10 research outputs found

    MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation is regarded as a potential biomarker in the diagnosis and treatment of cancer. The relations between aberrant gene methylation and cancer development have been identified by a number of recent scientific studies. In a previous work, we used co-occurrences to mine those associations and compiled the MeInfoText 1.0 database. To reduce the amount of manual curation and improve the accuracy of relation extraction, we have now developed MeInfoText 2.0, which uses a machine learning-based approach to extract gene methylation-cancer relations.</p> <p>Description</p> <p>Two maximum entropy models are trained to predict if aberrant gene methylation is related to any type of cancer mentioned in the literature. After evaluation based on 10-fold cross-validation, the average precision/recall rates of the two models are 94.7/90.1 and 91.8/90% respectively. MeInfoText 2.0 provides the gene methylation profiles of different types of human cancer. The extracted relations with maximum probability, evidence sentences, and specific gene information are also retrievable. The database is available at <url>http://bws.iis.sinica.edu.tw:8081/MeInfoText2/</url>.</p> <p>Conclusion</p> <p>The previous version, MeInfoText, was developed by using association rules, whereas MeInfoText 2.0 is based on a new framework that combines machine learning, dictionary lookup and pattern matching for epigenetics information extraction. The results of experiments show that MeInfoText 2.0 outperforms existing tools in many respects. To the best of our knowledge, this is the first study that uses a hybrid approach to extract gene methylation-cancer relations. It is also the first attempt to develop a gene methylation and cancer relation corpus.</p

    MeInfoText: associated gene methylation and cancer information from text mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation is an important epigenetic modification of the genome. Abnormal DNA methylation may result in silencing of tumor suppressor genes and is common in a variety of human cancer cells. As more epigenetics research is published electronically, it is desirable to extract relevant information from biological literature. To facilitate epigenetics research, we have developed a database called MeInfoText to provide gene methylation information from text mining.</p> <p>Description</p> <p>MeInfoText presents comprehensive association information about gene methylation and cancer, the profile of gene methylation among human cancer types and the gene methylation profile of a specific cancer type, based on association mining from large amounts of literature. In addition, MeInfoText offers integrated protein-protein interaction and biological pathway information collected from the Internet. MeInfoText also provides pathway cluster information regarding to a set of genes which may contribute the development of cancer due to aberrant methylation. The extracted evidence with highlighted keywords and the gene names identified from each methylation-related abstract is also retrieved. The database is now available at <url>http://mit.lifescience.ntu.edu.tw/</url>.</p> <p>Conclusion</p> <p>MeInfoText is a unique database that provides comprehensive gene methylation and cancer association information. It will complement existing DNA methylation information and will be useful in epigenetics research and the prevention of cancer.</p

    Classification of proteins expression in some popular cancers for protein biomarkers identification

    Get PDF
    Recognition of the source and stage of cancer has always been one of the Issues of interest to scientists. On the other hand, cancer is the second leading cause of death worldwide after cardiovascular disease. According to the Global Burden of Disease Cancer Report In 2015, there were 17.5 million cancer cases worldwide and over 8.7 million cancer deaths. Based on the same report, breast cancer, TBL (tracheal, bronchus, and lung) cancer and colorectal cancer were the most common incidents. From another perspective, one of the requirements for the treatment of different cancers is early diagnosis in the early stages. With the end of the human genome project, molecular medicine moved to a step beyond the genome called "proteomics". Proteomic ideas play an important role in discovering cancer biomarkers for early diagnosis of disease, prediction and prognosis, identifying new drug goals, monitoring the effectiveness of treatment and personal therapy. Nowadays with new developments in mass spectrometry and bioinformatics, new biomarkers can be identified for different cancers. To analyze a cancer, identifying only one biomarker does not provide enough information for that cancer, but paying attention to changes in the level of expression of various proteins is valuable. In this paper, effective proteins for breast, lung and colorectal cancers, have been identified and classified. Biomarkers sparse in different articles are combined using Text Mining and reviewing articles that introduced a cancer biomarker. In fact, by examining changes in the expression of proteins in the cancerous tissue and considering their significant changes, they are referred to as cancer marker candidates for early diagnosis or even prediction of future illness. This research offers text mining algorithms to collect cancer biomarker's

    Linking genes to literature: text mining, information extraction, and retrieval applications for biology

