1,138 research outputs found

    Computabilities of Validity and Satisfiability in Probability Logics over Finite and Countable Models

    Full text link
    The ϵ\epsilon-logic (which is called ϵ\epsilonE-logic in this paper) of Kuyper and Terwijn is a variant of first order logic with the same syntax, in which the models are equipped with probability measures and in which the ∀x\forall x quantifier is interpreted as "there exists a set AA of measure ≥1−ϵ\ge 1 - \epsilon such that for each x∈Ax \in A, ...." Previously, Kuyper and Terwijn proved that the general satisfiability and validity problems for this logic are, i) for rational ϵ∈(0,1)\epsilon \in (0, 1), respectively Σ11\Sigma^1_1-complete and Π11\Pi^1_1-hard, and ii) for ϵ=0\epsilon = 0, respectively decidable and Σ10\Sigma^0_1-complete. The adjective "general" here means "uniformly over all languages." We extend these results in the scenario of finite models. In particular, we show that the problems of satisfiability by and validity over finite models in ϵ\epsilonE-logic are, i) for rational ϵ∈(0,1)\epsilon \in (0, 1), respectively Σ10\Sigma^0_1- and Π10\Pi^0_1-complete, and ii) for ϵ=0\epsilon = 0, respectively decidable and Π10\Pi^0_1-complete. Although partial results toward the countable case are also achieved, the computability of ϵ\epsilonE-logic over countable models still remains largely unsolved. In addition, most of the results, of this paper and of Kuyper and Terwijn, do not apply to individual languages with a finite number of unary predicates. Reducing this requirement continues to be a major point of research. On the positive side, we derive the decidability of the corresponding problems for monadic relational languages --- equality- and function-free languages with finitely many unary and zero other predicates. This result holds for all three of the unrestricted, the countable, and the finite model cases. Applications in computational learning theory, weighted graphs, and neural networks are discussed in the context of these decidability and undecidability results.Comment: 47 pages, 4 tables. Comments welcome. Fixed errors found by Rutger Kuype

    Monadic second-order definable graph orderings

    Full text link
    We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages

    The succinctness of first-order logic on linear orders

    Full text link
    Succinctness is a natural measure for comparing the strength of different logics. Intuitively, a logic L_1 is more succinct than another logic L_2 if all properties that can be expressed in L_2 can be expressed in L_1 by formulas of (approximately) the same size, but some properties can be expressed in L_1 by (significantly) smaller formulas. We study the succinctness of logics on linear orders. Our first theorem is concerned with the finite variable fragments of first-order logic. We prove that: (i) Up to a polynomial factor, the 2- and the 3-variable fragments of first-order logic on linear orders have the same succinctness. (ii) The 4-variable fragment is exponentially more succinct than the 3-variable fragment. Our second main result compares the succinctness of first-order logic on linear orders with that of monadic second-order logic. We prove that the fragment of monadic second-order logic that has the same expressiveness as first-order logic on linear orders is non-elementarily more succinct than first-order logic

    Deciding First-Order Satisfiability when Universal and Existential Variables are Separated

    Full text link
    We introduce a new decidable fragment of first-order logic with equality, which strictly generalizes two already well-known ones -- the Bernays-Sch\"onfinkel-Ramsey (BSR) Fragment and the Monadic Fragment. The defining principle is the syntactic separation of universally quantified variables from existentially quantified ones at the level of atoms. Thus, our classification neither rests on restrictions on quantifier prefixes (as in the BSR case) nor on restrictions on the arity of predicate symbols (as in the monadic case). We demonstrate that the new fragment exhibits the finite model property and derive a non-elementary upper bound on the computing time required for deciding satisfiability in the new fragment. For the subfragment of prenex sentences with the quantifier prefix ∃∗∀∗∃∗\exists^* \forall^* \exists^* the satisfiability problem is shown to be complete for NEXPTIME. Finally, we discuss how automated reasoning procedures can take advantage of our results.Comment: Extended version of our LICS 2016 conference paper, 23 page

    Decidability Results for the Boundedness Problem

    Full text link
    We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula phi(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on phi is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations phi takes to reach its least fixed point, uniformly across all trees. We also identify the exact complexity of this problem. The proof uses automata-theoretic techniques. This key result extends, by means of model-theoretic interpretations, to show decidability of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow us to derive major known decidability results for boundedness for fragments of first-order logic as well as new ones

    The First-Order Theory of Sets with Cardinality Constraints is Decidable

    Full text link
    We show that the decidability of the first-order theory of the language that combines Boolean algebras of sets of uninterpreted elements with Presburger arithmetic operations. We thereby disprove a recent conjecture that this theory is undecidable. Our language allows relating the cardinalities of sets to the values of integer variables, and can distinguish finite and infinite sets. We use quantifier elimination to show the decidability and obtain an elementary upper bound on the complexity. Precise program analyses can use our decidability result to verify representation invariants of data structures that use an integer field to represent the number of stored elements.Comment: 18 page
    • …
    corecore