,2)
(788A,3)

...

(0DA4,0)
(2D17,0)

(D1C6,2)
(788A,3)

...

(0DA4,0)
(2D17,0) R

LLLL

Distributed Web Servers

Training Data Set

Test Data Set

.

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..

.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

..

.

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

..

Figure 3.5: Oases Model Construction Tree.

analysis upon streaming data flow with the trained model and produces classified

results. Finally, all leaf agents collaborate to shuffle the classified results to the upper

layer via the spam processing tree. More details can be found in Section 3.2.6.

3.2.4 The Classified Algorithm

We next introduce the details of the classic algorithm that be implemented, Random

Forest algorithm [Bre01], in our training and test processing.

Why Random Forest? Random Forest algorithm is a classic data mining

algorithm and had been implemented with graceful performances in various works

of social spam detection [WZLP15, XSJ16, ZZC+15]. Random Forest constructs

a fixed number of decision trees for training during the training processing and

results in one final decision which is determined from multiple individual trees.

This algorithm is derived from decision tree learning and tree bagging.

21

Model Construction
Tree Multicast

R

LLLL

(ccde,?)
(mnk,?)

...
(ccde,?)
(mnk,?)

...
(mnk,?)
(xxy,?)

...
(mnk,?)
(xxy,?)

...
(you,?)
(xxy,?)

...
(you,?)
(xxy,?)

...
(mnk,?)
(you,?)

...
(mnk,?)
(you,?)

...

Distributed Web Servers

 Spam Processing
Tree Aggregation

(2D17,0)
(788A,1)

...
(2D17,0)
(788A,1)

...
(788A,1)
(0DA4,0)

...
(788A,1)
(0DA4,0)

...
(788A,1)
(D1C6,1)

...
(788A,1)
(D1C6,1)

...
(D1C6,1)
(0DA4,0)

...
(D1C6,1)
(0DA4,0)

...

(2D17,0)
(788A,2)

...

(2D17,0)
(788A,2)

...
(0DA4,0)
(2D17,0)
(788A,2)

...
(0DA4,0)

(788A,1)
(D1C6,2)

...

(788A,1)
(D1C6,2)

...
(0DA4,0)
(788A,1)
(D1C6,2)

...
(0DA4,0)

(D1C6,2)
(788A,3)

...

(D1C6,2)
(788A,3)

...

(0DA4,0)
(D1C6,2)
(788A,3)

...

(0DA4,0)
(2D17,0)

(D1C6,2)
(788A,3)

...

(0DA4,0)
(2D17,0) R

LLLL

Distributed Web Servers

Training Data Set

Test Data Set

.

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..

.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

..

.

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

...

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

...

(a,1)
(b,0)
(c,1)

.. .

(c,1)
(a,1)
(n,1)

..
.

(a,1)
(b,0)
(c,1)

..

Figure 3.6: Aggregation in the spam processing tree.

In the training process, the classifier in each leaf agent receives the training

dataset from the root agent, then randomly samples N cases to create a subset of

the data. The subset usually about 66% of the total set. One subset of the samples

creates one decision tree. That is repeatedly to choose some different small subset

of attributes at random and creates all decision trees. When leaf agent starts the

test processing, trained classifier puts the test dataset into the forest. Then it runs

down all trees of the forest. The classification result is the majority vote among all

decision trees.

3.2.5 Model Construction Tree

The Oases model construction tree is responsible for creating efficient paths for

the Oases root to disseminate the training dataset and test dataset to the Oases

leaf agents. Here we use an example to illustrate the Oases model construction

22

tree. The sample scenario is presented in Fig. 3.5. Assume there are 7 nodes in

the Oases system. The node with nodeId numerically closest to the topicId acts as

the rendezvous point for the associated multicast tree. For example, if hash(model)

equals to 0088, the node with same identifier or closest identifier like 0087 or 0089

will be the root of the model tree. The Oases model construction tree is shown in

Fig. 3.5. The tree is rooted at the rendezvous point and the other nodes subscribe

to this tree. The Oases root multicasts the training and test datasets to all leaf

agents in O(logN) hops. In the figure, (a, 1) means that the post “a” is a spam

post and (b, 0) means that the post “b” is a non-spam post. Then those leaf agents

are triggered to apply the received dataset to the local classifier to complete the

model training and test processing using the Random Forest algorithm [Bre01].

3.2.6 Spam Processing Tree

The Oases spam processing tree is responsible for coordinating distributed leaf

agents to accomplish the online spam detection globally. In this section, we use

a sample scenario to present the workflow of the Oases spam processing tree.

As shown in Fig. 3.6, the leaf agent processes the online social streaming data

with its trained classifier. For instance, after processing, original data (mnk, ?), in

which the question mark means it hasn’t been classified, is detected as spam and

marked as (mnk, 1). Then the leaf agent sends the hashed content, e.g., hash(mnk)

= 788A and its label formatting as (788A, 1), to the upper layer.

Further, the spam processing tree progressively rolls up and reduces those ID-

label pairs from the distributed leaf agents to the root. For example, 〈(788A, 1),

(2D17, 0)...〉, 〈(0DA4, 0), (788A, 1)〉, are reduced as 〈(788A, 2), (2D17, 0), (0DA4,

0)...〉 in the branches of tree. And then those pairs are reduced as 〈(788A, 3),

23

(D1C6, 2), (2D17, 0), (0DA4, 0)...〉 to the root as the final results. The value of

labels indicates the number of leaf agents which detect this data as spam, e.g., (788A,

3) represents that there are 3 leaf agents classifying the data “mnk” as a spam post.

Those hashed IDs with larger values in labels indicate the higher possibility as spam

posts.

3.2.7 Self-adjustable Tree

Oases supports self-tuning in the tree structure level. By manipulating the parame-

ter n of the tree fan-out, with achieving 2n fan-outs per agent, it can format different

trees.

The design of this feature is to support multiple targets in spam processing. For

example, when an application is high latency sensitivity, it can modify the tree depth

by adjusting the value of tree fan-out. Assuming there are 10b agents in Oases, the

default depth of the tree is log2bN , where b = 4. By changing the default fan-out

from 24 to 25, the average depth of the tree is reduced from 5 to 4. So root-to-leaf

data transfer can achieve lower latency by across fewer layers.

24

 When an application desires a good failure recovery, Oases can increase the

depth of trees by reducing the tree fan-out. Using the same example above, Oases

can change the fan-out from 32 to 16, resulting in that a tree’s depth increases from

4 to 5. A deeper tree can benefit the agent’s failure recovery. This depends on the

mechanism for failure recovery in Oases: once a child fails to receive a heartbeat

message, it suspects its parent failed, and this agent will route the JOIN message to

the group’s identifier. Oases then sends the message to a new parent to repair the

tree. When a tree has a small fan-out and a large depth, the failure of one agent

25

can reduce this failure effects.

3.2.8 Benefits and Design Rationale

In this section, we discuss why Oases has the online and scalability benefits and the

rationale behind the design.

 Online. Oases enables the progressive aggregation of the properties of the

spam posts for creating new spam classifiers to actively filter out new spam posts

and update the classifiers to all distributed data process agents. That ensures the

spam classifiers to always keep pace with the latest social spam, and identify new

spam with high efficiency.

 Exploring DHTs for Scalability. The Oases model construction tree and

spam processing tree are self-organizing and self-repairing, and can be easily ex-

panded in a distributed manner. The use of DHT guarantees that the cost of

multicast and aggregation can be fulfilled within O(logN) hops. Moreover, multiple

groups (e.g., model construction tree and spam processing tree) are supported in

one single overlay, which means that the overhead of maintaining a complex overlay

can be amortized over all groups’ spinning trees [RD01]. Specifically, all agents in

overlay are viewed as equal peers, so, each agent can be a root, parent, leaf agent

or any combination of the above, which leads to well balance of the computation

loads.

 Handling Nodes’ Failures. The Oases system uses leaf sets to handle node

failure [CDKR02]. Each node maintains a leaf set. The leaf set is the set of l nodes

which nodeIds that are numerically closest to the present nodeId, with l/2 larger and

l/2 smaller. A typical value of l is nearly 8⌈log 2bN ⌉, where N is the total number

of nodes in the system. Neighboring nodes in node’ leaf set exchange keep-alive

can only affect the performances of the following sub-agents, while fewer sub-agents

Table 3.1: Results of spam classification with multiple classifiers.

Classifiers Accuracy F1 FPR

Random Forest 94.8% 0.962 0.26
SVM 94.5% 0.937 0.446
KNN 91% 0.911 0.374
Logistic 92% 0.908 0.303
Naive Bayes 86% 0.871 0.477

messages periodically. An agent is presumed as a failure if it is unresponsive for a

period. Then those members in the left set of failed node’s leaf set are notified and

they update their leaf sets. Once the node recovers, it will contact the node in its

last known leaf set, obtains their current leaf sets, updates its own leaf set and then

notifies the members in the new leaf set of its recovery.

3.3 Evaluation

We evaluate the Oases system with the real-world online social network streaming

data. Experimental evaluations answer the following questions:

• What are the spam detection accuracy rates of the Oases system (Sec. 3.3.2)?

• What are the performances of data shuffling, processing and delivery latency

in Oases (Sec. 3.3.3 & Sec. 3.3.4)?

• What is the overhead and resource consumption of the system at runtime

(Sec. 3.3.5)?

3.3.1 Testbed and Application Scenarios

Experiments are conducted on a testbed of 800 agents hosted by 16 servers running

on Linux. Each server has a QEMU Virtual CPU with 3.4GHz processor, 4G of

26

25 50 100 200 400 800
Number of agents

0

5

10

15

Ti
m

e
of

 re
ce

iv
in

g
da

ta
 b

lo
ck

 (s
)

size of data block: 5k
size of data block: 10k
size of data block: 20k

linear increase

Figure 3.7: Time of the leaf agents receiving data blocks from root with various size of
data blocks and different number of agents.

memory and 30 GB hard drives. The system was implemented in Java by using

Java SE Development Kit 7 in x64, version 1.7.

Oases’s functionality is evaluated by running an online social data application.

Nearly 3,000,000 tweets from Twitter streaming API had been collected and evalu-

ated via our system from 12.2016 to 02.2017. The application’s purpose is to identify

social spam, such as posts used by malicious links or contents to draw users’ clicks

and spread malware. We use the straightforward content features (URL, words, etc.)

to predict labels. Oases uses test dataset to examine the model which is trained

with training dataset. The application is implemented to produce predicted labels

from online data streams via the Oases leaf agents.

3.3.2 Spam Classification Results

We evaluate the spam classification results of Oases and compare the performance

with several popular classifiers. Evaluations rely on a sample dataset which consists

27

25 50 100 200 400 800
Number of agents

0

500

1000

1500

2000

Ti
m

e
of

 re
su

lts
 a

gg
re

ga
tio

n
(m

s)

size of data block: 5k
size of data block: 10k
size of data block: 20k

linear increase

Figure 3.8: Time of shuffling data from leaf agents to upper layer in the tree.

of 50,000 posts (37465 posts are Ham and 12535 posts are Spam). The results are

shown in Table 3.1. Random Forest is default implemented in Oases and other clas-

sifiers include K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Logistic

Regression, and Naive Bayes. F1-score (F-Measure) responses for an important fac-

tor in measuring the classification performance. The results show that Random

Forest achieves promising performance with the F-measure up to 96.2% and the ac-

curacy up to 94.8%. Combined with these key indicators, Random Forest achieves

the best performance among all classifiers.

3.3.3 Data Shuffling Time and Data Processing Time

The Oases model construction tree, as the efficient paths for dataset distribution,

directly influences the local data processing time. On the other hand, after the

data processing, the classified intermediate results propagate from distributed leaf

agents, to the upper layer for aggregation, until they reach the Oases root. The

aggregation tree, as the structure for shuffling classified results from the leaves to

28

5 10 15 20 25
Size of data blocks (1000)

0

200

400

600

800

1000

1200

Ti
m

e
of

 tr
ai

ni
ng

 p
ro

ce
ss

 (s
)

test time
training time

test time

Figure 3.9: Training and test time in data processing with different size of data blocks.

the root, directly influences total online spam processing latency. Therefore, we

first report the time of the leaf agents receiving data blocks (datasets) from the root

in Fig. 3.7, and then report the time of intermediate results aggregating from the

leaves to the root in Fig. 3.8. Finally, we show the data processing time of each leaf

agent in Fig. 3.9.

Data Shuffling Time. Here we classify the data shuffling time into two parts:

(1) the time of the leaf agents receiving data blocks from the root; and (2) the time

of results aggregating from the leaf agents to the root. The number of the Oases

agents varies from 25 to 800. Simultaneously, various sizes of data blocks are used

for evaluation.

Fig. 3.7 and Fig. 3.8 show that, when the system uses the same datasets but

with a different number of agents, the time of delivery and reception linearly in-

creases, rather than fold increases. This is because that the linear increment of the

delivery or reception time is strictly determined by the tree depth O(logN), which

further reflects that the tree topology in the overall performance exhibits a very

29

5k 10k 15k 20k
Size of data blocks

0

200

400

600

800

1000

T
im

e
of

 r
oo

t a
gg

re
ga

tio
n

(s
)

25 agents
50 agents

Figure 3.10: Average latency of root agent aggregates whole results in one process cycle.

good balance.

Data Processing Time. Fig. 3.9 shows the time of model training and test

processing in one agent with various sizes of data blocks. Result shows that with

the increment of the size of data blocks, the training processing time also increasing

rapidly, especially when the data block has 20k and 25k posts. It indicates that over-

large size of data blocks can be the bottleneck of the whole system when considering

the size reaches to 25k with the training time up to 1150s. Costly time in the training

processing will cause the whole system looks like in “busy-waiting” - though the leaf

agent is working on the training processing, the root cannot get any useful results in

a long time. Therefore, the choice of a suitable size of the data block can promote

the best performance of the system.