    Get PDF
    Efficient access to information contained in online scientific literature collections is essential for life science research, playing a crucial role from the initial stage of experiment planning to the final interpretation and communication of the results. The biological literature also constitutes the main information source for manual literature curation used by expert-curated databases. Following the increasing popularity of web-based applications for analyzing biological data, new text-mining and information extraction strategies are being implemented. These systems exploit existing regularities in natural language to extract biologically relevant information from electronic texts automatically. The aim of the BioCreative challenge is to promote the development of such tools and to provide insight into their performance. This review presents a general introduction to the main characteristics and applications of currently available text-mining systems for life sciences in terms of the following: the type of biological information demands being addressed; the level of information granularity of both user queries and results; and the features and methods commonly exploited by these applications. The current trend in biomedical text mining points toward an increasing diversification in terms of application types and techniques, together with integration of domain-specific resources such as ontologies. Additional descriptions of some of the systems discussed here are available on the internet

    Text-mining of PubMed abstracts by natural language processing to create a public knowledge base on molecular mechanisms of bacterial enteropathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Enteropathogen Resource Integration Center (ERIC; <url>http://www.ericbrc.org</url>) has a goal of providing bioinformatics support for the scientific community researching enteropathogenic bacteria such as <it>Escherichia coli </it>and <it>Salmonella </it>spp. Rapid and accurate identification of experimental conclusions from the scientific literature is critical to support research in this field. Natural Language Processing (NLP), and in particular Information Extraction (IE) technology, can be a significant aid to this process.</p> <p>Description</p> <p>We have trained a powerful, state-of-the-art IE technology on a corpus of abstracts from the microbial literature in PubMed to automatically identify and categorize biologically relevant entities and predicative relations. These relations include: Genes/Gene Products and their Roles; Gene Mutations and the resulting Phenotypes; and Organisms and their associated Pathogenicity. Evaluations on blind datasets show an F-measure average of greater than 90% for entities (genes, operons, etc.) and over 70% for relations (gene/gene product to role, etc). This IE capability, combined with text indexing and relational database technologies, constitute the core of our recently deployed text mining application.</p> <p>Conclusion</p> <p>Our Text Mining application is available online on the ERIC website <url>http://www.ericbrc.org/portal/eric/articles</url>. The information retrieval interface displays a list of recently published enteropathogen literature abstracts, and also provides a search interface to execute custom queries by keyword, date range, etc. Upon selection, processed abstracts and the entities and relations extracted from them are retrieved from a relational database and marked up to highlight the entities and relations. The abstract also provides links from extracted genes and gene products to the ERIC Annotations database, thus providing access to comprehensive genomic annotations and adding value to both the text-mining and annotations systems.</p

    TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional Chinese Medicine (TCM), a complementary and alternative medical system in Western countries, has been used to treat various diseases over thousands of years in East Asian countries. In recent years, many herbal medicines were found to exhibit a variety of effects through regulating a wide range of gene expressions or protein activities. As available TCM data continue to accumulate rapidly, an urgent need for exploring these resources systematically is imperative, so as to effectively utilize the large volume of literature.</p> <p>Methods</p> <p>TCM, gene, disease, biological pathway and protein-protein interaction information were collected from public databases. For association discovery, the TCM names, gene names, disease names, TCM ingredients and effects were used to annotate the literature corpus obtained from PubMed. The concept to mine entity associations was based on hypothesis testing and collocation analysis. The annotated corpus was processed with natural language processing tools and rule-based approaches were applied to the sentences for extracting the relations between TCM effecters and effects.</p> <p>Results</p> <p>We developed a database, TCMGeneDIT, to provide association information about TCMs, genes, diseases, TCM effects and TCM ingredients mined from vast amount of biomedical literature. Integrated protein-protein interaction and biological pathways information are also available for exploring the regulations of genes associated with TCM curative effects. In addition, the transitive relationships among genes, TCMs and diseases could be inferred through the shared intermediates. Furthermore, TCMGeneDIT is useful in understanding the possible therapeutic mechanisms of TCMs via gene regulations and deducing synergistic or antagonistic contributions of the prescription components to the overall therapeutic effects. The database is now available at <url>http://tcm.lifescience.ntu.edu.tw/</url>.</p> <p>Conclusion</p> <p>TCMGeneDIT is a unique database that offers diverse association information on TCMs. This database integrates TCMs with biomedical studies that would facilitate clinical research and elucidate the possible therapeutic mechanisms of TCMs and gene regulations.</p

