1,161 research outputs found

    Healthy aims: developing new medical implants and diagnostic equipment

    Get PDF
    Healthy Aims is a €23-million, four-year project, funded under the EU’s Information Society Technology Sixth Framework program to develop intelligent medical implants and diagnostic systems (www.healthyaims.org). The project has 25 partners from 10 countries, including commercial, clinical, and research groups. This consortium represents a combination of disciplines to design and fabricate new medical devices and components as well as to test them in laboratories and subsequent clinical trials. The project focuses on medical implants for nerve stimulation and diagnostic equipment based on straingauge technology

    Temporal integration in cochlear implants and the effect of high pulse rates

    Get PDF
    Although cochlear implants (CIs) have proven to be an invaluable help for many people afflicted with severe hearing loss, there are still many hurdles left before a full restoration of hearing. A better understanding of how individual stimuli in a pulse train interact temporally to form a conjoined percept, and what effects the stimulation rate has on the percept of loudness will be beneficial for further improvements in the development of new coding strategies and thus in the quality of life of CI-wearers. Two experiments presented here deal on the topic of temporal integration with CIs, and raise the question of the effects of the high stimulation rates made possible by the broad spread of stimulation. To this effect, curves of equal loudness were measured as a function of pulse train length for different stimulation characteristics. In the first exploratory experiment, threshold and maximum acceptable loudness (MAL) were measured, and the existence and behaviour of the critical duration of integration in cochlear implants is discussed. In the second experiment, the effect of level was further investigated by including MAL measurements at shorter durations, as well as a line of equal loudness at a comfortable level. It is found that the amount of temporal integration (the slope of integration as a function of duration) is greatly decreased in electrical hearing compared to acoustic hearing. The higher stimulation rates seem to have a compensating effect on this, increasing the slope with increasing rate. The highest rates investigated here lead to slopes that are even comparable to those found in persons with normal hearing and hearing impaired. The rate also has an increasing effect on the dynamic range, which is otherwise taken to be a correlate of good performance. The values presented here point towards larger effects of rate on dynamic range than what has been found so far in the literature for more moderate ranges. While rate effects on threshold, dynamic range and integration slope seem to act uniformly for the different test subjects, the critical duration of integration varies strongly but in a non-consistent way, possibly reflecting more central, individual-specific effects. Additionally, measurements on the voltage spread of human CI-wearers are presented which are used to validate a 3D computational model of the human cochlea developed in our group. The theoretical model falls squarely inside of the distribution of measurements. A single, implant dependent voltage-offset seems to adequately explain most of the variability

    Operant measurement of auditory threshold in prelingually deaf users of cochlear implants: II

    Get PDF
    Two experiments evaluated an operant procedure for establishing stimulus control using auditory and electrical stimuli as a baseline for measuring the electrical current threshold of electrodes implanted in the cochlea. Twenty-one prelingually deaf children, users of cochlear implants, learned a Go/No Go auditory discrimination task (i.e., pressing a button in the presence of the stimulus but not in its absence). When the simple discrimination baseline became stable, the electrical current was manipulated in descending and ascending series according to an adapted staircase method. Thresholds were determined for three electrodes, one in each location in the cochlea (basal, medial, and apical). Stimulus control was maintained within a certain range of decreasing electrical current but was eventually disrupted. Increasing the current recovered stimulus control, thus allowing the determination of a range of electrical currents that could be defined as the threshold. The present study demonstrated the feasibility of the operant procedure combined with a psychophysical method for threshold assessment, thus contributing to the routine fitting and maintenance of cochlear implants within the limitations of a hospital setting.FAPESPConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNP

    On the mechanism of response latencies in auditory nerve fibers

    Get PDF
    Despite the structural differences of the middle and inner ears, the latency pattern in auditory nerve fibers to an identical sound has been found similar across numerous species. Studies have shown the similarity in remarkable species with distinct cochleae or even without a basilar membrane. This stimulus-, neuron-, and species- independent similarity of latency cannot be simply explained by the concept of cochlear traveling waves that is generally accepted as the main cause of the neural latency pattern. An original concept of Fourier pattern is defined, intended to characterize a feature of temporal processing—specifically phase encoding—that is not readily apparent in more conventional analyses. The pattern is created by marking the first amplitude maximum for each sinusoid component of the stimulus, to encode phase information. The hypothesis is that the hearing organ serves as a running analyzer whose output reflects synchronization of auditory neural activity consistent with the Fourier pattern. A combined research of experimental, correlational and meta-analysis approaches is used to test the hypothesis. Manipulations included phase encoding and stimuli to test their effects on the predicted latency pattern. Animal studies in the literature using the same stimulus were then compared to determine the degree of relationship. The results show that each marking accounts for a large percentage of a corresponding peak latency in the peristimulus-time histogram. For each of the stimuli considered, the latency predicted by the Fourier pattern is highly correlated with the observed latency in the auditory nerve fiber of representative species. The results suggest that the hearing organ analyzes not only amplitude spectrum but also phase information in Fourier analysis, to distribute the specific spikes among auditory nerve fibers and within a single unit. This phase-encoding mechanism in Fourier analysis is proposed to be the common mechanism that, in the face of species differences in peripheral auditory hardware, accounts for the considerable similarities across species in their latency-by-frequency functions, in turn assuring optimal phase encoding across species. Also, the mechanism has the potential to improve phase encoding of cochlear implants

    Investigating the Electrical Properties of Different Cochlear Implants.

