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Abstract

The purpose of this research effort is to improve and charizet range estimation
in a three-dimensional FLASH LAser Detection And Rangin® BLASH LADAR) by
investigating spatial dimension blurring effects. The magrof emerging applications for
3D FLASH LADAR both as primary and supplemental sensor r&tae superior per-
formance including accurate range estimates. Along witlgeanformation, this sensor
also provides an imaging or laser vision capability. Consedly, accurate range estimates

would also greatly aid in image quality of a target or remaien& under interrogation.

Unlike previous efforts, this research accounts for pialpding by defining the
range image mathematical model as a 2D convolution betweesyistem spatial impulse
response and the object (target or remote scene) at a partinge slice. Using this model,
improved range estimation is possible by object restanafiom the data observations.
Object estimation is principally performed by deriving andldeconvolution Generalized
Expectation Maximization (GEM) algorithm with the rangeaetenined from the estimated
object by a normalized correlation method. Theoreticaivdéions and simulation results
are verified with experimental data of a bar target taken fad3® FLASH LADAR system
in a laboratory environment. Simulation examples show thatGEM object restoration
improves range estimation over the unprocessed data an@reWilter method by 75%
and 26% respectively. In the laboratory experiment, the Gibjdct restoration improves
range estimation by 34% and 18% over the unprocessed datsVemebr filter method

respectively.

This research also derives the Cramer-Rao bound (CRB) ge rseparation estima-
tion of two point sources interrogated by a 3D FLASH LADAR &ys. Using an unbiased
estimator, range separation estimation variance wasattdhrough simulation and com-
pared favorably to the range separation CRB theory. Thdtsesliow that the CRB does

indeed provide a lower bound on the range separation egtimedriance and that the es-



timator is nearly efficient. With respect to the estimataditional pixel-based estimators
like peak detection and matched filtering are biased bedheyeassume there is only one
target in the pixel. Therefore, an unbiased estimator wasgateaccounting for the possi-

bility of two targets within a single pixel.

Additionally, among other factors, the range separatiolBG&Ra function of two
LADAR design parameters (range sampling interval and trated pulse-width), which
can be optimized using the expected range resolution bativee point sources. Typi-
cally, a shorter transmitted pulse-width corresponds ttebeange resolution (the ability
to resolve two targets in range). Given a particular rangepsiag capability determined
by the receiver electronics, the CRB theory shows there igpdimal pulse-width where
a shorter pulse-width would increase estimation varianmetd the under-sampling of the
pulse and a longer pulse-width would degrade the resolvapalgility. Using both CRB
theory and simulation results, an investigation is accashpt that finds the optimal pulse-
width for several range sampling scenarios. For examplenga Gaussian received pulse
model sampled every 1.876 ns, both range separation CRBythed simulation predict
an optimal pulse-width standard deviation equal to 0.88Assthe speed of the optical re-
ceiver is increased, the range resolution is improved withreesponding narrower optimal
pulse-width attained by the ability to sufficiently sampleharter pulse-width. Conversely,
the optimal pulse-width is wider with slower electronicgman associated negative impact

on range resolution.
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IMPROVING RANGE ESTIMATION OF A
3-DIMENSIONAL FLASH LADAR

VIA BLIND DECONVOLUTION

|. Introduction

he ability to accurately view a remote scene has long beemshumilitary en-
T deavor. From primeval warriors using mountains or treese®tsoop formations
with their naked eye to early seafarers using primitiveapto assess ship capabilities or
harbor defenses to today’s combatants operating advamted ¢manned and unmanned
platforms) and imaging satellites to observe troop or H@ssiovements, the advantage to

the military that can accurately assess the remote baltléfées never been questioned.

With modern technology development, remote sensing haanaed and, in one par-
ticular sensor area, has bonded with another indispengalitary capability: RAdioDe-
tection And Ranging (RADAR). Since World War Il, RADAR capkly has been a critical
technology with respect to offensive and defensive cajigsiland missile defense. Ad-
vances in RADAR have steadily progressed since the earfctizfe use of RADAR by
Great Britain against Germany in the Battle of Britain. Hoee RADAR is fundamentally
limited in some ways by its operating wavelength in the eteohgnetic spectrum. One
of the latest advancements is in the field of RADAR is adaptireguse of lasers to the
ranging issue and developind-AserDetection And Ranging (LADAR) system. LADAR
allows for the benefit of a smaller operating wavelength.(eegolution and material inter-
action) and the directionality of laser transmissions @likare ideal for urban environment
interrogation) while still retaining the imaging and ramgibenefit of a traditional RADAR.
Just as there is no one branch of the military that can opéerdependently in the mod-
ern battlefield, a LADAR is not meant to be a panacea and ther@@plications where
RADAR is still preferred. Though, as the technology conéisto mature, LADAR will be

an invaluable contributor in imaging and ranging sensdesavailable to the warfighter.



Motivation for this research effort is accomplished in thtgapter by introducing
LADAR and explaining the importance of range estimatione@fics of the research con-
tributions are described with corresponding benefits. IFirnthe document organization is

given.
1.1 Motivation

The driving force behind this research endeavor is to adogaléstic physical model
for the return signals of a three-dimensional FLASH LAsetdagon And Ranging (3D
FLASH LADAR) and then develop methods of improving the masivunknown param-
eter from that model: range to target. More precise rangesurements aid intelligence
gathering, target recognition, mapping, imaging, objéms$sification, navigation, and pre-
cision strike capabilities. The trend towards computeilovisystems with active illumina-
tion necessitates the use of 3D FLASH LADARSs capable of rapidje data acquisition
with a wide enough field of view (FOV) to allow the operator @€ to an appropriate bat-
tlefield representation. By acquiring the remote sceneigrttanner, however, the sensor

will be negatively affected by the spatial blurring inheranthe image formation process.

The importance of being able to correctly range to the rerapt&onment is charac-

terized by General T. Michael Moseley in a 2007 CSAF whitegpap

The Air Force is often first to the fight and last to leave. Weeginique options
to all Joint Force Commanders. The Air Force must safeguardhbility to:
see anything on the face of the eartlngeit; observe or hold it at risk; supply,
rescue, support or destroy it; assess the effects; andisxglobal command
and control of all these activities. Rising to the 21st Cgntinallenge is not a
choice. It is our responsibility to bequeath a dominant Airde to Americas
joint team that will follow us in service to the Natio&7].

Unlike 3D scanning LADARSs that build a 3D scene by rasteringtiple laser scans
with a dwell required at each point, a 3D FLASH LADAR systenoguces a set of se-
guential two-dimensional (2D) images due to a fast range @ia&. shutter) resulting in a
three-dimensional data cube (spatial and range) of theteeguene. In reality, the sensor
captures a fourth dimension which is the photo-electromtdéor each volume element

(voxel). Each 2D range slice image contains the detectetbpdlectrons at each pixel for



a particular range. The photo-electron counts are dirgetiportional to the return signal
intensities incident upon the detector. Unique to the FLASYDAR sensors, each pixel
in the array detects its own attenuated and time-delayesioreof the transmitted signal.