    Epigenetic mechanisms in the early life programming of obesity

    Get PDF
    PhD ThesisObesity presents a major public health burden with prevalence rising in both children and adults. This disorder is associated with many adverse health outcomes and improved understanding of the mechanisms is required to develop effective preventive and treatment strategies. It has been hypothesised that environmental exposures such as poor nutrition in utero and during the early post natal period can programme an individual to develop obesity in later life. These early life exposures can be ‘memorised’ by the cell in the form of epigenetic modifications, changes to the biochemical structure and function of DNA. Such modifications include DNA methylation, the addition of a methyl group to cytosine residues which is involved in the regulation of gene transcription. Epigenetic mechanisms therefore represent an attractive mechanism to explain developmental programming phenomena. The overarching aim of this study was to establish the mediating role of epigenetic processes in linking modifiable environmental exposures with subsequent risk of obesity. This was addressed through interrogation of animal models, through the development and application of bioinformatic approaches and through epidemiological investigation of human population studies. Tissue level DNA methylation patterns were investigated in hypothalamus using immunohistochemical staining. No significant differences were discernible between methylation levels in the hypothalami of control rodents when compared to hypothalami from rodents that had been exposed in utero to a dietary regimen that induces metabolic perturbation and obesity in offspring. Bioinformatic approaches were used to develop and apply an in silico workflow to interrogate gene expression dataset, in this instance from a rodent model of dietary manipulation in utero and early postnatal life. The purpose of this in silico interrogation was to identify loci that were strong candidates for epigenetic regulation of gene expression. Four genes, Esr1, Fxn, Igf2r and Rbl2 were identified and the levels of promoter methylation at these loci were assessed in rodent liver tissue from offspring of exposed and unexposed mothers using pyrosequencing. DNA methylation levels in Igf2r were observed to be higher in animals exposed to a maternal obesogenic diet

    Machine Learning Models for Deciphering Regulatory Mechanisms and Morphological Variations in Cancer

    Get PDF
    The exponential growth of multi-omics biological datasets is resulting in an emerging paradigm shift in fundamental biological research. In recent years, imaging and transcriptomics datasets are increasingly incorporated into biological studies, pushing biology further into the domain of data-intensive-sciences. New approaches and tools from statistics, computer science, and data engineering are profoundly influencing biological research. Harnessing this ever-growing deluge of multi-omics biological data requires the development of novel and creative computational approaches. In parallel, fundamental research in data sciences and Artificial Intelligence (AI) has advanced tremendously, allowing the scientific community to generate a massive amount of knowledge from data. Advances in Deep Learning (DL), in particular, are transforming many branches of engineering, science, and technology. Several of these methodologies have already been adapted for harnessing biological datasets; however, there is still a need to further adapt and tailor these techniques to new and emerging technologies. In this dissertation, we present computational algorithms and tools that we have developed to study gene-regulation and cellular morphology in cancer. The models and platforms that we have developed are general and widely applicable to several problems relating to dysregulation of gene expression in diseases. Our pipelines and software packages are disseminated in public repositories for larger scientific community use. This dissertation is organized in three main projects. In the first project, we present Causal Inference Engine (CIE), an integrated platform for the identification and interpretation of active regulators of transcriptional response. The platform offers visualization tools and pathway enrichment analysis to map predicted regulators to Reactome pathways. We provide a parallelized R-package for fast and flexible directional enrichment analysis to run the inference on custom regulatory networks. Next, we designed and developed MODEX, a fully automated text-mining system to extract and annotate causal regulatory interaction between Transcription Factors (TFs) and genes from the biomedical literature. MODEX uses putative TF-gene interactions derived from high-throughput ChIP-Seq or other experiments and seeks to collect evidence and meta-data in the biomedical literature to validate and annotate the interactions. MODEX is a complementary platform to CIE that provides auxiliary information on CIE inferred interactions by mining the literature. In the second project, we present a Convolutional Neural Network (CNN) classifier to perform a pan-cancer analysis of tumor morphology, and predict mutations in key genes. The main challenges were to determine morphological features underlying a genetic status and assess whether these features were common in other cancer types. We trained an Inception-v3 based model to predict TP53 mutation in five cancer types with the highest rate of TP53 mutations. We also performed a cross-classification analysis to assess shared morphological features across multiple cancer types. Further, we applied a similar methodology to classify HER2 status in breast cancer and predict response to treatment in HER2 positive samples. For this study, our training slides were manually annotated by expert pathologists to highlight Regions of Interest (ROIs) associated with HER2+/- tumor microenvironment. Our results indicated that there are strong morphological features associated with each tumor type. Moreover, our predictions highly agree with manual annotations in the test set, indicating the feasibility of our approach in devising an image-based diagnostic tool for HER2 status and treatment response prediction. We have validated our model using samples from an independent cohort, which demonstrates the generalizability of our approach. Finally, in the third project, we present an approach to use spatial transcriptomics data to predict spatially-resolved active gene regulatory mechanisms in tissues. Using spatial transcriptomics, we identified tissue regions with differentially expressed genes and applied our CIE methodology to predict active TFs that can potentially regulate the marker genes in the region. This project bridged the gap between inference of active regulators using molecular data and morphological studies using images. The results demonstrate a significant local pattern in TF activity across the tissue, indicating differential spatial-regulation in tissues. The results suggest that the integrative analysis of spatial transcriptomics data with CIE can capture discriminant features and identify localized TF-target links in the tissue
    corecore