3.3.4 Aggregation Latency and Self-adjustable Tree

Performance impact due to large data blocks. After the hashed ID-label

pairs are shuffled to the upper level, the Oases root actively aggregates the data

30

200 400 800 1600
Number of agents

0

2

4

6

8

10

T
im

e
of

 d
el

iv
er

y
la

te
nc

y
(s

)

tree bit = 4
tree bit = 3
tree bit = 2
tree bit = 1

Figure 3.11: Average data delivery latency across the different trees.

Table 3.2: The runtime overheads of Oases. It represents the CPU,
Memory, I/O, and context switch overheads.

VSD
CPU Memory I/O C-switch
%used %used wtps cswsh/s

5k 47.6% 38.0% 2.23 322.72
10k 51.1% 43.8% 3.20 280.69
15k 51.0% 44.2% 2.78 304.57
20k 50.9% 45.1% 1.80 314.06
VSD : various size of data blocks.

wtps: write transactions per second.

cswsh/s: context switches per second.

stream into the final result pool. Although the Oases architecture ensures that the

aggregation processing can be completed with logN hops. However, many factors

may impact the performance of the root aggregation, such the size of the data blocks,

the network bandwidth, and the traffic interference.

As shown in Fig. 3.10, the size of the data blocks (training and test datasets) has

an important effect on the latency. In the case of reasonable dataset size, e.g., 5k,

the average latency is nearly 100 seconds. However, when using large data blocks

31

200 400 800 1600
Number of agents

10

20

30

40

50

T
im

e
of

 fa
ilu

re
 r

ec
ov

er
y

(s
)

tree bit = 4
tree bit = 1

Figure 3.12: Average fault recovery latency of failed agents in different trees.

(e.g., 20k), the latency grows much faster than the size increment of the data block.

We believe that the increased latency indicates that the system has reached a

limited overload when processing with extra large data blocks. In this case, some

agents are still active but other agents may be blocked to wait for the server’s

resources. In addition, oversized dataset exacerbates the burden of each leaf agent

during the training and testing processing that causes the overload even further

overload.

Tree Structure Adjustment. Fig. 3.11 and Fig. 3.12 represent the perfor-

mances of delivery latency and recovery latency with different tree structures. In

Fig. 3.11, tree bit decides the tree fan-out of each agent. For example, when tree bit

= 4, the fan-out is 16, which means each agent has 16 following agents. Results in

Fig. 3.11 show that delivery latency increases when the tree layer increases (small

tree bit), in which delivering a data block from the leaf to the root need to cross

more layers.

32

20 40 60 80 100 120 140 160
CPU

0

20

40

60

80

100
CPU_user
CPU_system

(%)

Time (sec)

Figure 3.13: CPU utilization in one server.

20 40 60 80 100 120 140 160
MEMORY

1.5

2

2.5

3

3.5

4

MEM_used
MEM_cached
MEM_total

Time (sec)

(GB)

Figure 3.14: Memory utilization in one server.

3.3.5 Runtime Overhead

Table. 3.2 shows the runtime overhead of Oases. As the result shows, the Oases

system has similar overheads in the utilization of CPU, memory, I/O, and context

switches when dealing with the data blocks of different sizes. This is because the

Oases system uses a decentralized architecture to distribute the management load

evenly over the distributed servers, and the hierarchical tree structure facilitates

communication across multiple agents and servers.

We also evaluate the server’s resource consumption, with each server supporting

five leaf agents at the same time. As shown in Fig. 3.13 and Fig. 3.14, the processing

cycle time is close to 140 seconds, with the CPU and memory utilization reaching

33

a higher level from 15s to 155s. In addition, the processing performance is quite

consistent with the former results.

3.4 Summary

In this chapter, we present the online scalable spam detection system (Oases), a

distributed and scalable system which detecting the social network spam in an online

fashion. By periodically updating the trained classifier through a decentralized

DHT-based tree overlay, Oases can effectively harvest and uncover deceptive online

spam posts from social communities. Besides, Oases actively filters out new spam

and updates the classifiers to all distributed leaf agents in a scalable way. Our large-

scale experiments using real-world Twitter data demonstrate scalability, attractive

load-balancing, and graceful efficiency in online spam detection.

34

CHAPTER 4

ACHIEVE EFFICIENT SPAM DETECTION BY EXPLOITING

SAPM CORRELATIONS

4.1 Introduction

Online social networks (OSNs) have been an integral part of human life. More

and more people are acquiring the latest news, advertisements, social activities,

and breaking topics directly from the current popular OSNs such as Facebook,

Twitter, and WeChat. For example, a report said that the percentage of US adults

who primarily receive news and information from OSNs is as high as 62% [AG17].

However, the openness of widespread OSNs couple with massive spam activities,

which are damaging as they cause public panic and social unrest. For example,

in February of 2019, social users in Paris watched a lot of photos of kidnappings

on Facebook and videos of vans speeding away on Snapchat and Twitter, all of

which hinted that the Roma (Gypsies) robbed children with vans in the suburbs

of Paris [Bre19]. Although the information proved to be wrong later, they brought

serious consequences to the Roma and the whole society: dozens of young men

wielding sticks and knives attacked a Roma camp and burned two vans, and tens

of people were arrested. Another example is that one latest report said the global

enterprise spam filter market was valued approximately USD 849 million in 2018 and

is expected to generate around USD 2,675 million by 2026 [zio19]. And it pointed

out that the increasing number of social spam is driving the enterprise spam filter

market globally.

The unprecedented success of online social networks has created tremendous

opportunities for the emergence and rapid spread of spam. By leveraging a large

social user, social spam often dominates and influences social life in a short period

35

of time and can reach every corner of the social world. Therefore, quickly detecting

spam from large-scale social activities is an urgent need in the current situation.

Furthermore, as our observation, the spammers in the online social networks are

not only active on a single platform, but are often active on different social platforms,

by simultaneously manipulating dozens or hundreds of fake accounts. Naturally, the

information published by these fake accounts is highly similar. This phenomenon

has been pointed out by several former studies [XGL+18]. Spammers certainly desire

to spread similar posts on different platforms to attract as many people as possible

to target on these topics. A case study of social spam posts for multiple different

news sites also demonstrates that spam posts show a high degree of similarity in

content and topics during the same period of time and will immediately propagate

from one site to another [a16]. Therefore, this correlation between cross-platform

social spam is a common phenomenon in the current social media world. Although

there are not many direct relationships between users, geographic locations, creation

purposes, and regions in these various groups or platforms, the spam contents are

highly correlated within similar topics during the same period of time.

However, former studies rarely utilized the spam correlations to handle the

large-scale social data from distributed data servers. They either focused on the

algorithm side to achieve high accuracy in the detection [VBC+14, WP15, VT16,

SS16, HBSD17], or the entire processing only targeted on a small size of dataset

without the global view from similar data across large-scale data sources [GCL+12,

XZJ+16, CWZ+17, XSJ16]. In this paper, to explore the efficient method in dealing

with large-scale social data sources, we present a new social spam detection system,

named SpamHunter, to take advantage of the spam correlation among distributed

data sources for efficient large-scale social spam detection. SpamHunter implements

multiple groups, where each group contains a DHT-based functional tree that jointly

36

Server-Overlay Deploy Group management

Distributed data servers

DHT-based

overlay

Tree-structured groups

Online spam detection

Identify spam from
social streams

Group coordinations

Latest spam exchange

1
group_1group_1

3
5

2

4

Figure 4.1: The overview of the system design.

connecting multiple data sources (e.g., servers, datasets, etc.) to share the spam cor-

relations (e.g., updated spam features) in a distributed manner. The DHT-based

functional trees response to data delivery, spam identification, and correlation ex-

changes. Besides, the group-level coordination ensures multiple groups or clusters

can instantly exchange and share the correlated features during the processing, that

is, they collectively leverage the latest spam correlations to enhance the performance

of spam detection.

4.2 Design

4.2.1 Overview

Figure 4.1 shows the designed architecture of the SpamHunter system. SpamHunter

is built upon a peer-to-peer DHT-based Pastry overlay [RD01]. The overlay is

utilized to orchestrate large-scale distributed social servers. As shown in the first

37

step of Figure 4.1, these data servers can be grouped by various kinds of features

(e.g., geo-location, topic tags, or institutions), and the large amount of servers are

connected to the DHT-based overlay. In the second step, SpamHunter creates a

functional tree upon Pastry for each group, where nodes jointly route around a

specific key (see details in subsection 4.2.2). The functional tree for each group will

respond to the primary workload during processing, for example, data dissemination,

spam detection, and results aggregation.

In the third step, SpamHunter deploys online social spam detection within the

group management. In each group, SpamHunter manages the functional tree to

fulfill the online social data processing. The root of the tree is responsible for the

data/model dissemination and in charge of the entire workflow. The distributed leaf

nodes will complete the processing of spam detection by following the root’s instruc-

tions by coordinating the classified models. The root of the tree also aggregates the

identified results from the following nodes, updates the spam dataset, and extracts

the latest spam. Furthermore, as shown in the fourth step of Figure 4.1, after the

online spam detection, multiple groups in SpamHunter will periodically exchange

and share the latest spam with others, so that all groups have a global view of

the newest social spam and then utilize the correlated new spam in the continuing

processing, as shown in the fifth step of the Figure 4.1.

Next, we will introduce the system’s functionality and implementations details.

We first introduce the deployment of SpamHunter and the group management. Then

we introduce the online social spam processing. Finally, we propose the group coor-

dination and communication in enhancing the detection performance by leveraging

the large-scale spam correlations.

38

DHT-based
Overlay

Multiple tree-
structured groups

hash(‘video’)

group(‘video’)

hash(‘pic’)

group(‘pic’)group(‘link’)

Groups of distributed servers

hash(‘link’)

Figure 4.2: The server-overlay structure and group management.

4.2.2 Group Management

We first present the details of the overlay in SpamHunter. SpamHunter is built

upon the peer-to-peer Pastry overlay [RD01], where each node has a unique 128-bit

nodeId with a nodeId space ranging from 0 ∼ 2128 − 1. Note that all nodeIds are

evenly distributed, so that the deployment of nodes can be flexibly scaled to a large

amount of instances. The message is the main link between nodes: nodes can route

messages towards a specific key, for example, the key can be a target nodeId, a

groupId, or a specific topic concatenates with a groupId. With the targeted key,

messages can be routed to the node which nodeId is numerically closest to the key

in dlog2bNe steps, where the default value of b is 4.

By leveraging Scribe [CDKR02], each node in SpamHunter can create a group

by a groupId. Typically, the groupId is obtained by hashing (SHA-1) the name of

the group with the name of its creator. Other nodes can randomly join a group by

routing a JOIN message towards the groupId as the key, which enables flexible group

39

membership. The nodeId of the rendezvous node in the group is closest in value

to the groupId. Each group constitutes a functional tree which creates valid paths

for the root to communicate with multiple layer nodes. The key idea is the use of

a DHT-based application-level multicast tree [CDKR02] to propagate data/model

replicas through the tree path, which has the advantage of not maintaining N point-

to-point connections for N leaf nodes. For example, assuming there are 7 nodes

jointly work as group ”video”, if hash(video + creator name) equals to EA34, the

node whose nodeId is closest to it, such like EA34 or EA35, will serve as the root of

the functional tree. The other six nodes will then subscribe to this tree and follow

the root node. Due to the tree structure, the tree root can multicast the messages,

instructions, or models to all leaf nodes in O(logN) hops.

SpamHunter Tree’s Functions. SpamHunter creates multiple groups to sup-

port the scalability of social data processing. Each group constitutes as a functional

tree, where the spam detection is fulfilled in this tree. As shown in Figure 4.3, the

group’s functional tree mainly has four functions: spam detection, aggregate func-

tion, spam extract, and external/inner tunnel. We next present the details of these

functions.

The spam detection is fulfilled by the coordination of the root and leaf nodes. In

the group’s tree, the tree root is in charge of the workflow of spam identification via

the inner tunnel in root and leaf. The root of the tree will build a spam detection

model by training the model using the training data set and then testing the model

using the test data set. In addition, it manages the processing workflow by propa-

gating instructions and models through the functional tree to the following branches

and leaf nodes. By following the instructions of the tree root, the leaf nodes com-

plete the pre-data processing and spam identification with the model. Details are

presented in subsection 4.2.3.

40

Leaf node

Node 12

streams

Spam detectionSpam detection

Inner tunnelInner tunnel

Aggregate funcAggregate func

Leaf node

Node 24

streams

Spam detectionSpam detection

Inner tunnelInner tunnel

Aggregate funcAggregate func

group_1's functional tree

Node 1

... ...

...

Spam extract

External/inner
tunnel

Aggregate funcAggregate func

Spam extract

External/inner
tunnel

Aggregate func

Figure 4.3: The DHT-based functional tree.

The SpamHunter functional tree supports aggregate function during the pro-

cessing to collect the interim results after spam detection. The tree branches and

middle-level nodes are able to jointly work with the tree root to fulfill the aggrega-

tion. We next use an example to present it. After the local social spam classifications

in the leaf nodes, batches of social logs are parsed as mappings from the content

(posts) to categorical tag (labels), i.e., (post 1, 0) and (post 2, 1) in leaf nodes (here

the tag 1 represents spam and the tag 0 represents non-spam). The leaf node will

first filter out the identified spam data, (i.e., the social data has been detected as

spam and marked with label 1), then sends the paired instances, e.g., (post i, 1), to

the upper layer via the deliver tunnel.