Investigating pixel data, the blurring effects are evidarthe pixel’s received waveform.

3D FLASH LADAR range estimation errors of a remote scene aaundue to sev-
eral system factors including the optical spatial impuésponse (diffraction limited, atmo-
spheric turbulence), detector blurring, photon noise,raadout noise. These factors either
cause the scene’s intensity to spread, or blur, acrossspixeldd unwanted and disruptive
noise effects. The intensity spreading and noise corraptsdrrect pixel intensities at each
range gate by mixing intensities with neighboring pixelsrtéby providing false intensity
values and therefore incorrect photon counts to the rartgeagsr. Without blur and noise
compensation, the range estimates would then be inacdoratdegree depending on the

blur and noise severity.

3D FLASH LADAR'’s popularity is increasing due to its smaltsj rapid image ac-
quisition, and range resolving capabilities. There aress\examples that highlight appli-
cations in practical situations: As part of its return tohligfforts following the Columbia
disaster, NASA uses a 3D imaging LADAR to inspect the intggef the Space Shuttle’s
Thermal Protection System prior to reentdp]. Sandia National Laboratory developed a
counter-sniper 3D coherent detection LADAR sensor desigodrace the source of the

bullet by optical signature and bullet trajectory analy3i4.

Augmenting the FLASH technology to the LADAR'’s active semgscapability, the
possibilities of future technology include remote videeds from airborne or spaceborne
platforms to command and control centers, precise autonemavigation in GPS-denied
regions, autonomous precision strike with guided cruisssit@s or intelligent gravity mu-
nitions, and battlefield awareness in day/night conditimnsirborne or ground forces in

dynamic environments.



1.2 3D FLASH LADAR Research Contributions

1.2.1 Improving Range Estimation by Spatial Processinga(dr V) . Previ-
ous work in 3D FLASH LADAR has only modeled an ideal return peel and not the
real world effects of spatial blurrin@®], [38]. This research will enhance the model by
adding the spatial impulse response thereby consideritigeapixel’s signals in the range
estimation algorithm for a particular pixel. The benefitlmktresearch is for future imple-
mentation in an operational environment. Previously, agDesentation of a remote scene
was built by single-pixel LADAR scanners. Consequentlg sbanning 3D LADARSs have
limited spatial extents on each collect and do not see treetsffof spatial blurring. As
laser vision hardware improves, the development will treavdards FLASH systems that
capture scene data very rapidly over a large pixel arrayeiproper spatial sampling, this
method of data capture would see the effects of spatialibturithe spatial blurring would
contribute negatively to current methods of range estonaiecause each pixel’s return
waveform would interact with those of its neighboring psxeNew estimation solutions
must be developed that account for these blurring effeasearentially “deblur” the data
to increase range estimation performance. This reseaitdslibis enhanced model and
improves range estimation by spatially processing theulsiteg a well-known spatial filter

(deconvolution) and a novel object recovery algorithmn@ldeconvolution)56).

1.2.2 Unbiased Two Point Target Temporal and Spatial EdSom@hapterlV).
This contribution supports the CRB work from the previoustie®. Given the two target
model, conventional pixel-based estimators like peakatiete and matched filtering are
biased because they assume there is only target in the pikeltefore, an unbiased es-
timator was developed accounting for the possibility of tamets within a single pixel.
Based on a least sum squares approach, the ability to sofficiestimate the ranges and

amplitudes of two point targets is developed and verifiedetambiased.

1.2.3 Lower Bound on Range Separation Estimation VariaGtapterVIl) . An

important metric of a physical model with several unknovatsiunderstand the optimal es-



timator variance achievable regardless of the specifimesion scheme. The Cramer-Rao
Bound (CRB) provides the lower bound on estimator variameengan unbiased estimator.
Previous CRB work in 3D FLASH LADAR adopted a physical modelttdid not account
for the spatial blurring between pixel8][ [38]. The benefit of including these spatial
effects in the CRB development is that the estimation and @RBlts would now be nega-
tively affected by the signals from adjacent pixels to a degiepending on the pixel range
differences. A two point target scene model is adopted twwshe CRB on range separa-
tion estimation. The effects of changing the separatiorshosvn to drastically affect the

ability to estimate that separation.

1.2.4 Optimal Pulse-Width based on Range Resolution (@nh&f)) .  Utilizing
the CRB and unbiased two point target range separation a&stina method is developed
where an optimal pulse-width is determined based on thectegeange resolution using
the two point target model. Typically, a shorter transndippelse-width corresponds to bet-
ter range resolution (the ability to estimate two distimegets in range). Given a particular
range sampling capability determined by the receiver maats, the CRB and simulation
shows there is an optimal pulse-width where a shorter puldé: would increase esti-
mation variance due to the under-sampling of the pulse amhgel pulse-width would
degrade the resolving capability. Using two distinct anplasate techniques of CRB and
simulation, an investigation is accomplished that findsaptmal pulse-width for several
range sampling scenarios. Benefits of this analysis inctbdebility to aid in LADAR

system design using independent statistical methods (CRB)

1.3 Organization

The dissertation is organized as follows: Chapit@rovides background theory, data
model, and a discussion of previous LADAR research. Chdpteletails the 3D FLASH
LADAR hardware used in experimental collects as well as thegdures used to condition
the data for appropriate use for the selected mathematicdémChaptetV contains the

pertinent pixel-based range estimation algorithms. Giraptshows that object recovery



does improve range estimation. Chap#rderives the CRB for range separation estima-
tion and predicts an optimal pulse-width that provides thstlange resolution. Finally,
ChapteVIl summarizes the research contributions and outlines fuasearch opportuni-

ties.



1. Background

T his chapter serves as a review of background theory andquevesearch related
to three-dimensional FLASH LAser Detection And Ranging @DASH LADAR).
The focus on the theory and literature review will be relatethe major topic areas: range

estimation, spatial processing, performance boundingjpptimal parameter selection.

This chapter is organized as follows: Sectli discusses imaging and coherence
theory and how it applies to 3D FLASH LADAR. Sectio@2, 2.3, and 2.4 discuss de-
convolution, maximum likelihood parameter estimationd éime Generalized Expectation
Maximization (GEM) algorithm respectively. Secti@rbdescribes the data model that will
be used in Chapteidl , IV, andV. Finally, Section2.6 reviews previous research related
to LADAR data processing, blind deconvolution, boundingfpenance, and parameter

optimization.

