957 research outputs found

    Multipartite fully-nonlocal quantum states

    Full text link
    We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinely) multipartite fully-nonlocal, are derived. These conditions allow us to identify all completely-connected graph states as multipartite fully-nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully-nonlocal.Comment: 5 pages, 1 figure. Version published in PRA. Note that it does not contain all the results from the previous version; these will be included in a later, more general, pape

    A framework for bounding nonlocality of state discrimination

    Full text link
    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper "Quantum nonlocality without entanglement" [BDF+99], we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the "rotated" domino states, resolving a long-standing open question [BDF+99].Comment: 33 pages, 7 figures, 1 tabl

    Hardy's criterion of nonlocality for mixed states

    Full text link
    We generalize Hardy's proof of nonlocality to the case of bipartite mixed statistical operators, and we exhibit a necessary condition which has to be satisfied by any given mixed state σ\sigma in order that a local and realistic hidden variable model exists which accounts for the quantum mechanical predictions implied by σ\sigma. Failure of this condition will imply both the impossibility of any local explanation of certain joint probability distributions in terms of hidden variables and the nonseparability of the considered mixed statistical operator. Our result can be also used to determine the maximum amount of noise, arising from imperfect experimental implementations of the original Hardy's proof of nonlocality, in presence of which it is still possible to put into evidence the nonlocal features of certain mixed states.Comment: 7 pages, RevTe

    Quantum correlations in spin models

    Full text link
    Bell nonlocality, entanglement and nonclassical correlations are different aspects of quantum correlations for a given state. There are many methods to measure nonclassical correlations. In this paper, nonclassical correlations in two-qubit spin models are measured by use of measurement-induced disturbance (MID) [Phys. Rev. A, 77, 022301 (2008)] and geometric measure of quantum discord (GQD) [Phys. Rev. Lett. 105, 190502 (2010)]. Their dependencies on external magnetic field, spin-spin coupling, and Dzyaloshinski-Moriya (DM) interaction are presented in detail. We also compare Bell nonlocality, entanglement measured by concurrence, MID and GQD and illustrate their different characteristics.Comment: 1 text and 5 eps figures, accepted by Annals of Physic
    corecore