The third function supported in SpamHunter tree is the spam extract. After

results aggregation, the tree root will accumulate the latest spam posts from the

collected interim results and identify the prospected posts which are most highly

be spam. For example, in a specific case, when 6 servers’ interim results notify

41

that the social post post k as spam post, after the aggregation, the root will acquire

the final votes for this post as (post k, 6). The root node will extract this new

identified spam post and join this post into the new training dataset, a set of data

with identified spam and ham post which is used for creating spam models. After

the default batch size, the root node will generate a new dataset consisting of latest

spam posts and then periodically create a new spam model upon this dataset. After

that, the tree root will disseminate the newly trained model to all following nodes

in the continuing processing. Besides, when necessary, the tree root can multicast

to its nodes within the group, to notify them to empty their sliding windows and/or

synchronously start a new batch [XHL+18].

As shown in Figure 4.4, after the date processing in the tree-level, the exter-

nal tunnel ensures multiple groups’ roots exchanging and sharing the latest spam

posts at the runtime, which means that each group can leverage spam correlation

to enhance its own processing and get better performance. As mentioned earlier,

in order to allow distributed data servers to obtain a global view of spam informa-

tion, SpamHunter allows the root of the group to send its aggregated spam to the

roots of other peer groups. Details of data delivery among groups can be seen in

Section 4.2.2. Each group’s root can periodically update and exchange its extracted

spam data with other groups.

SpamHunter ensures the entire spam detection in flexible processing granular-

ity, including both globally large-scale data processing and locally distributed data

processing. To support multiple processing targets, such as high latency sensitivity

or good failure recovery, the functional tree is able to self-tune at the tree structure

level by adjusting the tree fan-out element n, with achieving 2n fan-outs per node.

Specifically, when the latency is the prime target of the users’ defined appli-

cations, SpamHunter can customize the depth of functional tree by adjusting the

42

fan-out element n. For instance, when 10b (i.e., b = 4) nodes exist in the system,

the original depth of the functional tree is log2b(10b). By adjusting the fan-out el-

ement from 4 (24) to 5 (25), the average depth of the tree can be pruned from 5

to 4. Consequently, the overall latency of root-to-leaf transmission will obtain 20%

decrement.

In another case, when the application is defined to require a strong failure recov-

ery, SpamHunter can tune to construct deeper functional trees to ensure this. Using

the same example above mentioned, SpamHunter can change the fan-out parameter

from 5 (25) to 4 (24), resulting in that the average tree’s depth increases from 4 to

5. A deeper tree can achieve more robust performance when multiple nodes’ fail.

This depends on the mechanism for failure recovery in SpamHunter: once a child

fails to receive a heartbeat message, it suspects its parent failed, and this node will

route the JOIN message towards its belonging groupId. SpamHunter then sends the

message to a new parent to repair the tree. When a tree has a small fan-out and a

large depth, the failure of one node can only affect the performances of the following

sub-agents, which fewer sub-agents (smaller fan-out) can reduce the deficiency due

to parent node’s failure.

4.2.3 Online Social Spam Detection

The SpamHunter leaf node is responsible for two functionality: (1) social raw log col-

lection and normalization and (2) local spam detection. Each leaf node collects the

social network logs (i.e., social posts, images, news, Tweets, and so on) from the dis-

tributed web servers. The leaf node can utilize the openly APIs (e.g., Twitter API,

Facebook API) to collect the online/real-time streaming social logs. The logs will be

collected from scripts and saved to the local server, which can be utilized next by the

43

group coordination

group_1's root

Node 1

Spam aggr

and extract

E
x
te

rn
e
l

tu
n
n
e

l

E
x
te

rn
e
l

tu
n
n
e

l

group_2's root

Node 32

Spam aggr

and extract

E
x
te

rn
e
l

tu
n
n
e

l

E
x
te

rn
e
l

tu
n
n
e

l

correlations

...
group_m

...
group_m

...
group_i

...
group_i

...
group_n

...
group_n

Figure 4.4: The group coordination in the system. Group 1’s root shares the spam
correlations with group 2’s root. Besides, the group 1’s root communicates with other
groups’ roots via the overlay.

leaf node that connected to this server. Furthermore, the leaf node will pre-process

and normalize the raw social logs into the same formatted separate set. The majority

of posts contain URLs, typically, to confuse the malicious URLs, spammers will add

white spaces and unicode characters into them [GHW+10]. This is a simple but effec-

tive way to bypass the filters that blacklist URLs only by simple string matching. In-

spired by [GHW+10], we de-confuse URLs by removing whitespace padding and nor-

malizing the encoded characters (e.g., “subsexvideo%26ip%3Dauto%26click%3D1”

becomes “subsexvideo&ip=auto&click=1”). For social contents, specifically, we re-

move punctuation, tokenize each word, and remove stopwords. We extract the tf-idf

values of the terms in each document. The tf-idf weight of the term represents the

frequency at which the term appears throughout the document [ZHC07].

After the data collection, SpamHunter leaf node will first normalize the original

data into unified formats. The SpamHunter leaf node extracts the posts’ contents

44

from the JSON formatted log. Then it divides these social data into same sized

datasets for the local online spam detection. Next, the leaf node will utilize the

trained spam model which is disseminated from SpamHunter root to complete the

local data processing task. Original data which consists of unprocessed social logs

without identified labels. After the spam classification with the trained model, an

identified label will be created to each instance of the original social logs (here 1

presents spam and 0 presents non-spam). Besides, the SpamHunter leaf node will

facilitate completing the results aggregation flow by sending intermediate results to

the upper layers. Note that the leaf nodes will instantly process the collected social

logs without long latency. Besides, they will follow the root’s instructions to clean

its slides and start new batches with the updated spam model.

The online social spam detection is completed by coordinating both tree-level and

group-level. The tree-level processing has been presented before, we next introduce

the group-level coordination in online processing, which primarily relies on group

communications.

4.2.4 Group Coordination

The group communications in SpamHunter are responsible for the main function

of spam correlated model update and data exchange among the entire detection.

We fulfill the group communication by implementing diffusion broadcasting group.

We now present the details of this functional component. SpamHunter group pro-

vides two major functions: multicast and anycast. Multicast is used to construct

a hierarchical functional tree, which acts as a fundamental frame for scalability in

SpamHunter. multicast allows messages or instructions can be delivered to all the

members in one group. As presented before, any nodes can create a group in the

45

overlay; and other nodes can flexibly join the group and then multicast messages

from the rendezvous point to all member of the group along the functional tree.

Anycast can be used for group communications and model transmissions among

multiple groups. It is implemented by the distributed depth-first search (DFS).

Each node in the overlay (may in/out of group k) can anycast to the group k by

routing a message towards the group k ’s groupId [RD01]. The convergence of local

routing in Pastry guarantees that this message can highly reach a group member

near the sender’s nodeId. Anycast can also be used to serve the communications

between multiple groups, such as exchanging the updated dataset and exploring the

spam correlations among them.

SpamHunter supports group-level communications to allow multiple groups to

exchange their updated models to enhance the final performances. Once a group

finishes its whole processing in the leaf nodes, the root node aggregates the results

that contain the newest spam information and then updates its model. Further,

root nodes in groups exchange the updated models by disseminating their updated

models to other peer-groups. Then all groups own the newest models from other

groups and can utilize the new models in the continuing processing.

SpamHunter originally supports star group that allows each root of one group

anycasts the updated model to other groups. Given a graph G with N nodes, one

root needs to send n − 1 messages during one round time. In this case, SpamHunter

group has to send out m = 1/2×n×(n−1) messages which takes O(n2) time. To di-

minish the group communication latency, we design diffusion group in SpamHunter.

We now present the details of this type of group communication.

The diffusion group communication lies in: each root node in a group holds a

table where contains the model version and the original group, which denotes as a

<groupID, versionNum>. The root within updated model in one group randomly

46

chooses two other groups to disseminate the model with the new version number.

The root of these two groups will check its model table to see if the current received

model is the latest one. If the versionNum is larger than the value in the table,

they will save the model and update the model table with the new version number.

If not, they will return a message to the original group to notify they already own

the newest one. These two roots will act as new propagators and begin to deliver

the latest model to other groups. Finally, all groups’ roots will receive the updated

model and update their model tables. It’s easy to refer that the number of rounds

to propagate a single update model to all groups is O(logn), where n is the number

of groups in SpamHunter.

4.3 Evaluation

The experimental evaluation of the system is carried out with online real-world

streaming data from social media. We utilize the data which is collected from

Twitter streaming APIs [XHL+18]. We manually labeled the dataset for examining

the performance of spam detection. These data were labeled based on the posts’

URL, content, and Twitter official identifications. The dataset contains 60,000 posts

which including of 43,897 ham posts and 26,100 spam posts. The application’s

purpose is to identify social spam posts, which produces predicted labels from online

data streams via the system. Note that near 1’000,000 posts are used for evaluating

the scalability of the system.

Experiments are conducted on a testbed of 10,000 nodes hosted by 10 servers.

Each server has a 3.4GHz CPU, 4G of memory and 30 GB hard drives. Our evalu-

ations mainly answer the following questions:

47

• What are the performances of system metrics in the scale, such as the delivery

and aggregation latency, functional tree construction latency, and runtime

overhead (Sec. 4.3.1)?

• What are the performances of group coordination and online spam detection

by utilizing the spam correlations (Sec. 4.3.2)?

4.3.1 System Performances with Scalability

SpamHunter achieves effective spam detection in large-scale online social data sources,

therefore, scalability is a major part of the overall evaluation. To evaluate SpamHunter,

we deploy the system with the nodes ranging from 1,000 to 10,000, which consists

of ten groups (functional trees) in the cluster of servers.

SpamHunter implements functional tree to complete the local distributed social

spam detection, which means that the functionality of the tree directly affects the

final performance of the process. We first look at the tree paths in the group. The

functional tree responses for the message routing, delivery, and communications

between multiple layers of nodes, therefore, the average hops (steps) among node

communication should affect the performances within scaling to a large amount of

data sources. The evaluated average hops are shown in Figure 4.5. From this figure,

we can see that the average hops between multiple layers of nodes are consistent

when the system scales to large amount of nodes. The typical hops among the

functional tree are around 2 to 3. This demonstrates that SpamHunter can flexibly

and conveniently support large-scale data sources and servers, and can guarantee

the total communication between servers/instances in a relatively small distance,

which indicates the low latency in handling node interactions and communications.

48

1 0 0 0 5 0 0 0 1 0 0 0 01 0 0 0 1 0 0 0 00

2

4

6

Av
era

ge
 ho

ps
 in

 th
e t

ree

N u m b e r o f n o d e s

 h o p s

Figure 4.5: Model delivery latency.

The communication latency among SpamHunter is mainly from two parts: the

delivery latency from the root and the aggregations latency from the leaf. The deliv-

ery latency refers to the root node of the functional tree disseminating the messages,

data, spam model, and instructions to all following nodes. The aggregation latency

generally refers to the root node aggregates the interim results (i.e., identified social

spam posts) from the leaf nodes. The results of these two kinds of latency are shown

in the Figure 4.6. From this figure, we can observe that when scaling the nodes to

a large scale (up to 10,000), the latency is slowly increased with a few hundreds

of milliseconds. This is reasonable since a large amount of nodes will cause part

of delay in the message delivery and results aggregation. The difference between

these two kinds of latency is usually from the delivered data size, for example, the

delivered spam model is up to several megabytes, which causes the delivery latency

is higher than the result aggregation latency.

49

5 0 0 01 0 0 0 1 0 0 0 00

2 0 0

4 0 0

6 0 0

8 0 0

La
ten

cy
(m

s)

N u m b e r o f n o d e s

 a g g r e g a t e
 d e l i v e r

Figure 4.6: Latency of deliver and aggregate.

Figure 4.7: Results of spam detection.

Model F1 Precision Recall

RF 0.951 0.951 0.951
SVM 0.942 0.945 0.944
RT 0.927 0.928 0.927
Logistic 0.859 0.866 0.855

50

number of nodes. As shown in Figure 4.8, when the nodes scale from 1,000 to

10,000 (note that these are ten trees here, for each tree, the nodes scale from 100

to 1,000), the construction latency is linearly increased with the nodes’ increment.

The latency is usually from the hash of nodeId and the joining of the overlay. Note

that the functional tree only needs to be built once at the beginning, and it will not

cause other latency during the data processing.

 Further, we evaluate the runtime overhead of the system in deploying the func-

tionality. Results of the CPU and memory utilization are shown in Figure 4.9. The

values of utilization present the overhead in one server and here they leave out the

 Moreover, we evaluate the latency in constructing functional trees with a different

1 0 0 0 5 0 0 0 1 0 0 0 01 0 0 0 1 0 0 0 0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

0

3 5 0

La
ten

cy
of

tre
e c

on
str

uc
tio

n (
s)

N u m b e r o f n o d e s

 S p a m H u n t e r

Figure 4.8: Average latency in creating functional tree with different nodes.

processing of spam detection since the data processing will periodically cost lots

of computations and will make the overhead confusing in evaluating the functional

tree’s performances. From this figure, we can see that with the number of nodes

scales to 10,000, the runtime overhead linearly increases by 16% in CPU and 7% in

memory. It presents that SpamHunter achieves relatively lightweight overhead in

guaranteeing the tree and group functions at runtime. And it can be beneficial for

the large-scale data processing in the future.

4.3.2 Group Coordination and Spam Detection

SpamHunter supports multiple groups to exchange and share the latest spam posts

with each other. In this subsection, we present the experimental results of group

coordination and the performance of spam detection.

