69,471 research outputs found

    Investigating the effect of one year of learning to play a musical instrument on speech-in-noise perception and phonological short-term memory in 5-to-7-year-old children

    Get PDF
    The benefits in speech-in-noise perception, language and cognition brought about by extensive musical training in adults and children have been demonstrated in a number of cross-sectional studies. Therefore, this study aimed to investigate whether one year of school-delivered musical training, consisting of individual and group instrumental classes, was capable of producing advantages for speech-in-noise perception and phonological short-term memory in children tested in a simulated classroom environment. Forty-one children aged 5-7 years at the first measurement point participated in the study and either went to a music-focused or a sport-focused private school with an otherwise equivalent school curriculum. The children's ability to detect number and color words in noise was measured under a number of conditions including different masker types (speech-shaped noise, single-talker background) and under varying spatial combinations of target and masker (spatially collocated, spatially separated). Additionally, a cognitive factor essential to speech perception, namely phonological short-term memory, was assessed. Findings were unable to confirm that musical training of the frequency and duration administered was associated with a musicians' advantage for either speech in noise, under any of the masker or spatial conditions tested, or phonological short-term memory

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Modeling Mental Qualities

    Get PDF
    Conscious experiences are characterized by mental qualities, such as those involved in seeing red, feeling pain, or smelling cinnamon. The standard framework for modeling mental qualities represents them via points in geometrical spaces, where distances between points inversely correspond to degrees of phenomenal similarity. This paper argues that the standard framework is structurally inadequate and develops a new framework that is more powerful and flexible. The core problem for the standard framework is that it cannot capture precision structure: for example, consider the phenomenal contrast between seeing an object as crimson in foveal vision versus merely as red in peripheral vision. The solution I favor is to model mental qualities using regions, rather than points. I explain how this seemingly simple formal innovation not only provides a natural way of modeling precision, but also yields a variety of further theoretical fruits: it enables us to formulate novel hypotheses about the space and structures of mental qualities, formally differentiate two dimensions of phenomenal similarity, generate a quantitative model of the phenomenal sorites, and define a measure of discriminatory grain. A noteworthy consequence is that the structure of the mental qualities of conscious experiences is fundamentally different from the structure of the perceptible qualities of external objects

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality
    corecore