2.1 LADAR Imaging Theory

The goal of this section is to describe the 3D FLASH LADAR irmggoperation
as a linear and spatially-invariant system. Linear systdrmasry has many benefits with
the chief benefit of being able to describe the observed datagg€) as a convolution of
the object’s intensity with a spatial impulse response.sTanvolution is an integral part
of the mathematical model used in this research describiaglétected photons in the 3D
FLASH LADAR. The spatial impulse response completely diéss the optical system to
include any random atmospheric disturbance. The argurhahiptical imaging can be
cast in the linear system framework has been establishée iitérature 24], [25]. Similar
arguments are made here to verify that this framework isiegipe to this research. A
foundational understanding of why this object-image reteghip holds is key because it
allows the use of object reconstruction algorithms fromsiingple inverse filter to the more
complicated blind deconvolution methods. First, a metisattieded to accurately describe
the illuminating light's movement and interaction with @svironment and how light prop-
agates. Following, the linear system framework can be coctstd with an example of a

spatial impulse response for a simple imaging system.



2.1.1 Description of Light. From [30], there are three mathematical descriptions
in which the light used in optical imaging systems can be wlesd. They are geometrical

optics, quantum optics, and physical (wave) optics.

The simplest and least accurate mathematical model igiggdiemetrical optics (GO)
and is a good approximation when wavelengths are small cadpa the dimensions of
the optics. GO analysis operates on the principle of liglstdbed as rays and is a valid
technique to determine basic properties of an imaging syBke object distance, magnifi-
cation, and pixel area at the target. For instance, theitotaf an object’s image through
an imaging system is based on the ray tracing method. Whitglable to show optical
abberations, GO does not handle diffraction or interfegesftects and predicts the loca-
tion of an image to be a point (without aberrations). Therihgrof the imaging system is
not accounted for in GO which makes it a poor choice to desdriint propagation in this

research.

From [30], the most accurate and complex mathematical descripfibghd is called
guantum optics (QO) and is valid in all optical scenariosy@@ngth, irradiance levels,
and optic dimensions). In QO, light is considered an elecagnetic wave with its en-
ergy quantized into massless particles called photonsiréitan a continuous wave. While
being the most physically accurate, computations tend tsldve and cumbersome. Con-
cerning imaging applications, the extra time and resowegsired for QO is not beneficial
when trying to understand and mitigate the macroscopic bglrring effects of an optical

system.

Also from [30], the remaining mathematical method is called physicaicsgfPO),
or wave optics, in which the light is considered to propagate transverse electromag-
netic wave. In general, PO can be used to describe diffractnal interference effects by
Maxwell’s equations using a scalar theory approximatioath@r than a vector-based the-
ory, scalar theory is valid for describing light behavioremhthe wavelength of the light
is much less than the dimensions of the diffracting objentsahen traveling through a

uniformly dielectric medium. Whereas GO describes an intadgee a point, PO utilizes
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Figure 2.1:  Simplified depiction of an imaging system. In 8i2FLASH LADAR, the
object is the target under illumination, the lens are thetfiend optics, and
the image would be the 2D range slice image of the intensitymérom the
object at a particular return time.

diffraction effects through the optical system to depietitihage spread about the point that
GO predicted. While there may be situations where the physigtics assumptions and
approximations fail, the more accurate quantum opticsagar tends to be impractical
due to increased complexity and processing times for opatuse. In most practical
situations, PO is sufficient to describe the light's movenaenl interactions with structures

given high enough irradiance levels.

A common practice in imaging systems is to treat light as antedmagnetic wave
using PO until the light hits the detector in which the lightthen considered a particle
or photon. This assumption allows for the benefit of the daailire of light and will be
adopted for this research. Furthermore, PO is sufficiertdtyieate to describe an optical

imaging system as a linear system.

2.1.2 Optical Field Propagation. Based on25] and referring to Figur.1, the
purpose of this section is to be able to describe how to mattieally propagate an optical
field from one plane to another with varying levels of accyrac order to mathematically
propagate an optical field, a diffraction formula must beduthee to the many point sources

in the observation plane.



Through Maxwell’'s equations, the Huygens-Fresnel prilecipnd Kirchhoff’s the-
ory, a closed-form mathematical solution for the opticaldfiat a remote point can be
attained called the Rayleigh-Sommerfeld diffraction faten This diffraction formula
is a general result from scalar diffraction theory with thdyoassumptions lying within
scalar diffraction theory. With monochromatic and narrawth assumptions, the Rayleigh-
Sommerfeld diffraction formula is given by the followinguetion for the complex phasor

U, of the scalar optical field at a distaneaway from the source field [25)]:

o0 J27\'R(E 7,u,v)

U me
(u,v) // AR §TZ,U o) d&dn (2.1)

—00 —00

where (., v) are observation plane coordinat{s n() are source plane coordinatess the

mean wavelength, anBl(¢, n, u,v) = /22 + 2 4+ (n — v)? is the distance between
every pointin the source plane to every pointin the obsquniane. The complex phasor

is related to the scalar optical field by
U, (u,v,t) = Re{U, (u,v) exp (—j2nvt)} (2.2)

where Re{} means the “real part’, = v/—1, v is the frequency of the light, artdsignifies
time. The optical field theory focuses on the complex ph&dsdevelopment since the time

dependence is already knowzg].

A useful simplification called the Frensel approximatioednfield or paraxial ap-
proximation) can be employed to reduce the complexity ofrtimge term, although the
two instances of the range term need to be handled diffgreBthall errors in range term
in the denominator are usually not critical due to the ramgriget ¢) being much, much
bigger than the spatial extents in the observation and impkge. Conversely, small errors
in the range term residing in the exponential can be sigmifigeven that it is divided by the

light's wavelength which is on the order of hundreds of naatars in the light or infrared
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spectrum. Using the binomial approximation #®iin the exponential results in

R = \/z2+(§—u)2+(n—v)2
\/1 E—u) /2> +((n—v)/2)
= 5 (1+05((6—u) /)7 +05((n—v) /2)?)
(€-w®  (-v)’

~ 2.3
“t 2z + 2z (2:3)

and approximating? =~ z in the denominator, results in the Fresnel diffraction folan

given by R5]

j27rz oo o0 .
| [ venesler ol (2.4)

—00 —00

Ua(u,v) =

which describes a convolution operation for the free spaopagation of an optical field
from one plane to another. A spatial impulse response @patint spread function) for

free space propagation is then defined by

j2ﬂz
A

IIZ

h(&m) IR [e ], (2.5)

j)\z

It is interesting to note that even free-space propagationbe cast in the linear systems
framework. A later section will make the argument that anging system can be repre-

sented as a linear system as well.

An alternate way to view the free-space Fresnel diffractidagral is by factoring

out the variables that don’t depend on the variables of natémn and results in

ﬂﬂ N(HAH r <52 %) ( )
z T =+ —j27(ué+vn
U(u,0) =25 // e TR e, (2.6)

—00 —00

which is a scaled Fourier Transform of the aperture field aedjuadratic exponential. The

Fresnel diffraction formula still accounts for the curvatwf the wavefront, but assumes
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a parabolic rather than spherical wavefront shape. Whileakgn @.6) specifies the op-
tical field (volts/meter) at a distance, the intensity at {haint is the quantity of interest
in imaging. Considering the wave is monochromatic, thenisity (wattsmeter?) can be
determined by taking the magnitude squared of the complesqtof the optical field or
I, (u,v) = |U, (u,v)|>. When the wave is not monochromatic, the intensity becoimes t

time-averagd-) of the amplitude squared of the scalar optical field
Ill (U,U) = <‘Ua <U7U7t)‘2> (27)

whereu, (u, v, t) was defined in Equatior2(2). All future references to an “optical field”

refer to the complex phasér unless explicitly stated otherwise.