    Get PDF
    AIM: This study characterises and compares electrical properties and current spread across four different makes of cochlear implants with differing electrode designs using a 3D-printed artificial cochlear model. BACKGROUND: Cochlear implants are currently limited by current spread within the cochlea, which causes low spectral resolution of auditory nerve stimulation. Different cochlear implant makes vary in electrode size, shape, number, and configuration. How these differences affect cochlear implant current spread and function is not well known. METHOD: Each cochlear implant was inserted into a linear cochlear model containing recording electrodes along its length. Biphasic monopolar stimulation of each implant electrode was carried out, and the resultant waveform and transimpedance matrix (TIM) data obtained from the recording electrodes. This was repeated with each implant rotated 180 degrees in the cochlea model to examine the effects of electrode orientation. Impedance spectroscopy was also carried out at the apex, middle, and base of the model. RESULTS: The four cochlear implants displayed similar TIM profiles and waveforms. One hundred eighty degrees rotation of each cochlear implant made little difference to the TIM profiles. Impedance spectroscopy demonstrated broad similarities in amplitude and phase across the implants, but exhibited differences in certain electrical parameters. CONCLUSION: Implants with different designs demonstrate similar electrical performance, regardless of electrode size and spacing or electrode array dimension. In addition, rotatory maneuvers during cochlear implantation surgery are unlikely to change implant impedance properties.The Wellcome Trust (204845/Z/16/Z), the Evelyn Trust, the Cambridge Hearing Trus

    Temporal integration in cochlear implants and the effect of high pulse rates

    Get PDF
    Although cochlear implants (CIs) have proven to be an invaluable help for many people afflicted with severe hearing loss, there are still many hurdles left before a full restoration of hearing. A better understanding of how individual stimuli in a pulse train interact temporally to form a conjoined percept, and what effects the stimulation rate has on the percept of loudness will be beneficial for further improvements in the development of new coding strategies and thus in the quality of life of CI-wearers. Two experiments presented here deal on the topic of temporal integration with CIs, and raise the question of the effects of the high stimulation rates made possible by the broad spread of stimulation. To this effect, curves of equal loudness were measured as a function of pulse train length for different stimulation characteristics. In the first exploratory experiment, threshold and maximum acceptable loudness (MAL) were measured, and the existence and behaviour of the critical duration of integration in cochlear implants is discussed. In the second experiment, the effect of level was further investigated by including MAL measurements at shorter durations, as well as a line of equal loudness at a comfortable level. It is found that the amount of temporal integration (the slope of integration as a function of duration) is greatly decreased in electrical hearing compared to acoustic hearing. The higher stimulation rates seem to have a compensating effect on this, increasing the slope with increasing rate. The highest rates investigated here lead to slopes that are even comparable to those found in persons with normal hearing and hearing impaired. The rate also has an increasing effect on the dynamic range, which is otherwise taken to be a correlate of good performance. The values presented here point towards larger effects of rate on dynamic range than what has been found so far in the literature for more moderate ranges. While rate effects on threshold, dynamic range and integration slope seem to act uniformly for the different test subjects, the critical duration of integration varies strongly but in a non-consistent way, possibly reflecting more central, individual-specific effects. Additionally, measurements on the voltage spread of human CI-wearers are presented which are used to validate a 3D computational model of the human cochlea developed in our group. The theoretical model falls squarely inside of the distribution of measurements. A single, implant dependent voltage-offset seems to adequately explain most of the variability

    Localization in Reverberation with Cochlear Implants

    Get PDF
    Users of bilateral cochlear implants (CIs) experience difficulties localizing sounds in reverberant rooms, even in rooms where normal-hearing listeners would hardly notice the reverberation. We measured the localization ability of seven bilateral CI users listening with their own devices in anechoic space and in a simulated reverberant room. To determine factors affecting performance in reverberant space we measured the sensitivity to interaural time differences (ITDs), interaural level differences (ILDs), and forward masking in the same participants using direct computer control of the electric stimulation in their CIs. Localization performance, quantified by the coefficient of determination r(2) and the root mean squared error, was significantly worse in the reverberant room than in anechoic conditions. Localization performance in the anechoic room, expressed as r(2), was best predicted by subject’s sensitivity to ILDs. However, the decrease in localization performance caused by reverberation was better predicted by the sensitivity to envelope ITDs measured on single electrode pairs, with a correlation coefficient of 0.92. The CI users who were highly sensitive to envelope ITDs also better maintained their localization ability in reverberant space. Results in the forward masking task added only marginally to the predictions of localization performance in both environments. The results indicate that envelope ITDs provided by CI processors support localization in reverberant space. Thus, methods that improve perceptual access to envelope ITDs could help improve localization with bilateral CIs in everyday listening situations
    • …
    corecore