Figure 4.10 shows the latency of communication among multiple groups’ roots.

Here we use two sizes of dataset, with 1,000 and 5,000 posts separately. From

51

1 0 0 0 5 0 0 0 1 0 0 0 01 0 0 0 1 0 0 0 00

3

6

9

1 2

1 5

1 8
 C P U U t i l i z a t i o n
 M e m o r y U t i l i z a t i o n

N u m b e r o f n o d e s

CP
U u

tiliz
ati

on
 (%

)

0

3

6

9

1 2

1 5

1 8

Me
mo

ry
uti

liza
tio

n (
%)

Figure 4.9: RUntime overhead of CPU and memory utilization.

the figure, we can see that the latency of communication is consistent with the

increment of groups from 10 to 100. When deployed with a large number of groups,

for instance, 100 groups, the average latency has linear increment. In general, the

latency mainly depends on the size of the delivered data. When the root shares a

large size of spam posts, it will incur longer latency.

Table 4.7 presents the performances of spam detection in SpamHunter. We im-

plement several classical algorithms such like RF (Random Forest), SVM (Support

Vector Machine), RT (Random Tree), and Logistic in the detection with the labeled

dataset. We present the major parameters of the performance including F1, Preci-

sion, and Recall, where the F1 score responses for an important factor in measuring

the performance. From the table we can see the Random Forest (RF) achieves the

best performance with the F1 score near 95%. This presents that SpamHunter can

achieve good performances in dealing with the online real-world social spam data.

52

1 0 5 0 1 0 01 0 1 0 01 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

La
ten

cy
of

co
mm

un
ica

tio
n (

ms
)

N u m b e r o f f u n c t i o n a l t r e e s

 1 k d a t a
 5 k d a t a

Figure 4.10: Group communication latency.

4.4 Summary

Social spam has become an inevitable part of the current social world. Various

garbage activities surround people and cause huge negative impacts on both virtual

and real life. In this chapter, we present an online social spam detection system,

named SpamHunter [XHLG19], which leverages the spam correlations among large-

scale distributed data sources to enable efficient spam detection in a scalable manner.

SpamHunter supports multiple groups to manage social data from various topics,

areas, and geo-location. Each group forms a functional tree that guarantees flexible

management across a large number of data servers/instances. Moreover, group

coordination in SpamHunter allows multiple groups to exchange and share spam

correlations from distributed data sources, enabling efficient processing with the

latest social spam from online data streams.

53

CHAPTER 5

CUSTMOIZABLE STATE RECOVERY FOR SOCAIL STREAM

DATA PROCESSING

5.1 Introduction

Stream processing (e.g., social spam detection) is proposed and popularized as a

“technology like Hadoop but can give you results faster” [Per18], which lets users

query a continuous data stream and get results shortly after receiving the data.

Stream processing technology has become a critical building block of many sci-

entific applications, such as predicting tornadoes and storms from radar streams,

real-time imaging of cement hardening from x-ray beam data [BGK+17], and ana-

lyzing nanometer-scale dynamics of materials using x-ray photon correlation spec-

troscopy [Sut16]. Upcoming frameworks to accelerated discovery in material sci-

ences [TBH+19] will require distributed stream services in their workflows.

While in the early days stream operators were used for simple computations

which are stateless, such as filter, sort, today’s stream operators are capable of

powering more complex computations and evaluating more complex scientific logic

which are stateful, such as mapWithState. This requires today’s stream processing

systems to offer “state handling” – i.e., operators that can remember past input and

use it to influence the processing of upcoming input.

However, stream processing applications may be highly dynamic due to factors

such as variable data rates, network congestions, and application-specific data source

characteristics. Stream processing applications are also often subject to instabilities

and failures, where multiple streaming operators may fail at the same time, resulting

in severe state loss that may break or hinder the progress of scientific application

workflows.

54

Micro-promotion

application

Product-bundling

application

Filter

@Buys

Filter

@IPs

Out

Sort

#Clicks

Out

Out

1 0 1 1 0

Bloom filter hash

GroupBy-Aggregate

<Product, Click>

Filter

@Products

Filter

@Products

Click fraud detection

application

Fraud?

State

K1

K2

K3

V1

V2

V3

K1

K2

K3

V1

V2

V3

State

K1

K2

K3

V1

V2

V3

K1

K2

K3

V1

V2

V3

State

K1

K2

K3

V1

V2

V3

K1

K2

K3

V1

V2

V3

Figure 5.1: Real-world examples of stateful stream processing.

In this paper, we explore customizable state recovery mechanisms for protecting

large distributed states in stream processing systems, in order to cater the needs

for different stream processing applications that have different stream processing

computation models, state sizes, and network environments.

Figure 5.1 shows the real-world examples of stateful stream processing. When

we are shopping at e-commerce websites, our user activities (e.g., clicks, likes, buys,

reviews) are going to be continuously logged by these sites. On the backend, many

stateful stream applications are concurrently running on top of these user activity

streams to create insights and make business decisions. For example, Figure 5.1

top is a “micro-promotion” application, which analyzes the live page views of its

products, groupby-aggregates them, and then sorts them to find the top-k prod-

ucts with the most clicks to apply discount. Here the “state” is the stored knowl-

55

edge base of key-value pairs consisting of product names and corresponding clicks.

Figure 5.1 middle is a “product-bundling” application, which extracts users’ buys,

creates graphs of vertices and edges to get an idea of what products are usually

purchased together, then makes online recommendations such as “you like this, you

may also like that”. Here the “state” is the stored knowledge base of connected

graphs consisting of product names and bundlings. Figure 5.1 bottom is a “click

fraud-detection” application, which identifies ad clicks as fraudulent by deploying

a space-efficient probabilistic data structure like a Bloom filter [ag] to memorize

the IP addresses or the cookies of previous clicks, and comparing them to the new

coming click stream to detect duplicate clicks in a short time. Here the “state” is

the stored knowledge base in the Bloom filter.

However, we are facing significant challenges in managing these large distributed

states in stream processing systems.

• Challenge 1: how to recover from simultaneous failures of multiple stream op-

erators for a large number of concurrently running applications? Streaming

computations are, by nature, long-running. Their workloads, as well as the

runtime environment, may change in unpredictable ways. A stream compu-

tation is usually represented as a logical directed acyclic graph (DAG), where

vertices denote operators and edges denote data dependencies between them.

This means that if one operator fails and loses state, the dependent operators

may also fail and lose their states. What makes it particularly challenging is

that many stream processing applications run concurrently on the same HPC

infrastructure and consume the same data source. We need to be able to re-

cover lost state for large numbers of concurrently running applications on the

same HPC infrastructure.

56

• Challenge 2: how to customize the failure recovery mechanism for different

types of stream processing applications? For example, Spark Streaming based

systems [aa, CEF+17, ZDL+13, SGH+16] treat streaming computations as a

series of batch computations, whereas Storm based systems [ad, af, KBF+15]

treat streaming computations as a dataflow graph in which vertices asyn-

chronously process incoming records. The state size for batch applications is

usually large, whereas the state size for stream applications are usually small.

Some applications run on an HPC infrastructure that has abundant uploading

bandwidths, whereas some applications run on an HPC infrastructure that

has bandwidth constraints [GAB+15, PACT18]. Therefore, different stateful

stream processing applications need different state recovery mechanisms that

best meet their needs.

Over the last decade, there has been a boom of stream processing systems, includ-

ing Storm [ad], Trident [af], Spark Streaming [am], Borealis [AAB+05], TimeStream

[QHS+13], and S4 [NRNK10]. However, there is a lack of fast and scalable fail-

ure recovery mechanisms for protecting the large distributed states for these sys-

tems. The reasons are as follows: (1) they mostly inherit MapReduce’s “single

master/many workers” architecture, where the central master is responsible for all

scheduling activities. As such, they do not scale well to a large number of concur-

rently running applications due to the inherent centralization bottleneck; (2) these

systems offer failure recovery mainly through three approaches: replication recov-

ery [SHB04, BBMS05], checkpointing recovery [ad, af, QHS+13] and DStream-based

lineage recovery [aa, CEF+17, ZDL+13, SGH+16], which are either slow, resource-

expensive or fail to handle multiple simultaneous failures. Replication recovery

adds high hardware cost because multiple copies must concurrently run on dis-

tinct nodes for failover. In distributed streaming, checkpointing recovery is known

57

to be prohibitively expensive, leading users in many domains to disable this fea-

ture [MMI+13, ABB+16, PD10, PLGC15, GXD+14]. The third approach, DStream-

based lineage recovery, is slow when the lineage graph is long (i.e., the streaming

involves long sequences of operators) and falls short in handling multiple simultane-

ously failures; and (3) these systems are limited to a fixed computation model, e.g.,

asynchronous stream processing like Storm [ad], synchronous mini-batch processing

like Spark [am], and they do not have customizable state recovery mechanisms.

5.2 Problem Statement

We follow a generic stream query model [ABC+15b, CKE+15, LFQ+16, MMI+13,

ZDL+13]. A stream processing application’s query is a directed acyclic graph (DAG)

that specifies the dataflow, denoted as Q = (V, E). DAGs can be implemented

via many execution models, such as the partition/aggregate model which scales

out by partitioning tasks into many sub-tasks (e.g., Dryad [IBY+07]), the sequen-

tial/dependent model in which streams are processed sequentially and subsequent

streams depend on the results of previous ones (e.g., Storm [ad]), and the hybrid

model with sequential/dependent and partition/aggregate components (e.g., Spark

Streaming [am], Naiad [MMI+13]).

A vertex v ∈ V corresponds to a stream operator fv that consumes input streams

i from its predecessor (upstream) vertices and produces output streams o to its

successor (downstream) vertices (o = fv(i)). Each edge e ∈ E represents a data

flow between two vertices. The stream operator fv can be stateless or stateful. A

stateless operator consumes one input record at a time and outputs each result based

solely on that last input record. A stateful operator maintains state that captures

characteristics of some of the records processed so far and updates it with each new

58

input, such that the output takes into account both historical records and the new

input. Stateless operators are easy to recover because, by definition, input records

are handled independently, and upon failure we can simply start a new operator

instance. In contrast, stateful operators are much more difficult to recover.

The problem is: how to achieve a scalable and fast failure recovery framework

that protects large distributed states for concurrently running applications deploy-

ing diverse execution models? These applications run concurrently on a shared

distributed environment. Their operators are stateful. The applications comprise

several DAGs, deploy diverse execution models, and vary on their requirements of

CPU, memory, and network bandwidth.

5.3 Background

For maintaining and recovering state, our solution leverages peer-to-peer (P2P)

overlay networks, more specifically, the Distributed Hashtable(DHT)-based con-

sistent ring overlay with routing. The primary purpose of the P2P model (e.g.,

Pastry [RD01], Chord [SMK+01]) is to enable all nodes to work collaboratively to

deliver a specific service. In such model, all nodes have similar roles, both serving

and requesting services. For example, in BitTorrent [Coh03], if someone downloads

some file, the file is downloaded to her computer in bits and parts that come from

many other computers in the system that already have that file. At the same time,

the file is also sent (uploaded) from her computer to others who ask for it. Similarly

to BitTorrent, where many machines work collaboratively to download and upload

files, our solution enables all distributed nodes to work collaboratively to achieve

state management, relieving the task scheduler (often implemented as a centralized

59

service) from handling state. For this purpose, we leverage the following three data

structures from DHT-based consistent ring overlays:

• Routing table: The routing table consists of node characteristics (IP address,

Node Id) organized in rows by the length of common prefixes in the represen-

tation of a Node Id. When routing a message to nodeId, a node forwards it to

the node in its routing table with the longest prefix in common with nodeId.

State are associated with keys and nodes are responsible for a range of keys.

In a system where N nodes store state, it is guaranteed that queries can be

routed to the appropriate nodeId within O(logN) hops. We use the routing

table for locating state and in the line-structured recovery mechanism (Section

5.4.3).

• Leaf set : The leaf set for a node is a fixed number of nodes that have the nu-

merically closest nodeIds to that node. This assists nodes in routing messages

and in rebuilding routing tables when nodes fail. We use the leaf set for the

star-structured recovery mechanism (Section 5.4.2).

• Multicast : Any node in the overlay can create a communication group; other

nodes can join the group and then multicast message to all members of the

group. Multicast messages are disseminated through a multicast tree. We use

multicast for constructing in the tree-structured recovery (Section 5.4.4).

5.4 Design

In this section, we introduce the SR3 framework, which includes the system overview

(Sec. 5.4.1), the star-structured recovery mechanism (Sec. 5.4.2), the line-structured

recovery mechanism (Sec. 5.4.3), the tree-structured recovery mechanism (Sec. 5.4.4),

and how SR3 determines which mechanism to use (Sec. 5.4.5).

60

Stream application
runtime metrics

User defined
requirements

SR3 APIsSR3 APIs

L
a

y
e

r
1

L
a

y
e

r
2

 &
 3

State partitioning
and replication

L
a

y
e

r
4

Star-structured
recovery

Line-structured
recovery

Tree-structured
recovery

Shards

Figure 5.2: The overview of SR3 design.

5.4.1 The SR3 Overview

Figure 5.2 shows the overview of the SR3 system. It consists of several layers as

follows.

Layer 1: DHT-based overlay. In our system, we introduce a new abstract

concept called “node” to facilitate state management. Each stream operator is

associated with a node. The association is unrelated to where operators execute;

operators at the same vertex may be associated with different nodes. Each node

is randomly assigned a globally unique identifier known as the “nodeId” in a large

circular node ID space (e.g., 0-2128). We organize these nodes into a P2P overlay

network. The overlay is self-organizing and self-repairing.