Equation R.4) or (2.6) can now be used to describe the imaging operation where
optics are placed between the object and image. The nextisaecimmarizes the resulting

impulse response of a general imaging scenario.

2.1.3 Impulse Response of an Imaging System with a Thin Lelfke purpose of
this subsection is to illustrate an example of the impulspoase from a simple imaging
architecture. The imaging system converts the divergitggpal waves emanating from
an object to converging spherical waves culminating at thage. The lens is assumed
to be a thin lens meaning the light enters and leaves the tehe dame coordinates. Of
course, there is a diameter to all lenses as well as irragatathat make this assumption
invalid. However, it will suffice for the purposes of a thetacal understanding of the lens’

effect on incident light.

In general, the purpose of the imaging system is to reprodacebject in a better
manner than possible without the system. With no aberrstitie geometrical optics anal-
ysis predicts a “perfect” image aside from a scaling teritnaaigh this image is only valid
as the wavelength goes to infinity (~ 0). Wave optics predicts a more physically accurate
image that is dominated by the effects of diffraction. Asexigoreviously, a significant con-

ceptin this research is that the 3D LADAR is operating in adinsystem. This assumption

12



allows for the LADAR to be entirely represented by a spatigdulse response. The images
are then produced by the convolution of the object and dpatfulse response. The key is

to be able to describe an optical imaging system by a spat@llise response. By placing

a point source in front of a lens, the impulse response oféhe tan be attained. This

lens impulse response is valid for compound or more compdx®since all the imaging

system optics convert a diverging spherical wave into a eming spherical wave.

Under the general assumption of the linearity of wave prapiag, the relationship

between a field at the image and object plane can be given hyesymsition integrald5):

AU i RIS LA 2.8
whereU; and U, are the image and object plane optical field respectively Jamgl the
impulse response and is an optical field @tv) produced by an amplitude point source
at (£,n). The spatial impulse response can describe optical systemmssimple free-
space to the most complicated optics. If the system is cersitispace invariant (i.e. an
isoplanatic imaging situation exists) thefis h (u — &, v — ) where Equationd.8) is now
a convolution integral. Fron2f], however, the Fresnel diffraction integral (Equati@mj)
is used along with the phase transformation of a lens to eéhie general form for a spatial

impulse response of a single thin lens to be

1 iz

uZ40?) 127 (242
h(u,v;€,m) = )\22122622( + )ezl (€24n)

X??P(x,y)exp{jg (lejtz%—%) (x2+y2)}

xexp{—jQ—W {(é +£) x+ (ﬁ +£) y} }dxdy (2.9)
A Z1 2o zZ1 22

with (u,v) being the image plane coordinaté$,n) as the object plane coordinatésas

the wavelengthz; as the distance from the object to focal planeas the distance from the

focal to image planef being the focal length? as the pupil function, an@:, y) as the focal
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plane coordinates. Using assumptions about the quadtregegerms and normalizing the
coordinates to eliminate effects of inversion and magrtibcathe general form reduces to
a normalized point spread function

h(u,v) = iS[P(x,y)]fz_

s =5t fi=s

(2.10)

with A being the optical field amplitudg; as the Fourier transform operator, anfd, f,)
are the focal plane spatial frequency coordinates. It ig ander specific conditions that
Equation 2.10 results from the more general impulse response. Firstetislaw must be
satisfied:

L . (2.11)

f 21 22

which is a mandatory condition for imaging to occur and thus

exp {;; (zilJrZiz— %) (x2+y2)} (2.12)

in Equation 2.9 reduces to unity. Second, since the goal of imaging is tainkhe in-
tensity of the image, any multiplicative phase terms withetelence only on image plane
coordinates can be discarded. In other words, the éﬁpT(Jf—; (u? + v2)> can be ignored.
Finally, the quadratic phase term dependent on object glameinatesgxp (% (&% + 772)> ,
is ignored by noting that the object is a point source and pla@ ®f the object coordinates
are very small. Therefore, it would contribute a trivial amoto the intensity on the focal
plane. With these three conditions satisfied, the impulsparse for a thin lens takes the

form of Equation 2.10).

This result is an example of an ideal impulse response fop&inad imaging system.
It is ideal in the sense that there are no aberrations or gineo turbulence. Using the
principle planes concept from geometrical optics, mosicggh an imaging systems can
be considered a “thin lens” with light entering the systerthwaine orientation and exiting
at another orientation without regard to the inner opti¢ailcgures. Thus, the thin lens

impulse response is a good approximation or starting poimeiconstruction algorithms.
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2.1.4 Optical Imaging as a Linear and Nonlinear Systemln order to validate
the mathematical model adopted in this research, the oakdtip between the object in-
tensity and image intensity needs to be a linear relatigndbepending on the coherence
properties of the illuminating light, this linear relatgmp may or may not exist. This sub-
section gives examples of both. The next subsection corateaton coherence theory, how
it affects the object-image linear relationship, and whyg tiesearch can assume a linear

relationship between the object and image intensity doiss iexa 3D FLASH LADAR.

Presented again for convenience, the relationship betadesid at the image and
object plane can be given by a superposition integral dulegdinearity of wave propaga-
tion o

Uituo) = [ [ bl vign U 6y (2.13)
whereU; and U, are the image and object plane optical fields respectivetiyrars the
impulse response and is an optical field @tv) produced by an amplitude point source
at (¢,n). Again, if the system is considered space invariant (i.eisaplanatic imaging
situation exists) ther is h (u — &, v — n) where EquationZ.13 is now a convolution

integral.

In a simplified imaging situation, the imaging system caisstd an object, a lens,

and an image. The ideal image predicted by geometricalojstic

1 U v
Uy (w:0) = 30 (M’ M) (2.14)

whereM is the magnification and, is the object. This ideal image is the result of the
superposition integral as — 0. Using this result as the object plane amplitude in Equa-
tion (2.13, the field at image plane is a convolution of the impulse sasp and image

predicted by geometrical optic&5):

Ui(u,v) = h(u,v) ® Uy(u,v) (2.15)
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This result highlights the spreading effect that diffrantimposes on the ideal image.

