2 research outputs found

    A Multi-GNSS, Multifrequency, and Near-Real-Time Ionospheric TEC Monitoring System for South America

    Get PDF
    Taking advantage of the public Global Navigational Satellite Systems (GNSS) infrastructure in South America, an operational monitoring system for the total electron content (TEC) in the ionosphere has been developed. It incorporates data in near real time, from more than 90 GNSS satellites tracked by more than 200 ground stations. In turn, the system produces every 15 min a snapshot, that is a map, of the current state of the regional ionosphere, which is immediately available online. These maps could be employed, for example, to augment positioning with single-frequency GNSS receivers. They could also be combined with similar products in order to obtain weighted and reliable regional TEC maps, even in near real time. Most importantly, these products could be employed as data input in space environment forecasting and nowcasting models, given their very short latency of just a few minutes. In order to assess the response of the whole system to severe geomagnetic disturbances, the performance of the whole monitoring system during an actual geomagnetic storm has been investigated. The results suggest that the near-real-time system should be quite capable to monitor the regional TEC at a high temporal rate even under such conditions.Facultad de Ciencias Astron贸micas y Geof铆sicasConsejo Nacional de Investigaciones Cient铆ficas y T茅cnica

    Measurement of ionospheric TEC in spaceborne SAR Data

    Full text link
    The propagation of spaceborne radar signals operating at L-band frequency or below can be seriously affected by the ionosphere. At high states of solar activity, Faraday rotation (FR) and signal path delays disturb radar polarimetry and reduce resolution in range and azimuth. While these effects are negligible at X-band, FR and the frequency-dependent path delays can become seriously problematic starting at L-band. For quality assurance and calibration purposes, existing L-band or potential spaceborne P-band missions require the estimation of the ionospheric state before or during the data take. This paper introduces two approaches for measuring the ionospheric total electron content (TEC) from single-polarized spaceborne SAR data. The two methods are demonstrated using simulations. Both methods leverage knowledge of the frequency-dependent path delay through the ionosphere: The first estimates TEC from the phase error of the filter mismatch, while the second gauges path-delay differences between up and down chirps. FR, mean (direct current) offsets, and noise contributions are also considered in the simulations. Finally, possibilities for further methodological improvements are discussed
    corecore