25 research outputs found

    Cubic graphs with large circumference deficit

    Full text link
    The circumference c(G)c(G) of a graph GG is the length of a longest cycle. By exploiting our recent results on resistance of snarks, we construct infinite classes of cyclically 44-, 55- and 66-edge-connected cubic graphs with circumference ratio c(G)/V(G)c(G)/|V(G)| bounded from above by 0.8760.876, 0.9600.960 and 0.9900.990, respectively. In contrast, the dominating cycle conjecture implies that the circumference ratio of a cyclically 44-edge-connected cubic graph is at least 0.750.75. In addition, we construct snarks with large girth and large circumference deficit, solving Problem 1 proposed in [J. H\"agglund and K. Markstr\"om, On stable cycles and cycle double covers of graphs with large circumference, Disc. Math. 312 (2012), 2540--2544]

    Maximum Δ\Delta-edge-colorable subgraphs of class II graphs

    Full text link
    A graph GG is class II, if its chromatic index is at least Δ+1\Delta+1. Let HH be a maximum Δ\Delta-edge-colorable subgraph of GG. The paper proves best possible lower bounds for E(H)E(G)\frac{|E(H)|}{|E(G)|}, and structural properties of maximum Δ\Delta-edge-colorable subgraphs. It is shown that every set of vertex-disjoint cycles of a class II graph with Δ3\Delta\geq3 can be extended to a maximum Δ\Delta-edge-colorable subgraph. Simple graphs have a maximum Δ\Delta-edge-colorable subgraph such that the complement is a matching. Furthermore, a maximum Δ\Delta-edge-colorable subgraph of a simple graph is always class I.Comment: 13 pages, 2 figures, the proof of the Lemma 1 is correcte

    Parsimonious Edge-coloring on Surfaces

    Full text link
    We correct a small error in a 1996 paper of Albertson and Haas, and extend their lower bound for the fraction of properly colorable edges of planar subcubic graphs that are simple, connected, bridgeless, and edge-maximal to other surface embeddings of subcubic graphs

    Contents

    Get PDF

    Measures of edge-uncolorability

    Get PDF
    The resistance r(G)r(G) of a graph GG is the minimum number of edges that have to be removed from GG to obtain a graph which is Δ(G)\Delta(G)-edge-colorable. The paper relates the resistance to other parameters that measure how far is a graph from being Δ\Delta-edge-colorable. The first part considers regular graphs and the relation of the resistance to structural properties in terms of 2-factors. The second part studies general (multi-) graphs GG. Let rv(G)r_v(G) be the minimum number of vertices that have to be removed from GG to obtain a class 1 graph. We show that r(G)rv(G)Δ(G)2\frac{r(G)}{r_v(G)} \leq \lfloor \frac{\Delta(G)}{2} \rfloor, and that this bound is best possible.Comment: 9 page
    corecore