Unless further propagation is necessary where the optatdlif required, the optical
intensity at the detector is the quantity of interest. Risdok image intensity will be stated
here and justified in the next section using coherence thefng image intensity is the
time-averaged, magnitude squared of the field and is defigexhbntensity convolution

for incoherent illumination
Li(u, v) = |h(u, 0)[* @ [Ug(u, v)|*. (2.16)

This result for image intensity is the important result abteection. It serves as the ba-
sis for the mathematical model and allows for advanced igdles for object restoration.
If coherent illumination is encountered, the linear relaship for intensity vanishes and

image intensity is defined by an amplitude convolution:
Li(u, v) = |h(u, v) @ Uy(u, v)[*, (2.17)

which results in a non-linear relationship between the @lgad image. Clearly, it is seen
that incoherent illumination is linear in intensity and eoént illumination is linear in am-
plitude. The spatial impulse response for incoherent iihation is the amplitude squared

of the coherent illumination spatial impulse response.

It must be shown or proven that the 3D FLASH LADAR produces ppraaches
incoherent object illumination in order to develop alglomiis for the recovery of the original
object, U,, using deconvolution algorithms. Otherwise, the matherabiodel would
change from object intensity (i.e. photon counts) to oliietd recovery in order to benefit
from linear systems theory. Since the observed data is lwastie image intensity, backing
out the object field from coherent illumination would reguisther methods rather than

deconvolution.

2.1.5 Coherence Theory and Laser Light Statistics.Using [24] and [25], this

section serves as background on coherence theory and h@s this theory to express the
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image intensity as in Equatiof.(L6) or (2.17). Coherence theory also dictates the statistics

that govern the laser light incident on the detector surface

The image intensity related to different types of coheraaagverned by the laser
light's spatial coherence between two points called mutiahsity. In order to understand
how coherence affects imaging, the monochromatic lightragsion has to be relaxed and
the light model changed to polychromatic. This yields a geraptical scalar field defined
by

u(u,v,t) ={U (u,v,t) exp (—j2mvt)}. (2.18)

where the complex phasor is changed to be time-varying. mlge plane complex phasor
U; (u, v, t) results from a convolution between the impulse responsetandbject plane
complex phasol/, (¢, n,t). Neglecting the different time delays from different cooates,

the subsequent image plane intensity (from Equatto) becomes

L (u,v) = 7761510577177d§2d772h(u—§1>v—771)h*(U—§27U—772)

—00 —00 —00 —O0

X Jg (§1,m15 €2, m2) (2.19)

with the mutual intensity defined as

Jy (Emi&a,me) = (U (€1, m3t) Uy (E2,m251) ) - (2.20)

The physical properties of the two coherence extremumy(ftdherent and fully incoher-
ent) can be exploited to define mutual intensity. Considecimherent light, all the points
in the field interfere with each other (statistically depemnt) and it is characterized by the

mutual intensity

g (€1:m15 €0,m2) = Uy (&1,m) Uy (€2,712) (2.21)
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and the resulting image intensity is

I (u,v) = //h(u—51,U—U1)Ug(§1,7h)d§1d7h

—00 —O0

x//h*(u—§2,U—772)U;(§27772)d§2d772

—00 —OQ

— {7) fh(uﬁ,vn)Ug(&ﬁ)dWU}

—00 —OQ

X {77h(U£,vn)Ug(£,n)dédn]*

- UD 7h(u—€,v—n)Ug(§,n)d§dn2

where the relationship between the object and image intesslescribed by the magnitude

(2.22)

squared of an amplitude convolution relationship betwéeramplitude impulse response

and object optical field.

For incoherent light, the object’'s phasor amplitudes areswtered statistically inde-
pendent from each other or, in other words, the amplitudenatpmint on the object does
not affect the amplitude at a different point. The mutuaénsity describing incoherent
lightis

Jg (&1omis §a,m2) = Kl (§1,m) 6 (& — &2 — 1) (2.23)

with « being a real constant and the resulting image intensity is

I (u,v) = //dfldm//dggdng><h(u—fl,v—nl)h*(u—gg,v—ng)
X ly (§1,m) 0 (& — Eo2,m1 — 12) (2.24)
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and simplifying gives

I (u) = m//h(u—av—n)h*(u—g,v—nﬂg(m)dgdn

—00 —0O0

= o [ [ nt-go—n1, € dean (2.25)
where the image intensity is a result of an intensity comvoitubetween the intensity
point spread function and the object intensity. Equat22 and .25 confirm .16
and @.17) concerning the differences concerning intensity catous between incoherent

and coherent illumination.

In LADAR, it is common to collect many images to increase tigmal to noise ratio
(SNR) to better enable detection and data processing. Ati@ual benefit is the partial co-
herence of the illumination tends to go from coherent tolvazent when averaging collects
together. This fact is due to the many coherent images wittelated randomly varying
phases and amplitudes combining to yield a statisticatlgppendent incoherent image map.
Another way to look at why the coherent illumination goestoaherent illumination from
a statistical point of view is through the resulting prothiépmass function (PMF) of a par-
tially coherent system. The PMF of a partially coherentaysgoverning the probability
of photons hitting the detector within one sampling intéigathe the negative binomial

distribution given by 24]

rockron[F] [ea] e e

Py(K) = % i

wherel" (n) = (n — 1)! for any positive integern, M is the speckle parameter dictating
the amount of coherence, aidis the expected number of photons. At the limitg,= 1
specifies totally coherence aid = oo leads to total incoherence. In practice, all systems
fall somewhere in between the extremes, but assumptionsecarade about which end of

the spectrums dominates. A simple method to check the cotetanits from statistics is
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to look at the mean and variance of the negative binomialidigton given by

png = K (2.27)

K
iy = K (1 + M) . (2.28)

As the speckle parametéf increases towards infinity at the limit, the mean stays @orist
but the variance changes to

_ K _
li Kll+— =K 2.2
1m ( + M) ( 9)

M—o0

resulting in the mean and variance being equal. This factlsasacteristic of the Poisson
distribution which has been derived independently to attarze the probability of photon
hitting a detector given incoherent object illuminatiad®]. Figure 2.2 shows the effects
of speckle parameter increase on the negative binomial PMMtagpproaches the Poisson
PMF.

The following question still needs to be answered explicitCan the 3D FLASH
LADAR be considered to be a result of an incoherent imagirug@ss? Are many cubes
needed or just one? The two analytical methods to provideicoimg proof center around

obtaining a high speckle parameter in the partially cohdiggative binomial) PMF.

The first method to attain a high spatial speckle parametertiske many indepen-
dent collects of a particular remote scene. The specklengtea for each collect is added
together to yield a combined parameter which is typicalggnrenough to assume incoherent
object illumination. For example, with a mean number of phstof 50 (¢ = 50), it takes
a speckle parameter of about 200 for the negative binomidf Rivappear Poisson. This
fact means that even if the light is totally cohereht & 1) the resultant speckle parameter
from summing the collects would be sufficient to assume iecefit object illumination.
The obvious question then arises: Does an operator havehmtime and loitering capa-
bility to take 200 collects of the exact same scene? Assuthiadt ADAR takes 6.7us to
take one collect at a range of 1000 meters, 200 collects waniidrequire 1.3 ms which

is a reasonable amount of time. The assumption that the 2@@tsoconsist of exactly the
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Figure 2.2:
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(a) This figure shows the negative binomial PMfrforeasing values of the
speckle parameter at a mean photon countof 50. As M increases, the
probability gets more Poisson-like with the main hump cesd®n the mean
photon count.