61

Layer 2: State partitioning and replication. The node’s state is stored in an

in-memory hashtable data structure. Periodically, we divide each node’s state into m

shards, each of which is then replicated to n replicas and distributed to peer nodes.

The peer nodes are preferably chosen as to enable high bandwidth communication.

The parameters of m and n are determined by the adopted recovery mechanism

(we offer three alternatives) and application characteristics. Our design ensures

that when a failure happens, different sets of available shards can reconstruct failed

state in parallel, thereby reducing the failure recovery time while tolerate multiple

simultaneous node failures.

Layer 3: State recovery. Applications differ in state sizes, execution models

and QoS requirements such as latency and throughput. Some applications, such as

simulations that can adjust to data errors, can tolerate lower accuracy in exchange

for efficiency in accessing state and quick recovery other tasks, such as state visu-

alization for application debugging, cannot. We design three state recovery mech-

anisms to satisfy the needs from different applications. SR3 tracks user-defined re-

quirements (e.g., latency sensitivity) and the application’s characteristics (e.g., size

of the state) to select the most appropriate mechanism (see Sec. 5.4.2, Sec. 5.4.3

and Sec. 5.4.4 for more details).

Layer 4: SR3 API. SR3 is currently integrated into Apache Storm [ad]. We

provide a high-level API that exposes to users configuration parameters and enables

SR3’s portability to other stream processing systems.

5.4.2 The Star-structured Recovery Mechanism

Figure 5.3 shows a straightforward implementation of star-structured recovery mech-

anism. Each node has a routing table and a leaf set. In this example, the state of

62

Node N5

Make replica

Original state Shards

S0,0 S0,1 S0,2

S1,0 S1,1 S1,2

S2,0 S2,1 S2,2

K1

K2

K3

V1

V2

V3

K1

K2

K3

V1

V2

V3 N0

N1

N2

N6

N4

N5

N3

S0,0

S0,2

S1,0

Path of state recoveryPath of state recovery

S1,0S1,0S0,0 S2,0S2,0

N6

N0 N1 N2

S0,0

S1,0

S2,0

S0,0

S1,0

S2,0

S0,0

S1,0

S2,0

S2,0

S2,1

Aggregate
shards

N5 fails

S1,2

Figure 5.3: The star-structured recovery process.

node N5 is divided into 3 shards and each shard has two replicas. They are dis-

tributed to the leaf set nodes to ensure that the original state can be reconstructed

from 3 shards of the 9 total shards. As shown in Figure 5.3, the nine shards s0,0,

s0,1, ..., s2,2 are stored in N0, N1, ..., N5 respectively. When N5 fails, N0, N1, and

N2 upload s0,0, s1,0, and s2,0 to N6 to recompute the state of N5.

The benefits are: (1) the recovery process is fast. Different nodes from non-

overlapping leaf set nodes can work in parallel to recompute the lost state, which

is much faster than retrieving the state from the remote storage (e.g., HDFS). (2)

We achieve data locality because the leaf set contains nodes that are geographically

close to the original node (e.g., within the same rack in the same site) that have

abundant upload bandwidth.

63

5.4.3 The Line-structured Recovery Mechanism

The star-structured recovery works fine when the state is small. However, when the

state is large, the replacing node needs to do all the downloading and reconstructing

work, suffering a centralized bottleneck that increases the recovery latency, which

we aim to avoid. We design the line-structured state recovery to fix this issue, where

shards are transmitted and combined through a line covering the replacing node and

all providing nodes. As shown in Figure 5.4, the nine shards s0,0, s0,1, ..., s2,2 are

stored in N0, N1, ..., N5 respectively. When N5 fails, N3 uploads s2,0 to N0. N0

merges s2,0 with s1,0, reconstructs it, and then uploads the result to N1. N1 merges

the result with s0,0, reconstructs it, and uploads the final result to N6 to replace

of N5. The benefit is that, the downloading and computing load are well balanced

among all involved nodes which helps recover large state. However, it can only

recover one node at a time. When recovering multiple node failures, it may incur

multiple times of network traffic and recovery time. Besides, the line-structured

recovery disregards the bandwidth asymmetry in cloud environment.

5.4.4 The Tree-structured Recovery Mechanism

We design a shard-based parallel recovery mechanism to tolerate multiple node fail-

ures, where shards are transmitted and combined through a spanning tree covering

the replacing node and all providing nodes. This spanning tree is built on top of

a scalable application-level multicast infrastructure, called Scribe [CDKR02]. The

key idea is to divide the state into many shards (e.g., based on key ranges), and

use different sets of available replicas of shards scattered across leaf set nodes to

reconstruct unavailable shards in parallel. By doing this, all nodes storing available

shards can work as providing nodes and each of them only needs to participate in

64

Node N5

Make replica

Original state Shards

K1

K2

K3

V1

V2

V3

K1

K2

K3

V1

V2

V3

N0

N1

N2

N6

N5

N3

S0,0

S2,0

N3

S1,0

N0

S0,0

N1

state

N6

β2s2,0 β1s1,0+I2 β0s0,0+I1

S0,0
S1,0
S2,0

S0,0
S1,0
S2,0

S0,0 S0,1 S0,2
S1,0 S1,1 S1,2
S2,0 S2,1 S2,2

S0,0 S0,1 S0,2
S1,0 S1,1 S1,2
S2,0 S2,1 S2,2

N5 fails

S0,0
S1,0
S2,0

Recovered
state

S1,0

S2,0

Figure 5.4: The line-structured recovery process.

the recovery of some unavailable shards. This means a providing node only needs

to upload some of the shards it stores. Thus, the amount of data a providing node

uploads is reduced in a way that respects bandwidth asymmetry. The download-

ing and computing load are well balanced among all involved nodes without any

centralized bottleneck.

Figure 5.5 & Figure 5.6 show the recovery process from a single failure and two

failures in the tree-structured mechanism. N6 and N7 are the replacing nodes for

recovering the state when N4 and N5 fail. We can see that the state is divided into

3 shards, s0, s1 and s2. Each shard is further divided into 3 sub-shards and the

replication factor is two. So for one shard, it has total 6 sub-shards. For example,

s2,0,1 denotes the second replica of the first sub-shard in s2, and s2,1,0 denotes the

second replica of the second sub-shard in s2. In the tree-structured recovery process,

the providing node only needs to upload 3 out of the 6 total sub-shards to reconstruct

each shard. The recovery from multiple failures is similar with the recovery from a

65

N0

N1

N2

N8

N10

N7

N3

N4

N5

N9

S0,0,0
S1,0,0
S2,0,0

S0,0,1
S1,0,1
S2,0,1

S0,1,0
S1,1,0
S2,1,0

S0,1,1
S1,1,1
S2,1,1

S0,2,0
S1,2,0
S2,2,0

S0,2,1
S1,2,1
S2,2,1

S1
S2

S0

S1

S2

S0

N6 fails

Figure 5.5: The tree-structured recovery process for a single failure.

single failure. The difference is that every reconstructing node needs to reconstruct

multiple shards and sends them to multiple replacing nodes.

5.4.5 Mechanism Selection

Which mechanism to use? Determining the optimal state recovery mechanism

is difficult since it needs to consider various factors and application specifics. Thus,

we rely on a heuristic approach that adapts mechanism based on (1) state sizes,

(2) application QoS requirements, (3) network environments (e.g., bandwidth bot-

tleneck), and (4) computation models (e.g., synchronous micro-batch processing

model or asynchronous stream processing model) .

Figure 5.7 shows how we determine which mechanism to use. In the case of

stateless operator failures, it will simply resume the whole execution pipeline since

66

N0

N1

N2

N10

N7

N11
N6

...

N12

N13

N8

N9

S0,0,0
S1,0,0
S2,0,0

S0,1,0
S1,1,0
S2,1,0

S0,2,0
S1,2,0
S2,2,0

S0

S1

S0,0,0
S1,0,0
S2,0,0

S0,1,0
S1,1,0
S2,1,0

S0,2,0
S1,2,0
S2,2,0

S2

S2

S1

S1
S2

S2

S0

S0

S0

S1

N4 fails

N5 fails

Figure 5.6: The tree-structured recovery process for two failures.

there is no overhead for recovering states. In the case of stateful operator failures,

SR3’s state recovery mechanisms may not always outperform the traditional check-

pointing recovery if the state size is too small or if the application can tolerate the

checkpointing overhead of writing state to the remote storage. Thus, we use SR3

only with stateful operators for (1) applications that have strict QoS requirements

for low recovery latency and (2) high probability of simultaneous failures that will

involve large distributed states.

This information about application’s QoS requirements and state size is typi-

cally available as part of the job submission information. If the state size is small,

we choose star recovery in priority. On the other hand, if the state size is large,

we further consider if the execution is constrained by the network bottleneck. In

the case of abundant bandwidth, we choose line-structured recovery in priority by

67

Mechanism
selection
module

Small state
size

Star-structured
recovery

Large state
size Bandwidth

Constraint?

No

Line-structured
recovery

Yes Latency
Sensitive?

No

Yes

Tree_structured
recovery

Path length
Long

Short

Low
latency

Tree fan-out
Small

Large

Tolerate
many

concurrent
failures

Tolerate
multiple

concurrent
failures

(1) state sizes
(2) app QoS requirements
(3) network environments
(4) computation models

QoS
requirements

Relative
high latency

Figure 5.7: Determining which state recovery mechanism.

adjusting the recovery path length to deal with different sizes of state and latency

requirements. In the case of limited bandwidth, we further consider application’s

QoS requirements. If it is latency insensitive, we still choose line-structured recovery

in priority. Otherwise, we choose tree-structured recovery in priority by adjusting

the tree fan-out and the depth of each branch to deal with different sizes of state,

latency requirements, and concurrent failures that occur at the same time.

68

5.5 Evaluation

We evaluate SR3 on emulation testbed in a distributed network environment. We

explore its performance for a variety of real-world stream processing applications.

Our evaluation answers the following questions:

• Does SR3 improve the state save and recovery performance when deploying

different stream applications with various sizes of states?

• Does SR3 support flexible state recovery in handling various sizes of states

with different network environments?

• Does SR3 scale with the number of concurrently running stream applications?

• What is the runtime overhead of SR3?

5.5.1 Setup

Evaluation deployment. Emulation experiments are conducted on a testbed of 50

virtual machines (VMs) running Linux 3.10.0, all connected via Gigabit Ethernet.

Each virtual machine has 4 cores and 8GB of RAM, and 60GB disk. Specifically,

to evaluate SR3’s scalability, we use one JVM to emulate an SR3 node and emulate

up to totally 5,000 SR3 nodes in our testbed. Linux VMs are equipped with LANs

with high bandwidth diversity set by traffic control.

Baseline. We used Apache Storm [ad] as the stream processing engine baseline.

We use Apache Storm 2.0.0 [ae] configured with 10 TaskManagers, each with 4 slots

(maximum parallelism per operator = 36). We use Pastry 2.1 [ak] configured with

leaf set size of 24 and transport buffer size of 32MB.

Benchmark and applications. To demonstrate generality across diverse com-

putations and streaming operators, we evaluate SR3 in state recovery with the real-

69

Table 5.1: Real-world application’s dataset.
Application Dataset Size

Bargain Index Google Finance [ai] >1TB

Word Count Wikimedia Dumps [an] 9GB

Traffic Monitoring Dublin Bus Traces [ah] 4GB

8 1 6 3 2 6 4 1 2 80

1 0

2 0

3 0

4 0
Sta

te
rec

ov
ery

 tim
e (

s)

A p p l i c a t i o n s t a t e s i z e (M B)

 C h e c k p o i n t i n g
 S R 3 _ s t a r
 S R 3 _ l i n e
 S R 3 _ t r e e

Figure 5.8: The state recovery time by varying the size of state with no bandwidth
constraint.

world stream applications (see Table 5.1). These stream applications contain various

representative streaming operators: stateless streaming transformations (e.g., map,

filter), stateful operators (e.g., incremental join), and various window opera-

tors (e.g., sliding window, tumbling window and session window).

We compare SR3 with a state-of-the-art failure recovery solution: the check-

pointing recovery approach commonly used in TimeStream [QHS+13], Storm [ad],

and Trident [af]. We choose the checkpointing recovery approach as the baseline

approach because of two reasons: (1) the replication recovery already costs 2×

hardware, and (2) the DStream-based lineage recovery approach is not generalized

for users. Because DStream-based lineage recovery sacrifices programming model

transparency by forcing programmers to manage state using RDDs [ZCD+12].

70

8 1 6 3 2 6 4 1 2 80
3 0
6 0
9 0

1 2 0
1 5 0

Sta
te

rec
ov

ery
 tim

e (
s)

A p p l i c a t i o n s t a t e s i z e (M B)

 C h e c k p o i n t i n g
 S R 3 _ s t a r
 S R 3 _ l i n e
 S R 3 _ t r e e

Figure 5.9: The state recovery time by varying the size of state with bandwidth
constraint.

Metrics. We focus on the performance metrics such as latency of state save

and recovery. The latency measurement is separated by the state save and recovery.

The latency is evaluated by deploying different size of state shards and various size

of states of stream application. To evaluate the scalability of SR3, we measure

how much state shards are distributed in each node with deploying different stream

applications. To the runtime overhead of SR3, we focus on the CPU and memory

utilizations during the state recovery.

