5 research outputs found

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 904-93-C4169Maryland Procurement Office Contract MDA 903-94-C6071U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604MIT Lincoln Laboratory Advanced Concepts Program Contract CX-16335U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-018

    Improving Range Estimation of a 3D FLASH LADAR via Blind Deconvolution

    Get PDF
    The purpose of this research effort is to improve and characterize range estimation in a three-dimensional FLASH LAser Detection And Ranging (3D FLASH LADAR) by investigating spatial dimension blurring effects. The myriad of emerging applications for 3D FLASH LADAR both as primary and supplemental sensor necessitate superior performance including accurate range estimates. Along with range information, this sensor also provides an imaging or laser vision capability. Consequently, accurate range estimates would also greatly aid in image quality of a target or remote scene under interrogation. Unlike previous efforts, this research accounts for pixel coupling by defining the range image mathematical model as a convolution between the system spatial impulse response and the object (target or remote scene) at a particular range slice. Using this model, improved range estimation is possible by object restoration from the data observations. Object estimation is principally performed by deriving a blind deconvolution Generalized Expectation Maximization (GEM) algorithm with the range determined from the estimated object by a normalized correlation method. Theoretical derivations and simulation results are verified with experimental data of a bar target taken from a 3D FLASH LADAR system in a laboratory environment. Additionally, among other factors, range separation estimation variance is a function of two LADAR design parameters (range sampling interval and transmitted pulse-width), which can be optimized using the expected range resolution between two point sources. Using both CRB theory and an unbiased estimator, an investigation is accomplished that finds the optimal pulse-width for several range sampling scenarios using a range resolution metric

    A Nonparametric Approach to Segmentation of Ladar Images

    Get PDF
    The advent of advanced laser radar (ladar) systems that record full-waveform signal data has inspired numerous inquisitions which aspire to extract additional, previously unavailable, information about the illuminated scene from the collected data. The quality of the information, however, is often related to the limitations of the ladar camera used to collect the data. This research project uses full-waveform analysis of ladar signals, and basic principles of optics, to propose a new formulation for an accepted signal model. A new waveform model taking into account backscatter reflectance is the key to overcoming specific deficiencies of the ladar camera at hand, namely the ability to discern pulse-spreading effects of elongated targets. A concert of non-parametric statistics and familiar image processing methods are used to calculate the orientation angle of the illuminated objects, and the deficiency of the hardware is circumvented. Segmentation of the various ladar images performed as part of the angle estimation, and this is shown to be a new and effective strategy for analyzing the output of the AFIT ladar camera

    Using multiresolution range-profiled real imagery in a stastical object recognition system

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaves 144-146).by Asuman E. Koksal.M.S

    Maximum-likelihood multiresolution laser radar range imaging

    No full text
    corecore