(b) This figure shows the negative binomial PMF at a specktampater of
M = 200 and a mean photon count &f = 50 compared with the Poisson
PMF with the same mean.
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same scene is more troublesome. If an airborne platfornrgetiag in the direction of
its velocity, then the consistent scene could be realiZetth€i target isn’t moving either).
However, as the laser firing direction shifts to either sile,scenes are most likely rapidly
changing due to typical airborne platform speeds. A mitayato the changing scenes is
to use available 3D image registration algorithms. Witlpees$ to averaging, Bayesian
estimation attempts have been made to mitigate the shifigele@ cubes for a particular
pixel using partial coherent ligh6B]. Since the 3D FLASH LADAR used in this research
mounts on a tripod and can easily obtain 200 or more colldasscene, the LADARan

be used to collect data with the approximation of incoheobiect illumination.

The second method to ascertain if the speckle parametegeséaough is from direct

calculation. From24], the overall speckle paramet#f can be defined as
M = M M, (2.30)

where M, and M, are the spatial and temporal degrees of freedom respactiBelen the
operating configuration, the area of the detectgiis smaller than the coherence aréa
resulting inM, = 1[24]. The area of the detectori§;, = (100 um)* = 10 nm? while the

coherence area.. is defined by the amount of coherence present in the lightdiyg24]

oo

A, = / / |1 (Az, Ay)|dAzd Ay (2.31)

—00 —0O0

with u (Az, Ay) as the complex coherence factor that provides a measure @ntiount
of coherence between two points aflz, Ay) are the difference in coordinates between
two points in the observation plane. In the imaging cass,shiown that for any incoherent

source that

A, = (2.32)

with A as the mean wavelengtfi,as the focal length, and, as the area of the incoherent

light source. For a circular aperture, the area of the lightrse isA, = 7r?. Thus, the
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coherence area becomes

A= ((1.55 pm) (0.3 m)) 69 1 (2.33)

7(1 mm)?

and it can be seen thaf, = 1 due toA; < A, or 10 nm? < 69 nm?. The other part of the
overall speckle parameter is the temporal degree of freedpmhich is defined for a light

beam with a rectangular power spectral density2]

M2 A (2.34)

Te 1/Av
whereA is the pixel integration timer, is the coherence time, ankl is the bandwidth of
the laser light. The mean frequency of the laser lighst
¢ 3x10°m/s

Sl

and assuming a bandwidth &f0.05 ym gives a frequency bandwidthv = 12.5 THz.

Considering an integration tim& = 1 ns, the resulting temporal degrees of freeddmis

A 1 ns

= = = 12500. (2.36)
1/Av 1/12.5 THz

Consequently, the overall speckle parameteMis= 12500 which is most likely high
enough to assume incoherent imaging by considering thes®&oistribution a valid ap-
proximation for the negative binomial distribution. Thissamption would probably still

be valid even ifAv or M, is reduced by several orders of magnitude.

2.2 Deconvolution

With the optical system able to be represented by a lineaesygshe attention turns
to the main topic area in this research: range estimatiam fobject retrieval from data
observations of a 3D FLASH LADAR. The system is modeled byhadr system charac-

terized by an impulse response. The observed data is modgleeing generated from a
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convolution between the object and impulse response daauyy noise. For this research,
the object primarily consists of recorded amplitudes amgyedocation of the target under
interrogation by the 3D FLASH LADAR. In order to retrieve thbject, the effects of the
convolution and noise must be reversed. In other words, ams deconvolve the object
from the impulse response while minimizing noise effects.sfich, a review of standard
deconvolution theory is warranted. The chosen model inrfssarch is in units of detected
photons per second while the image intensity has only beimedthus far. 1f/, denotes
the intensity at the detectow{tts/m?), then the following conversion results in detected

photons per second, or mean photon fliaqd] [

AL

=47 (2.37)

where A is the cross-sectional area of the incident lighis Planck’s constants(626 x
1073 Joules - sec), and f is the light's frequency. Substituting EquatidhZ5) into Equa-

tion (2.37) gives the photons per second atv) in the detector plane as

A [e.9] o
® (o) = o [ [ b= o=l L6 m sy (2.39)
where the units would be congruent to the mathematical mfmdethe returned signal

presented in the future sections.

In physical measurements, noise mitigation and an unknowtes impulse re-
sponse make the problem more difficult. The system impulggorese may not be known
in most operational ranging or imaging applications. Thhe,process of object retrieval
is termed blind deconvolution due to the unknown system isgresponse. In this case,

estimates of the impulse response need to be calculateg aitinthe object estimates.

2.2.1 Inverse Filtering. If there is no noise term and the system impulse response
is known, the deconvolution can be performed easily in tlagialbfrequency domain. Note

that the previous convention concerning image and objectgsd changes frorf, v) and

24



(&,m) to (z,y) and (m, n) respectively. Taking the 2D Fourier transform of noiselelss
servations from a 3D FLASH LADARY,, (z,y) in the (x, y) spatial dimensionsk(is the

time dimension) results in

Dk(fr7fy) :Ok<fr7fy)H(fmafy> (2.39)

where Oy(f», f,) and H(f,, f,) are the Fourier Transform of the object and the system
impulse response respectively. The object can be retribyesktting the filter(, as the

inverse of the Fourier Transform of the point spread fumctio

op(m,n) = F{Dk (fu, f,) G (fur f,)}
_ —1 Dk’(f:c;fy)
- {EE)
. -1 Okz (fxafy)H(fxafy)
- {2
= Ok (for 1)} - (2.40)

Conversely, the following highlights the severe limitatiof inverse filtering when random

noise effects are introduced:

~ . Dkz f:cafy
oulmn) = { H{fo 1) }
- 3 I{Ok’(f:v»fy fa:afy)"’Nk(fxafy)}
H(f, f,)
= s {0+ Y (2.41)
(2.42)

The inverse filter solution will be skewed to the degree thatimpulse response amplifies
the noise term which can be significant. This noise amplibods a primary driver towards

other solutions based on minimizing the effects of noise.
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According to B7], the Wiener filter minimizes the mean squared error betviken

real object and the estimated objeEf(o — 6)?], resulting in the following functional form

H*(far fy)
\H(for FOIP + Son(Fos £/ S5 for f) (2.43)

G(fa, fy) =

wherex is the conjugate operator artti,, andS;; are the power spectra of the noise and

signal respectively. The resulting estimate for the ohigct

6k(m, n) =

- { Dy (fur £,) H (for f,) }
\H (for f)P + Sun (fur £)/Sis (for f)

- { (Ok (fur o) H (for f) + Ni (fu £ H” (fu, £,) }
H (for f)I” + Sun (for £,)/ St (for )
e { [On o £) 1H (For )P + Ne (for £,) H (Jur £,)] }
H (for f)I* + Sun (for £,)/ S (for )

(2.44)

Examining this final form is enlightening to how the filter loles certain noise situations.
When the noise spectrum is zero or dominated by signal, tiee $iimplifies to the inverse
filter. When the noise power is severe or the signal levelwsdb some frequencies, the

filter approaches zero attenuating these frequencies vgthrtoise power.