5.5.2 SR3 vs Checkpointing Recovery

We compare the state recovery time of SR3 with Storm by varying the size of state

with no bandwidth constraint. As Figure 5.8 shows, SR3 generally achieves 35.5%

∼ 65% less state recovery time compared to Storm. More specifically, when a state

is relatively small (<32MB), the star-structured recovery mechanism achieves the

fastest recovery. Line-structured recovery and tree-structured recovery take a little

71

8 1 6 3 2 6 4 1 2 80

2 0

4 0

6 0

8 0

Sta
te

sa
ve

 tim
e (

s)

A p p l i c a t i o n s t a t e s i z e (M B)

 C h e c k p o i n t i n g
 S R 3 _ s t a r
 S R 3 _ l i n e
 S R 3 _ t r e e

Figure 5.10: State save time by varying the size of state.

longer due to the introduction of redundant calculations in their state recovery

paths. When the state grows larger than a threshold (e.g., 64MB), line-structured

recovery leads to the longest recovery time due to the longest lineage path. On the

contrary, since tree-structured recovery has many paths for recovering at the same

time in parallel, the time is reduced.

Figure 5.9 shows the state recovery time comparison of SR3 with Storm under

bandwidth constraint. Note that the upload bandwidth is limited to 100Mb/s per

server. Results show that SR3 generally achieves 29.8% ∼ 42.5% less state recovery

time compared to Storm. More specifically, when the state is relatively large (>

64MB), due to the constraint of the upload bandwidth, the star-structured recovery

has a centralized bottleneck because all traffic flows to a single node, which leads to

the slowest state recovery. On the contrary, the line-structured recovery and tree-

structured recovery avoid this bottleneck, and thus are much faster. However, when

the state becomes extremely large, the tree-structured recovery performs the best

because it has many paths to recover state at the same time in parallel. This gives

72

1 2 3 40
1
2
3
4
5

Sta
te

rec
ov

ery
 tim

e (
s)

S t a r f a n - o u t b i t

 s t a t e = 8 M B
 s t a t e = 1 6 M B
 s t a t e = 3 2 M B

Figure 5.11: The state recovery time by varying star fan-out bit in SR3 star-
structured recovery.

us insight that we should decide which mechanism to use based on the application

characteristics, the network environment, and the size of state.

Figure 5.10 shows the state saving time comparison of SR3 with Storm. The state

saving cost includes the time cost for dividing the state into shards, replicating each

state, and then writing the shards into leaf set nodes. We write them into the leaf

set nodes serially to enable a fair comparison with the checkpointing recovery. We

can see that for a small state (<64MB), it takes more time for SR3 to save the

state, while for large state (>64MB), it takes less time for SR3 to save the state.

This is because, for small state, the overhead of partitioning and replication is not

negligible compared to the total time. However, in the case of large state, many

nodes in the leaf set take part in the partitioning and replication that balance the

workload.

Figure 5.11 shows the state recovery time by varying star fan-out bit in SR3

star-structured recovery. Results show that the state recovery time does not change

much as the star fan-out changes. This is because the depth of the star structure

73

4 8 1 6 3 2 6 40

2

4

6

8

Sta
te

reo
ve

ry
tim

e (
s)

L e n g t h o f r e c o v e r y p a t h

 s t a t e = 8 M B
 s t a t e = 1 6 M B
 s t a t e = 3 2 M B

Figure 5.12: The state recovery time by varying the path length in the SR3 line-
structured recovery.

always equals to one and thus the latency is only related to the state size and the

transmission speed. However, in extreme cases, e.g., very large state size, increasing

fan-out will share the pressure on bandwidth and significantly reduce latency.

Figure 5.12 shows the state recovery time by varying the path length in the SR3

line-structured recovery. Results show that the state recovery time increases as the

path length increases. This is because the longer the path, the more stages of the

computation required, and the higher the latency. However, when the state is too

large to be finished within one or two stages, we need a longer path that has many

stages to distribute the computation.

Figure 5.13 shows the state recovery time by varying the branch length in SR3

tree-structured recovery. Similar to Figure 5.12, given the same state size, the state

recovery time increases as the branch length increases. This is because the longer

the branch, the more stages of the computation required, and the higher the latency.

Figure 5.14 shows the state recovery time by varying the tree fan-out in SR3 tree-

structured recovery. Note that the tree fan-out n determines the fan-out of each node

74

4 8 1 6 3 2 6 4
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

Sta
te

rec
ov

ery
 tim

e (
s)

B r a n c h d e p t h

 s t a t e = 1 6 M B
 s t a t e = 3 2 M B

Figure 5.13: The state recovery time by varying the branch depth in SR3 tree-
structured recovery.

with 2n. Given the same state size, when the tree has larger fan-out bit, the depth

of the tree will be less and the recovery involves fewer layers, which introduces lower

latency for recovering the original state. In addition, larger fan-out trees can tolerate

more concurrent node failures or shard loss. Therefore, we should choose different

tree structures for different applications based on their latency requirements and

fault tolerance requirements.

Failure tolerance is evaluated with methods that use human intervention. To

cause simultaneous failures, we deliberately remove some shards of application’s

state in some nodes to evaluate how fast SR3 can recover the state. Figure 5.15

shows the average recovery time for different number of simultaneous failures in

the tree-structured recovery. The two curves show that the recovery time slightly

increase with increasing number of shards failures. This is because, when a shard

fails, the tree-structured mechanism can quickly retrieve the relevant shards from its

leaf set and rebuild the failed shard, and the tree architecture can evenly distribute

75

1 2 3 4
4

6

8

1 0

Sta
te

rec
ov

ery
 tim

e (
s)

T r e e f a n - o u t

 s t a t e = 6 4 M B
 s t a t e = 1 2 8 M B

Figure 5.14: The state recovery time by varying the tree fan-out in SR3 tree-
structured recovery.

the recovery overhead for recovering multiple simultaneous failures.

5.5.3 Load Balance

SR3 has attractive load balance property because it distributes state across all nodes

in the overlay, which is especially beneficial when deploying a large number of con-

current applications. We evaluate SR3’s load balance by deploying 500 stream

processing applications and 1,000 stream processing applications on 5,000 Pastry

nodes, respectively. The replication factor is set to be two. The state for each ap-

plication is 32 MB, and the size for each shard is 512KB. As shown in Figure 5.16,

each node has around 25 shards (red dash line) when deploying 500 applications.

As shown in Figure 5.17, each node has around 40 shards (red dash line) when de-

ploying 1,000 applications. This is because the P2P model of SR3’s star-structured

recovery, line-structured recovery and tree-structured recovery ensures that all peers

can participate in the state saving process and the state recovery process.

76

0 1 0 2 0 3 0 4 0

6

1 2

1 8

Sta
te

rec
ov

ery
 tim

e (
s)

N u m b e r o f s i m u l t a n e o u s f a i l u r e s

 s t a t e = 6 4 M B
 s t a t e = 1 2 8 M B

Figure 5.15: State recovery time with different number of failures.

Figure 5.18 shows the normal probability of the number of shards stored per

node. Results show that when deploying 500 applications, around 95% nodes store

less than 50 shards (25MB), and around 95% nodes store less than 100 shards

(50MB) when deploying 1,000 applications. This demonstrates that the large volume

of states from concurrently running applications are almost evenly distributed in

the overlay with no centralized bottleneck. This demonstrates that SR3 achieves

good load balance when recovering state for large numbers of concurrently running

applications.

5.5.4 Overhead Analysis

We evaluate SR3 runtime overhead and compare them with Storm’s checkpointing

approach.

CPU overhead. Figure 5.19 shows the per-node CPU runtime overhead com-

parison of SR3’s three state recovery mechanisms with Storm’s checkpointing ap-

proach. The CPU overhead of SR3 is around 26.8% ∼ 44.3% less than the check-

77

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 00
4 0
8 0

1 2 0
1 6 0
2 0 0

D e p l o y i n g 5 0 0 a p p s

o
f s

tat
e s

ha
rds

 pe
r n

od
e

N o d e I d
0

Figure 5.16: The distribution of state among the overlay when deploying 500 appli-
cations.

pointing recovery. This is because SR3 evenly distributes the recovery load across

many peer nodes which reduces the per-node overhead, while the checkpointing

recovery only relies on one or several centralized nodes for recovery.

Memory overhead. Figure 5.20 shows the per-node memory runtime overhead

comparison of SR3’s three state recovery mechanisms with Storm’s checkpointing

approach. The memory overhead of SR3 is around 30.9% ∼ 35.6% less than the

checkpointing recovery. This is because checkpointing recovery involves a coordi-

nation service such as Zookeeper that needs to continuously maintain connections

with all other nodes while SR3 avoids it.

Network overhead. Figure 5.21 shows the additional network traffic imposed

by SR3 with varying the number of nodes without managing any state (showing

purely the maintenance overhead). Results show that the number of bytes sent per

node increase only linearly, with an exponential increase in the number of nodes.

This is because most network traffics are ping-pong messages used for maintaining

the overlay and routing (e.g., initialization and keep alive). So in most cases, each

78

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 00
4 0
8 0

1 2 0
1 6 0
2 0 0

D e p l o y i n g 1 0 0 0 a p p s

o
f s

tat
e s

ha
rds

 pe
r n

od
e

N o d e I d
0

Figure 5.17: The distribution of state among the overlay when deploying 1,000
applications.

node pings to a limited set of nodes in the leaf set.

5.6 Summary

In this chapter, we have described and evaluated SR3, a state recovery framework

that provides fast and scalable failure recovery mechanisms for protecting large

distributed states in stream processing systems. Unlike existing failure recovery

approaches in modern stream processing systems, which rely on the central master

to perform replication recovery, checkpointing recovery, or DStream-based lineage

recovery, SR3 introduces a distributed state recovery framework by leveraging DHT-

based consistent ring overlay and routings. SR3 provides three different mechanisms

to cater the needs for different stream applications that have diverse computation

models and sizes of state.

79

0 50 100 150 200
#state shards of apps per node

0.0001

0.005

0.1

0.5

0.95

0.995

0.9999

N
or

m
al

 p
er

ce
nt

ile
s

Deploying 500 apps
Deploying 1000 apps
Reference line

Figure 5.18: Normal probability of the number of shards per node.

0 1 0 2 0 3 0 4 0 5 0
1 5
3 0
4 5
6 0
7 5
9 0

CP
U u

sa
ge

 (%
)

T i m e (s)

 C h e c k p o i n t i n g S R 3 _ s t a r
 S R 3 _ l i n e S R 3 _ t r e e

Figure 5.19: The runtime CPU overhead.

80

0 1 0 2 0 3 0 4 0 5 04 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

Me
mo

ry
us

ag
e (

MB
)

T i m e (s)

 C h e c k p o i n t i n g S R 3 _ s t a r
 S R 3 _ l i n e S R 3 _ t r e e

Figure 5.20: The runtime memory overhead.

2 0 4 0 8 0 1 6 0 3 2 0 6 4 0 1 2 8 00

3 0

6 0

9 0

1 2 0

By
tes

 pe
r n

od
e p

er
se

co
nd

N u m b e r o f n o d e s i n d a t a c e n t e r

 S R 3 _ s t a r
 S R 3 _ l i n e
 S R 3 _ t r e e

Figure 5.21: The network traffic overhead per node.

81

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

How should we design computing platform for supporting the next-generation social

stream data processing? This dissertation shows a possible solution perspective:

a distributed and easy-to-use system, with defined processing abstract, instantly

collaborates with the online data information, can provide useful knowledge that

people need and promising performances in functionality.

In this dissertation, three research works are introduced from different perspec-

tives of social stream data processing. More specifically, they mainly focus on the

system-level design in supporting scalable, online, and efficient social spam detec-

tion.

Specifically, Oases can effectively harvest and uncover deceptive online spam

posts from social communities, which is fulfilled by periodically updating the trained

classifier through a decentralized DHT-based tree overlay. Besides, to guarantee

online social spam detection, Oases actively filters out new spam and updates the

classifiers to all distributed leaf agents in a scalable way.

In SpamHunter, it leverages the spam correlations among large-scale distributed

data sources to enable efficient spam detection in a scalable manner. SpamHunter

supports multiple groups to manage social data from various topics, areas, and geo-

location. Each group forms a functional tree that guarantees flexible management

across a large number of data servers/instances. Moreover, group coordination al-

lows multiple groups to exchange and share spam correlations from distributed data

sources, enabling efficient processing with the latest social spam from online data

streams.

82

SR3 is a state recovery framework that provides fast and scalable failure re-

covery mechanisms for protecting large distributed states in the social stream data

processing/applications. SR3 introduces a distributed state recovery framework by

leveraging DHT-based consistent ring overlay and routings. SR3 provides three dif-

ferent mechanisms to cater the needs for different stream applications that have

diverse computation models and sizes of state.

In conclusion, the first work, a system named Oases, is introduced to support

online and scalable social spam detection in the system. The second work, a system

named SpamHunter, is introduced to achieve efficient social spam detection by lever-

aging the online spam correlations from large-scale social stream data. The third

work, SR3, is introduced to guarantee customizable state recovery in social stream

data processing. They correspond to specific but interrelated functions of next-

generation streaming data processing/applications, which can be used to support

more different streaming applications in different environments.

6.2 Lessons Learned

The importance of system support. Most of the previous research work fo-

cused on context, format, the platforms, or they explored useful information from

public information (such as accounts, users, or community activities). To a certain

extent, these can be very useful for detecting and identifying spam activities (such

as spam activities, social robots, or fake news). However, they did not consider

how to fully integrate the system to achieve the entire work. Most previous works

did not distinguish the differences between different platforms. For example, we

can identify and detect social spam activities from streaming systems, distributed

systems, centralized systems, batch systems, and parallel systems. However, how to

83

combine different applications with different platforms to make full use of the entire

system Performance has not received sufficient attention.

We witness that the modern systems such as Apache Spark [am], Storm [ad],

and Kafaka [ab] have greatly improved the performance of deployed applications and

many companies had transferred their computation and workload into these systems.

