5 research outputs found

    Novel Transistor Resistance Variation-based Physical Unclonable Functions with On-Chip Voltage-to-Digital Converter Designed for Use in Cryptographic and Authentication Applications

    Get PDF
    Security mechanisms such as encryption, authentication, and feature activation depend on the integrity of embedded secret keys. Currently, this keying material is stored as digital bitstrings in non-volatile memory on FPGAs and ASICs. However, secrets stored this way are not secure against a determined adversary, who can use specialized probing attacks to uncover the secret. Furthermore, storing these pre-determined bitstrings suffers from the disadvantage of not being able to generate the key only when needed. Physical Unclonable Functions (PUFs) have emerged as a superior alternative to this. A PUF is an embedded Integrated Circuit (IC) structure that is designed to leverage random variations in physical parameters of on-chip components as the source of entropy for generating random and unique bitstrings. PUFs also incorporate an on-chip infrastructure for measuring and digitizing these variations in order to produce bitstrings. Additionally, PUFs are designed to reproduce a bitstring on-demand and therefore eliminate the need for on-chip storage. In this work, two novel PUFs are presented that leverage the random variations observed in the resistance of transistors. A thorough analysis of the randomness, uniqueness and stability characteristics of the bitstrings generated by these PUFs is presented. All results shown are based on an exhaustive testing of a set of 63 chips designed with numerous copies of the PUFs on each chip and fabricated in a 90nm nine-metal layer technology. An on-chip voltage-to-digital conversion technique is also presented and tested on the set of 63 chips. Statistical results of the bitstrings generated by the on-chip digitization technique are compared with that of the voltage-derived bitstrings to evaluate the efficacy of the digitization technique. One of the most important quality metrics of the PUF and the on-chip voltage-to-digital converter, the stability, is evaluated through a lengthy temperature-voltage testing over the range of -40C to +85C and voltage variations of +/- 10% of the nominal supply voltage. The stability of both the bitstrings and the underlying physical parameters is evaluated for the PUFs using the data collected from the hardware experiments and supported with software simulations conducted on the devices. Several novel techniques are proposed and successfully tested that address known issues related to instability of PUFs to changing temperature and voltage conditions, thus rendering our PUFs more resilient to these changing conditions faced in practical use. Lastly, an analysis of the stability to changing temperature and voltage variations of a third PUF that leverages random variations in the resistance of the metal wires in the power and ground grids of a chip is also presented

    Efficient Monte Carlo Based Methods for Variability Aware Analysis and Optimization of Digital Circuits.

    Full text link
    Process variability is of increasing concern in modern nanometer-scale CMOS. The suitability of Monte Carlo based algorithms for efficient analysis and optimization of digital circuits under variability is explored in this work. Random sampling based Monte Carlo techniques incur high cost of computation, due to the large sample size required to achieve target accuracy. This motivates the need for intelligent sample selection techniques to reduce the number of samples. As these techniques depend on information about the system under analysis, there is a need to tailor the techniques to fit the specific application context. We propose efficient smart sampling based techniques for timing and leakage power consumption analysis of digital circuits. For the case of timing analysis, we show that the proposed method requires 23.8X fewer samples on average to achieve comparable accuracy as a random sampling approach, for benchmark circuits studied. It is further illustrated that the parallelism available in such techniques can be exploited using parallel machines, especially Graphics Processing Units. Here, we show that SH-QMC implemented on a Multi GPU is twice as fast as a single STA on a CPU for benchmark circuits considered. Next we study the possibility of using such information from statistical analysis to optimize digital circuits under variability, for example to achieve minimum area on silicon though gate sizing while meeting a timing constraint. Though several techniques to optimize circuits have been proposed in literature, it is not clear how much gains are obtained in these approaches specifically through utilization of statistical information. Therefore, an effective lower bound computation technique is proposed to enable efficient comparison of statistical design optimization techniques. It is shown that even techniques which use only limited statistical information can achieve results to within 10% of the proposed lower bound. We conclude that future optimization research should shift focus from use of more statistical information to achieving more efficiency and parallelism to obtain speed ups.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78936/1/tvvin_1.pd

    Measurement and analysis of variability in 45nm strained-Si CMOS technology

    No full text

    Characterization and mitigation of process variation in digital circuits and systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-166).Process variation threatens to negate a whole generation of scaling in advanced process technologies due to performance and power spreads of greater than 30-50%. Mitigating this impact requires a thorough understanding of the variation sources, magnitudes and spatial components at the device, circuit and architectural levels. This thesis explores the impacts of variation at each of these levels and evaluates techniques to alleviate them in the context of digital circuits and systems. At the device level, we propose isolation and measurement of variation in the intrinsic threshold voltage of a MOSFET using sub-threshold leakage currents. Analysis of the measured data, from a test-chip implemented on a 0. 18[mu]m CMOS process, indicates that variation in MOSFET threshold voltage is a truly random process dependent only on device dimensions. Further decomposition of the observed variation reveals no systematic within-die variation components nor any spatial correlation. A second test-chip capable of characterizing spatial variation in digital circuits is developed and implemented in a 90nm triple-well CMOS process. Measured variation results show that the within-die component of variation is small at high voltages but is an increasing fraction of the total variation as power-supply voltage decreases. Once again, the data shows no evidence of within-die spatial correlation and only weak systematic components. Evaluation of adaptive body-biasing and voltage scaling as variation mitigation techniques proves voltage scaling is more effective in performance modification with reduced impact to idle power compared to body-biasing.(cont.) Finally, the addition of power-supply voltages in a massively parallel multicore processor is explored to reduce the energy required to cope with process variation. An analytic optimization framework is developed and analyzed; using a custom simulation methodology, total energy of a hypothetical 1K-core processor based on the RAW core is reduced by 6-16% with the addition of only a single voltage. Analysis of yield versus required energy demonstrates that a combination of disabling poor-performing cores and additional power-supply voltages results in an optimal trade-off between performance and energy.by Nigel Anthony Drego.Ph.D
    corecore