2.2.2 lterative Algorithms. Iterative deconvolution techniques also exist to in-
clude the Richardson-Lucy and error minimization algenghwhich are useful when data
models are complex or non-linear. Fro®Z], the Richardson-Lucy algorithm was de-
veloped to be an approximate deconvolution to recover thecob’ from the degraded
noiseless imagél = W ® S with ® as the convolution operator asdas the point spread
function. Temporarily adopting notation fron6J], the problem is constructed based on

Bayes theorem given by6()]

_ P (H|W;) P (W)
P (W;|H,) = P, P T (2.45)
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where P(W|H) is the conditional probability oV givenH (also called thea posteriori
density),P(H |W) is the conditional probability dfl givenW, P(11) is the marginal prob-
ability of W (also called the priori density), andP(H) is the marginal probability ofl.
The subscriptg and ¢ correspond to pixel locations with” = ZWj andH = ) H,
equalling the value for the entire object and degraded imalgae/sj respectively. Tﬁ]e prior
probability can be defined by (]

=> P (W;|H.) P (H.) (2.46)

and by combining Equation2.@5 and @.46) results in the following equatiorbp]

- PULIW) POV, P (R
PO = 2 Py P (247

Noting that the desired solutio®, (1V;), is also on the right-hand-side of the equation and
is not a function of the summation, a common practice is toevakinitial guess and set

up the iterative updates as

(H.|W;) P (H.)
P (W ZZPHIW) AR (2.48)

Reduction of Equation2(48) is still necessary due to being in terms of probability. sThi
equation is changed so that it uses actual variable valtlesrrénan probability. Using the

laws of probability and the conservation of energy, the philities can be reformed into

PW;) = W;/W,
P (Hq) = Hq/H = Hq/W>
and P (Hy|Wj) = P(Sjq) = S5jq/5. (2.49)
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Consequently, Equatio2 48 can be reduced to

S;.H,
j?”+1 W]T Z Zé, W (250)

which represents the final form of the Richardson-Lucy dbjecovery algorithm. One
weakness of this algorithm is its lack of proven convergenicepractice, however, the
iterations provide the perfect solution in the noiseleseand an improved solution with

noisy data.

From [8], the last reviewed method of deconvolution involves usangpst function

and minimizing it with respect to the data and the true imdde cost function is defined
by
M N

where the data equadqz, y) =i (z,y) +n (x,y) wheren (z, y) is the signal independent,

additive noise and the true image is defined as

=YY o(mmn)h(z—my—n) (2.52)

m=1 n=1

with o (m, n) as the object an#l (m, n) as the point spread function. In order to minimize
the cost with respect to the unknown, the derivative of thet ftonction is taken with respect
to the object with the result set to zero. The solution isioleé by solving this equation for
the object. Thus, the derivative of Equati¢h¥]) is taken with respect to a single object

pixel (m,, n,) and set to zero

7& ) = ) Z Z z,7)) 7&5@%2) = 0. (2.53)

z=1 y=1
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The partial derivative of the image is

di(zv,y) 9
Do (mg,n,)  0o(mg,ne)
= h(x—mey—mny,) (2.54)

[O (mm no) h (‘T — Mo, Y — no)]

giving the resulting expression and reduction

M

~

(d(z,y) —i(z,y))h (@ —moy —n,) = 0

rz=1 y=1

M N

Elzad(xﬂy)h(x_mmy_no)

r=1y= .

. — 1 (2.55)
12312(x,y)h(x—mo,y—no)

r=1y=

Using reasoning similar to 6p], the object is then multiplied on both sides of Equa-

tion (2.55 giving the final form of the object recovery as

M N
> > d(zy)h(z —me,y —no)
0" (Mg, o) = 0° (Mo, M) ;1:1]%:1 (2.56)
>, 2 i (@, y)h (z = mo, y —10)
2=1y=1

M N
with 94 (z,y) = > 3" 0% (m,n) h (x —m,y —n). An acceptable stopping point can
m=1n=1

be (1) minimal change from the previous iteration or (2) thprapriate amount of image

noise in the estimated image based on prior knowledge ofdlsesource.

2.3 Maximum Likelihood

Maximum Likelihood (ML) estimation can be used for a data elddat includes no
blurring function because the model then implicitly asssame coupling between pixels.
The ML method can then operate on one pixel at a time. Anotheans of estimating
parameters (e.g. object, received amplitude, range tetlaigto employ ML estimation

using the observation statistics to form a likelihood espren. From 4], the ML solution
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is the outcome of a ML analysis where the estimatenaximizes the likelihood function,
L(A), or
a = arg max L(A) (2.57)

where the parametet can either be a single or vector variable. Consideratiomaa{-
imum likelihood estimation include the uncertainty thatraque ML solution exists and

local maximums in the likelihood function.

One way to view the ML solution is as a special case of Maximutosterior (MAP)
estimation with the prior distribution being a uniform dibtition. MAP estimation is
Bayesian based and starts with Bayes Theorem. Recall thatsBEheorem relates the
conditional and marginal probabilities of evet@ndB with B having a non-zero proba-

bility. The equation for Bayes Theorem is defined agair6ak [

Byja(BlA) Pa(A)

Pup(AlB) = B(B)

(2.58)

whereP(A|B) is the conditional probability oA givenB (also called the posterioriden-
sity), P(B|A) is the conditional probability dB givenA, P(A) is the marginal probability
of A (also called thea priori density), andP(B) is the marginal probability oB. Bayes
theorem calculates the probability of evehibccurring given observing. Maximizing

Equation 2.58 is mathematically equivalent to maximizing the naturagl tesulting in

Infpap(A|B)] = Inpya(B|A) + Inpo(A) — Inpp(B). (2.59)

The MAP estimate is found by taking the derivative of Equai{®.59, setting it equal to

zero, solving forA given by

On(p(A|B)) _ din(p(B|4)) A On(p(4)) _ Oln(p(B))

A - A A on Y (2.60)
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Oln(p(B))

where=—3== = 0 due to no dependence oh The final form of the MAP estimator is

then
Umap = arg mj%X (hlpb|a (B|A) 4+ Inp, (A)) . (2.61)

When the prior probability,(A) is unavailable or not postulated, it can be assumed that

the prior probability can be described as a uniform RV. Thyg&4) has no dependence on

A either and
oln(p(4))
= 2.62
9A 0 (2.62)
resulting in the ML solution of
Upmap = AIE max (Inp(B|A)). (2.63)