This is certain that more and more large scale computation and applications should

be allocated with appropriate system supports to ensure better performance and

create more profits.

The views from data. Undoubtedly, data, is the key to social applications.

The era of big data has brought a lot of excellent research work, and has continued

to have a profound impact on our daily lives. In my research projects, extracting

the appropriate social data for the system is a very important part, and it greatly

affects the overall performance. Not only is the context of the collected data, but we

should also pay more attention to data validity. Further, the pattern of the collected

data will determine the main methods applied in the system. For example, data

with contexts requires natural language processing models, and data composed of

spatial and social relationships requires graph-based models. Therefore, the design

of the system should consider the overall format of the data and the application to

adapt to the data deployed in the system.

Not limited to a single data source. Results from research projects provide

a valuable hint for the social data application, that is, the data source should not be

limited to a single source. Unlike previous work that only focused on a single data

source or platform, SpamHunter’s results show that social data from multiple sources

or platforms can greatly improve overall performance. This is because multiple data

sources can provide a comprehensive view of valuable information, such as spam

activity, and can improve performance.

84

Moreover, the research innovation of this project is not limited to social spam

detection. It can be combined with various streaming applications and other per-

spectives of big data processing. The core of the entire study is focused on sup-

porting scalable, efficient, and online streaming data applications, which means it

can be extended to any other streaming applications that pursue high throughput,

scalable processing, and high performance. In the next step, it is an interesting and

promising realization to seamlessly migrate our system to more scenarios.

We learn to know that the next-generation stream system should flexibly support

many different kinds of big data applications with minor or no modifications. Be-

sides, it still comprehensively includes diverse functionalities to accommodate many

kinds of applications with different requirements. Portability, flexibility, and avail-

ability should be considered in the design of system architecture and functionality.

Optimize the system bottleneck. One interesting lesson is how to carefully

design the system architecture and avoid the bottleneck in deploying with the dis-

tributed system. This is an important part when designing systems to support new

applications and scenarios.

Diverse systems may lead to different bottlenecks when faced with data appli-

cations such as social rumor detection, data trends analysis, and product review

analysis. For example, when deploying the data application in a centralized server

or platform, the computational overhead and processing latency of the server dom-

inate the overall performance; when deploying the application in a large-scale dis-

tributed system, the data consistency and process management are key parameters

for evaluation.

85

6.3 Future Work

Many open questions and challenges are needed further consideration and research

efforts in supporting scalable, efficient, and online social stream data applications,

as shown in following:

1. System-level design. Additional implementation steps can be developed,

e.g., to implement new specification/configuration APIs for end users, achieve

high-availability by exploring checkpointing/failover approaches, reduce run-

time overhead, all with goals of achieving both good performance and high

resource efficiency for large-scale online spam detection. Besides, how to inte-

grate the system performance with the spam detection model is an interesting

questions, e.g., balance the model costs and the system overhead, tolerate the

failed data processing in distributed servers, recover processing failures in each

server, etc.

An interesting question for future work is how to recovery the state from

stragglers in the social stream data processing. Stragglers are slow nodes.

Stragglers are inevitable in large clusters. The root causes for stragglers can be

disk failures, CPU contention, memory pressure, network congestion, or other

internal factors such as unfair input partitioning. Left unchecked, stragglers

will cause serious problems such as state inconsistency. We plan to explore

speculation approach to address this challenge, in which speculative backup

copies of slow tasks could be run in DHT’s leaf set nodes.

2. Exploiting deep neural networks. Deep neural networks (DNNs) have

been implemented in rumor and fake news detection without the traditionally

tedious and time-consuming feature engineering [MGM+16], and this leads to

promising applications in the social spam detection areas. In the future, we

86

will explore the roles of DNNs in the large-scale online social spam detection

and try to use the different characteristics of social data (e.g., time series,

temporal patterns, propagation characteristic, etc) to enhance the detection

accuracy and performances.

3. Detecting social spam across various data formats, platforms, sources,

and languages. The various kinds of social networks bring the prosperity of

the social life. Interesting, though various social networks or platforms have

tremendous differences in the data/content formats, organization of accounts,

or languages, they have significant correlations and similarities in the specific

topics, news, headlines, pictures, and videos. Therefore, how to use these

kinds of correlations and similarities in the next-generation social spam detec-

tion system desires more research efforts in the future. Besides, system-level

design in dealing with large-scale online data streams from distributed sources

needs solid and well-rounded implementations and leaves many open problems

to be solved.

We hope that the continuous research experience of system support in streaming

data applications can help us solve these problems and challenges. We also wish

more research efforts can be conducted to design innovative next-generation big data

stream systems.

87

[aa] Apache flink. http://flink.apache.org/.

[ab] Apache kafka. http://kafka.apache.org/.

[ac] Apache samza. http://samza.apache.org/.

[ad] Apache storm. http://storm.apache.org/.

[ae] Apache storm 2.0.0. https://storm.apache.org/2019/05/30/storm200-

released.html.

[af] Apache trident. http://storm.apache.org/releases/current/Trident-

tutorial.html.

[ag] Bloom filter. https://en.wikipedia.org/wiki/Bloom filter.

[ah] Dublin bus gps sample data from dublin city council.

https://data.gov.ie/dataset/.

[ai] Google finance data api. http://finance.google.com/finance/feeds/.

[aj] Leveldb. https://github.com/google/leveldb/.

[ak] Pastry. https://www.freepastry.org/FreePastry/.

[al] Rocksdb. http://rocksdb.org/.

[am] Spark streaming. https://spark.apache.org/streaming/.

[an] Wikimedia dumps. https://dumps.wikimedia.org/.

[a15a] Almost 10% of twitter is spam, 2015. https://www.fastcompany.

com/3044485/almost-10-of-twitter-is-spam\%20from\%20your\

%20cite.

88

BIBLIOGRAPHY

[a15b] Social media today predictions for 2018, 2015. http://www.sileo.

com/social-spam/.

[a16] Getting real about fake news, 2016. https://www.kaggle.com/

mrisdal/fake-news/home.

[a18] Avoiding social spam hackers on facebook and twit-

ter, 2018. https://www.socialmediatoday.com/news/

social-media-today-predictions-for-2018-infographic/

513179/.

[AAB+05] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur

Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,

Anurag Maskey, Alex Rasin, Esther Ryvkina, et al. The design of the

borealis stream processing engine. In Cidr, volume 5, pages 277–289,

2005.

[ABB+13] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh

Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,

and Sam Whittle. Millwheel: fault-tolerant stream processing at in-

ternet scale. Proceedings of the VLDB Endowment, 6(11):1033–1044,

2013.

[ABB+16] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz,

Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and

Jennifer Widom. Stream: The stanford data stream management sys-

tem. In Data Stream Management, pages 317–336. Springer, 2016.

[ABC+15a] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael J Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel

89

Mills, Frances Perry, Eric Schmidt, et al. The dataflow model: a prac-

tical approach to balancing correctness, latency, and cost in massive-

scale, unbounded, out-of-order data processing. Proceedings of the

VLDB Endowment, 8(12):1792–1803, 2015.

[ABC+15b] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel

Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow

model: A practical approach to balancing correctness, latency, and

cost in massive-scale, unbounded, out-of-order data processing. Proc.

VLDB Endow., 8(12):1792–1803, August 2015.

[ACÇ+03] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,

Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tat-

bul, and Stan Zdonik. Aurora: a new model and architecture for data

stream management. the VLDB Journal, 12(2):120–139, 2003.

[AG17] Hunt Allcott and Matthew Gentzkow. Social media and fake news in

the 2016 election. Journal of Economic Perspectives, pages 211–36,

2017.

[BBMS05] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and

Michael Stonebraker. Fault-tolerance in the borealis distributed

stream processing system. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, pages 13–24. ACM,

2005.

[BGK+17] Tekin Bicer, Doga Gursoy, Rajkumar Kettimuthu, Ian T Foster, Bin

Ren, Vincent De Andrede, and Francesco De Carlo. Real-time data

90

analysis and autonomous steering of synchrotron light source exper-

iments. In 2017 IEEE 13th International Conference on e-Science

(e-Science), pages 59–68. IEEE, 2017.

[BML16] Janki Bhimani, Ningfang Mi, and Miriam Leeser. Performance predic-

tion techniques for scalable large data processing in distributed mpi

systems. In Performance Computing and Communications Conference

(IPCCC), 2016 IEEE 35th International, pages 1–2, 2016.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1), 2001.

[Bre19] Aurelien Breeden. Child abduction rumors lead to violence against

roma in france. https://www.nytimes.com/2019/03/28/world/

europe/roma-kidnap-rumors-france.html, March 2019.

[CALS17] Mauro Coletto, Luca Maria Aiello, Claudio Lucchese, and Fabrizio

Silvestri. Adult content consumption in online social networks. Social

Network Analysis and Mining, 7(1):28, 2017.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J

Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Samuel Madden, Vijayshankar Raman, Frederick Reiss, et al. Tele-

graphcq: Continuous dataflow processing for an uncertain world. In

Cidr, volume 2, page 4, 2003.

[CDKR02] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Row-

stron. Scribe: A large-scale and decentralized application-level mul-

ticast infrastructure. IEEE Journal on Selected Areas in communica-

tions, 20(8):1489–1499, 2002.

91

[CEF+17] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter,

and Kostas Tzoumas. State management in apache flink R©: consistent

stateful distributed stream processing. Proceedings of the VLDB En-

dowment, 10(12):1718–1729, 2017.

[CKE+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,

Seif Haridi, and Kostas Tzoumas. Apache Flink: Stream and Batch

Processing in a Single Engine. IEEE Data Eng. Bull., 38(4):28–38,

2015.

[CLQ11] Godwin Caruana, Maozhen Li, and Man Qi. A mapreduce based paral-

lel svm for large scale spam filtering. In Fuzzy Systems and Knowledge

Discovery (FSKD), 2011 Eighth International Conference on, pages

2659–2662, 2011.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent. In Workshop

on Economics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[CWZ+17] Chao Chen, Yu Wang, Jun Zhang, Yang Xiang, Wanlei Zhou, and

Geyong Min. Statistical features-based real-time detection of drifted

twitter spam. IEEE Transactions on Information Forensics and Secu-

rity, 12(4):914–925, 2017.

[DCG+17] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur,

Tony Savor, and Michael Strum. Optimizing space amplification in

rocksdb. In CIDR, volume 3, page 3, 2017.

[DLL+00] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and

Doug Balensiefen. Deployment issues for the ip multicast service and

architecture. IEEE network, 14(1):78–88, 2000.

92

[GAB+15] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappello, Yves

Robert, and Marc Snir. Scheduling the i/o of hpc applications un-

der congestion. In 2015 IEEE International Parallel and Distributed

Processing Symposium, pages 1013–1022. IEEE, 2015.

[GCL+12] Hongyu Gao, Yan Chen, Kathy Lee, Diana Palsetia, and Alok N

Choudhary. Towards online spam filtering in social networks. In NDSS,

volume 12, pages 1–16, 2012.

[GHW+10] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and

Ben Y Zhao. Detecting and characterizing social spam campaigns.

In Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, pages 35–47. ACM, 2010.

[GXD+14] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,

Michael J Franklin, and Ion Stoica. Graphx: Graph processing in

a distributed dataflow framework. In 11th Symposium on Operating

Systems Design and Implementation, pages 599–613, 2014.

[HBSD17] Torsten Hoefler, Amnon Barak, Amnon Shiloh, and Zvi Drezner. Cor-

rected gossip algorithms for fast reliable broadcast on unreliable sys-

tems. In Parallel and Distributed Processing Symposium (IPDPS),

pages 357–366, 2017.

[HSAC14] Liting Hu, Karsten Schwan, Hrishikesh Amur, and Xin Chen. Elf: Ef-

ficient lightweight fast stream processing at scale. In USENIX Annual

Technical Conference, pages 25–36, 2014.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. Dryad: distributed data-parallel programs from sequential

93

building blocks. In ACM SIGOPS operating systems review, volume 41,

pages 59–72. ACM, 2007.

[KBF+15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,

Christopher Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ra-

masamy, and Siddarth Taneja. Twitter heron: Stream processing at

scale. In Proceedings of the 2015 ACM SIGMOD International Con-

ference on Management of Data, pages 239–250. ACM, 2015.

[KI17] Imrul Kayes and Adriana Iamnitchi. Privacy and security in online

social networks: A survey. Online Social Networks and Media, pages

1–21, 2017.

[LCW10] Kyumin Lee, James Caverlee, and Steve Webb. Uncovering social

spammers: social honeypots+ machine learning. In Proceedings of the

33rd international ACM SIGIR conference on Research and develop-

ment in information retrieval, pages 435–442. ACM, 2010.

[LEC11] Kyumin Lee, Brian David Eoff, and James Caverlee. Seven months

with the devils: A long-term study of content polluters on twitter. In

ICWSM, 2011.

[LFQ+16] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei Xu, Sen Yang, Jin-

gren Zhou, and Lidong Zhou. STREAMSCOPE: Continuous Reliable

Distributed Processing of Big Data Streams. In Proceedings of the

13th Usenix Conference on Networked Systems Design and Implemen-

tation, NSDI’16, pages 439–453, Berkeley, CA, USA, 2016. USENIX

Association.

94

[LLP+12] Wang Lam, Lu Liu, Sts Prasad, Anand Rajaraman, Zoheb Vacheri,

and AnHai Doan. Muppet: Mapreduce-style processing of fast data.

Proceedings of the VLDB Endowment, 5(12):1814–1825, 2012.

[LXDS+20] Pinchao Liu, Hailu Xu, Dilma Da Silva, Qingyang Wang, Sarker Tanzir

Ahmed, and Liting Hu. Fp4s: Fragment-based parallel state recovery

for stateful stream applications. In 2020 IEEE International Parallel

and Distributed Processing Symposium. IEEE, 2020.

[MBMDS10] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R

De Supinski. Design, modeling, and evaluation of a scalable multi-level

checkpointing system. In SC’10: Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Network-

ing, Storage and Analysis, pages 1–11. IEEE, 2010.

[MGM+16] Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J Jansen,

Kam-Fai Wong, and Meeyoung Cha. Detecting rumors from mi-

croblogs with recurrent neural networks. In IJCAI, pages 3818–3824,

2016.

[MK10] Michael Mathioudakis and Nick Koudas. Twittermonitor: trend detec-

tion over the twitter stream. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, 2010.

[MMI+13] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Mart́ın Abadi. Naiad: a timely dataflow system. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, pages 439–455. ACM, 2013.

95

[NPP+17] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon

Bringhurst, Indranil Gupta, and Roy H Campbell. Samza: stateful

scalable stream processing at linkedin. Proceedings of the VLDB En-

dowment, 10(12):1634–1645, 2017.

[NRNK10] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari.

S4: Distributed stream computing platform. In 2010 IEEE Interna-

tional Conference on Data Mining Workshops, pages 170–177. IEEE,

2010.

[PACT18] Tapasya Patki, Emre Ates, Ayse Coskun, and J Thiagarajan. Un-

derstanding simultaneous impact of network qos and power on hpc

application performance. In Computational Reproducibility at Exas-

cale (CRE’18), Supercomputing Workshop, 2018.

[PD10] Daniel Peng and Frank Dabek. Large-scale incremental processing us-

ing distributed transactions and notifications. In Proceedings of the 9th

USENIX conference on Operating systems design and implementation,

pages 251–264, 2010.

[Per18] Shrinath Perera. A gentle introduction to stream processing.

https://medium.com/stream-processing/what-is-stream-processing-

1eadfca11b97, April 2018. Accessed in April 2020.

[PIP16] Daniel Pop, Gabriel Iuhasz, and Dana Petcu. Distributed platforms

and cloud services: Enabling machine learning for big data. In Data

Science and Big Data Computing, pages 139–159. Springer, 2016.

[PLGC15] Mayank Pundir, Luke M Leslie, Indranil Gupta, and Roy H Camp-

bell. Zorro: Zero-cost reactive failure recovery in distributed graph

96

processing. In Proceedings of the Sixth ACM Symposium on Cloud

Computing, pages 195–208. ACM, 2015.

[PZTH] Jian Pei, Bin Zhou, Zhaohui Tang, and Dylan Huang. Data mining

techniques for web spam detection. Simon Fras University Microsoft

Ad Center.

[QHS+13] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu,

Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. Timestream:

Reliable stream computation in the cloud. In Proceedings of the 8th

ACM European Conference on Computer Systems, pages 1–14. ACM,

2013.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentral-

ized object location, and routing for large-scale peer-to-peer systems.

In IFIP/ACM International Conference on Distributed Systems Plat-

forms and Open Distributed Processing, pages 329–350. Springer, 2001.

[Ris01] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI

workshop on empirical methods in AI, pages 41–46, 2001.

[SBJM17] Shweta Salaria, Kevin Brown, Hideyuki Jitsumoto, and Satoshi Mat-

suoka. Evaluation of hpc-big data applications using cloud platforms.

In Proceedings of the 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, pages 1053–1061, 2017.

[SGH+16] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant

Shenoy. Flint: Batch-interactive data-intensive processing on tran-

sient servers. In Proceedings of the Eleventh European Conference on

Computer Systems, page 6. ACM, 2016.

97

[SHB04] Mehul A Shah, Joseph M Hellerstein, and Eric Brewer. Highly avail-

able, fault-tolerant, parallel dataflows. In Proceedings of the 2004 ACM

SIGMOD international conference on Management of data, pages 827–

838. ACM, 2004.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and

Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. ACM SIGCOMM Computer Communication

Review, 31(4):149–160, 2001.

[SS16] Surendra Sedhai and Aixin Sun. Effect of spam on hashtag recommen-

dation for tweets. In Proceedings of the 25th International Conference

Companion on World Wide Web, pages 97–98, 2016.

[Sut16] Mark Sutton. Streaming data analysis tools to study structural dy-

namics of materials, August 2016.

[TBH+19] Anjana Talapatra, Shahin Boluki, Pejman Honarmandi, Alexandros

Solomou, Guang Zhao, Seyede Fatemeh Ghoreishi, Abhilash Molk-

eri, Douglas Allaire, Ankit Srivastava, Xiaoning Qian, et al. Experi-

ment design frameworks for accelerated discovery of targeted materials

across scales. Frontiers in Materials, 6:82, 2019.

[TGM+11] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song.

Design and evaluation of a real-time url spam filtering service. In

Security and Privacy (SP), 2011 IEEE Symposium on, pages 447–462,

2011.

[TLGP14] Kurt Thomas, Frank Li, Chris Grier, and Vern Paxson. Consequences

of connectivity: Characterizing account hijacking on twitter. In Pro-

98

ceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2014.

[VBC+14] Bimal Viswanath, Muhammad Ahmad Bashir, Mark Crovella, Saikat

Guha, Krishna P Gummadi, Balachander Krishnamurthy, and Alan

Mislove. Towards detecting anomalous user behavior in online social

networks. In USENIX Security Symposium, pages 223–238, 2014.

[VPO+17] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael

Armbrust, Ali Ghodsi, Michael J Franklin, Benjamin Recht, and Ion

Stoica. Drizzle: Fast and adaptable stream processing at scale. In

Proceedings of the 26th Symposium on Operating Systems Principles,

pages 374–389, 2017.

[VT16] Courtland VanDam and Pang-Ning Tan. Detecting hashtag hijack-

ing from twitter. In Proceedings of the 8th ACM Conference on Web

Science, pages 370–371. ACM, 2016.

[WIP14] De Wang, Danesh Irani, and Calton Pu. Spade: a social-spam ana-

lytics and detection framework. Social Network Analysis and Mining,

4(1), 2014.

[WP15] De Wang and Calton Pu. Bean: a behavior analysis approach of url

spam filtering in twitter. In Information Reuse and Integration (IRI),

2015 IEEE International Conference on, pages 403–410. IEEE, 2015.

[WZLP15] Bo Wang, Arkaitz Zubiaga, Maria Liakata, and Rob Procter. Mak-

ing the most of tweet-inherent features for social spam detection on

twitter. arXiv preprint arXiv:1503.07405, 2015.

99

[XGL+18] Hailu Xu, Boyuan Guan, Pinchao Liu, William Escudero, and Liting

Hu. Harnessing the nature of spam in scalable online social spam

detection. In 2018 IEEE International Conference on Big Data (Big

Data), pages 3733–3736. IEEE, 2018.

[XHL+18] Hailu Xu, Liting Hu, Pinchao Liu, Yao Xiao, Wentao Wang, Jai Dayal,

Qingyang Wang, and Yuzhe Tang. Oases: An online scalable spam

detection system for social networks. In 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD), pages 98–105, 2018.

[XHLG19] Hailu Xu, Liting Hu, Pinchao Liu, and Boyuan Guan. Exploiting the

spam correlations in scalable online social spam detection. In Inter-

national Conference on Cloud Computing, pages 146–160. Springer,

2019.

[XJTG15] Wei Xing, Wei Jie, Dimitrios Tsoumakos, and Moustafa Ghanem. A

network approach for managing and processing big cancer data in

clouds. Cluster Computing, 18(3):1285–1294, 2015.

[XSJ16] Hailu Xu, Weiqing Sun, and Ahmad Javaid. Efficient spam detection

across online social networks. In Big Data Analysis (ICBDA), 2016

IEEE International Conference on, pages 1–6, 2016.

[XZJ+16] Wei Xie, Feida Zhu, Jing Jiang, Ee-Peng Lim, and Ke Wang. Topics-

ketch: Real-time bursty topic detection from twitter. IEEE Transac-

tions on Knowledge and Data Engineering, pages 2216–2229, 2016.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and

Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction

100

for in-memory cluster computing. In Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation, pages

2–2. USENIX Association, 2012.

[ZDL+13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott

Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming

computation at scale. In Proceedings of the twenty-fourth ACM sym-

posium on operating systems principles, pages 423–438. ACM, 2013.

[ZHC07] Yue Zhang, Jason I Hong, and Lorrie F Cranor. Cantina: a content-

based approach to detecting phishing web sites. In Proceedings of the

16th international conference on World Wide Web, pages 639–648,

2007.

[zio19] Global enterprise spam filter market, 2019.

https://www.zionmarketresearch.com/report/

enterprise-spam-filter-market.

[ZLP+16] Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geraldine Wong Sak

Hoi, and Peter Tolmie. Analysing how people orient to and spread

rumours in social media by looking at conversational threads. PloS

one, 11(3), 2016.

[ZNJ+15] Xiang Zhu, Yuanping Nie, Songchang Jin, Aiping Li, and Yan Jia.

Spammer detection on online social networks based on logistic regres-

sion. In International Conference on Web-Age Information Manage-

ment, pages 29–40. Springer, 2015.

[ZRM15] Zhe Zhao, Paul Resnick, and Qiaozhu Mei. Enquiring minds: Early

detection of rumors in social media from enquiry posts. In Proceedings

101

of the 24th International Conference on World Wide Web, pages 1395–

1405, 2015.

[ZZC+15] Xianghan Zheng, Zhipeng Zeng, Zheyi Chen, Yuanlong Yu, and Chun-

ming Rong. Detecting spammers on social networks. Neurocomputing,

159:27–34, 2015.

[ZZPZ16] Rongda Zhu, Aston Zhang, Jian Peng, and Chengxiang Zhai. Exploit-

ing temporal divergence of topic distributions for event detection. In

Big Data (Big Data), 2016 IEEE International Conference on, pages

164–171. IEEE, 2016.

[ZZW+17] Daniel Yue Zhang, Chao Zheng, Dong Wang, Doug Thain, Chao

Huang, Xin Mu, and Greg Madey. Towards scalable and dynamic

social sensing using a distributed computing framework. In The

37th IEEE international conference on distributed computing systems

(ICDCS)., pages 966–976, 2017.

102

VITA

HAILU XU

 Born, Laiwu, Shangdong Province, China

2010-2014 B.S., Computer Science and Engineering

North China Electric Power University

Baoding, China

2014-2016 M.S., Computer Science, Department of Electrical

Engineering and Computer Science

 University of Toledo

Toledo, Ohio

Jan 2015 – May 2016 Research Assistant

Transportation Systems Research Laboratory Ohio

Department of Transportation, Federal Highway

Administration

University of Toledo

Aug 2016-May 2019 Research Assistant

Experimental and Virtualized Systems (ELVES) Research

Lab School of Computing & Information Sciences

Florida International University

2016-2020 Ph.D., Computer Science, School of Computing &

Information Sciences

Florida International University

Miami, Florida, USA

May 2019 – Aug 2019 Research Summer Internship

Lawerence Livermore National Laboratory

California, USA

103

1. Hailu Xu, Liting Hu, Pinchao Liu, and Boyuan Guan, “Exploiting the Spam

 Correlations in Scalable Online Social Spam Detection”, In Proceedings of the

 2019 International Conference on Cloud Computing (CLOUD), June 2019.

PUBLICATIONS

104

2. Hailu Xu, Murali Emani, Pei-Hung Lin, Liting Hu, and Chunhua Liao, “Ma-

 chine Learning Guided Optimal Use of GPU Unified Memory”, MCHPC ’19:

 Workshop on Memory Centric High Performance Computing, in conjunction

 with SC 19, 2019.

3. Hailu Xu, Liting Hu, Pinchao Liu, Yao Xiao, Wentao Wang, Jai Dayal, Qingyang

 Wang and Yuzhe Tang, ”Oases: An Online Scalable Spam Detection System

 for Social Networks”, 2018 IEEE International Conference on Cloud Comput-

 ing (IEEE CLOUD), June 2018.

4. Hailu Xu, Boyuan Guan, Pinchao Liu, William Escudero, and Liting Hu.

 ”Harnessing the Nature of Spam in Scalable Online Social Spam Detection”,

 2018 IEEE Big Data workshop on Big Social Media Data Management and

 Analysis, in conjunction with IEEE Big Data, 2018.

5. Pinchao Liu, Hailu Xu, Dilma Da Silva, Qingyang Wang, Sarker Tanzir Ahmed,

 and Liting Hu. ”FP4S: Fragment-based Parallel State Recovery for Stateful

 Stream Applications”, 34th IEEE International Parallel & Distributed Pro-

 cessing Symposium (IPDPS 2020).

6. Boyuan Guan, Liting Hu, Pinchao Liu, Hailu Xu, Jennifer Fu, Qingyang Wang,

 “dpSmart: A Flexible Group Based Recommendation Framework for Digital

 Repository Systems”, In Proceedings of the 2019 International Congress on

 Big Data (Big Data Congress), July 2019.

7. Pinchao Liu, Adnan Maruf, Farzana Beente Yusuf, Labiba Jahan, Hailu Xu,

 Boyuan Guan, Liting Hu, and Sitharama S. Iyengar, “Towards Adaptive

Replication for Hot/Cold Blocks in HDFS using MemCached”, In Proceedings

of 2019 International Conference on Data Intelligence and Security (ICDIS

2019), June 2019.

	Support Efficient, Scalable, and Online Social Spam Detection in System
	Recommended Citation

	Support Efficient, Scalable, and Online Social Spam Detection in System