A maximum likelihood technique is used for single pixel rarggtimation in Sectioa.2

2.4 Generalized Expectation Maximization

Traditional linear maximum likelihood efforts do not su#ito estimate target range
given the unknowns (amplitude, target range, PSF, and pigs) in the statistical model
from Equation 2.69. More powerful object estimation methods like the Geneeal Ex-
pectation Maximization (GEM) algorithm must be employee doithe coupled unknowns
which will be covered in the next section. While the final gisaio estimate range, a dif-
ferent tactic is employed due to the difficulty in having tlaeget range term residing in
the exponential. Consequently, the unknowns in the estimarocess are the target am-
plitude, targepulse shapéor objec), and PSF. With the pulse shape now as an unknown,
it is much simpler to use the GEM to find maximum likelihoodwugmns. Once the max-
imum likelihood solution for the object or pulse shape isrfdua correlation operation
between the estimated pulse shape and a reference pulse dgtapmines the estimated
target range. A full description of the algorithm will be givin the subsequent paragraphs.
First, the GEM solutions for the unknown parameters mustoled. However, a closed

form solution for the EM algorithm’s maximization step igractable. Consequently, the
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GEM algorithm goal is to modify the EM structure such that kikelihood is incremen-
tally increased rather than globally maximized as in the Byp@thm. This incremental
increase in the likelihood simplifies the maximization stpwing unknown, non-random

parameter estimation.

In the case of blind deconvolution, the EM algorithm can belemented to esti-
mate the object, point spread function, range, and/or auaa@i This algorithm is a another
method to perform maximum likelihood estimation wherebg fiolution is found by us-
ing unobserved data (complete) rather than the observedidabmplete). Although, the
maximum likelihood solution is not always guaranteed assaltérom the EM algorithm.
Pertaining to the unobserved data, it may be necessary $etaei regular maximum like-
lihood solution may be analytically prohibitive. The EM atghm uses the reduced com-

plexity of the complete data problem to perform maximumlitkeod estimation.

According to p4], the EM algorithm is composed of two steps. The first step (E-
Step) is to findQ: the expected value of the desired variable given the |g@stmeter
values or

Q (¥; ¥W) = Egu {InLep (V) | y} (2.64)

whereW is the vector of unknown parameteksis the iteration,Lcp(¥) is the complete
data likelihood, and the expectation conditioned on thenmglete datay. Complete data
can be viewed as the unobserved variables (fabricated pused to simplify the problem.
Incomplete data is usually the observed data. The secopdMdtStep) is to maximize this
expected value with respect to the unknown paramelderby choosing?*+! to maximize
Q (T; ¥™) or

Q (LW W) > @ (T; w™). (2.65)

for all unknown parameters . The EM algorithm is advantageous due to the guarantee
of increasing the likelihood with each iteration and, in tezses, eventually converging on

the maximum likelihood solution. As proven b¥€], the incomplete-data log-likelihood
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function increases with each iteration
L(T*D) > 1 (w®) (2.66)

and the EM algorithm converges to local or global maximum.

As is the case in this research where the maximization oven&hown parameters
is difficult or doesn't exist in a closed form, an incremerE algorithm is used called
the generalized expectation maximization (GEM) where tha ¢ to simply increase the
likelihood at each iteration without finding the maximumaraeter value. A GEM requires

that the likelihood be improved and not maximized such that
Q (\I,(k+1); \I,(k:)) > Q) (\I,(kr); q,(k)) ) (2.67)

If Equation @.67) holds for every iteration, it has been shown that the Ih@dd is in-

creased with every iteration 54|
L(w*D) > 1 (wh) (2.68)

and, if bounded, the GEM sequence converges to a local maxidue to the monotonicity
of the algorithm. The GEM algorithm will be implemented omsiated and experimental

data in ChapteY to show that object recovery improves range estimation.

2.5 3D FLASH LADAR Data Model

This section describes the physical 3D FLASH LADAR model. ificrease read-
ability, the model is defined in this chapter due to parts adyitarlV and all of Chaptew
using this particular model. (Other sections in Chaptérand all of ChapteNI| use a
different, simplified observation model to allow for relagly uncomplicated mathemati-
cal expressions and for concept investigation. The chainge®del definition are clearly
identified.)
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Figure 2.3:

range
slice

d(tr) d(tz) d(ts)  d(tw)

FLASH LADAR

(@)

Samples 1-5

Sampla N
(b)

(a) 3D view of LADAR system model in Cartesian ichoates with each
data cube having dimensions3if x 30 x 20 corresponding to pixek pixel
x time sample. The variablé(t,) corresponds to the'" receiver detected
range slice image with € [1,..., N] and N = 20.

(b) Another view of the 3D FLASH LADAR operation. Th& number
of samples are meant to depict the available target infoomahat the 2D
range images (slices) would collect. The assumed time atparbetween
the range images is 2 nanoseconds closely correspondihg 82X LADAR
system used for experimental collects.
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Figure 2.4:  For a given range slice, this diagram shows tlbe@agation of the object
through optical system to the observation. Definitionss the object is
the PSF,B is the pixel biasy is the noise, and is the observation. The
simple signal model is used in previous 3D FLASH LADAR resbéasuch
as P, [39], and [B5]. The high fidelity model is used in Chapte/rsandVI.

Figure 2.3 shows the sensor operation resulting in a data cube of spatiarange
information. In simple terms, the LADAR laser transmits dsguand the LADAR detector
array receives an attenuated, time-delayed version ofréimsmitted pulse. Each detec-
tor receives a version of the waveform shape sampled acaptdithe range gate. Thus,
models can take advantage of this fact and perform rangaatsbin on a per pixel basis.
Referring to Figure?.4, previous research has assumed the simple m&fe[ 9] where
the spatial impulse response was a Dirac delta functions d&finition meant there were
no interactions between adjacent pixels. However, thearekdn this dissertation adopts
the high fidelity model since it is more accurate concerniixglppatial interactions. The
limitation of the simplistic model and adaptation of thetreg fidelity model is the catalyst

of the material in Chapteng andVI.

In order to simplify the geometry and the mathematics, agpsiams are made about
the model to include: (i) target is perpendicular to thegraitter, (ii) target is in the far-field
of the receiver, (iii) target is Lambertian, (iv) circulaptics are in-focus, (v) monostatic
RADAR operation, (vi) the waveform is a symmetric Gaussials@, (vii) each pixel from
the detector array has an individual waveform associatédityiand (viii) the range slices
of the data cube are registered. Other pulse shape modeaisaitable include an asym-

metric Gaussian, a truncated negative parabolic, or sofmechgf a Gaussian and negative
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parabolic. A symmetric Gaussian is chosen for notation @sep, but an asymmetric ver-

sion is easily defined with different pulse-widths for thadeng and trailing edges.

Considering a 3D FLASH LADAR sensor with statistically in@adent samples
dominated by shot-nois®], [39], the PMF of the observed photons;; (z,y), incor-
porating all cubes; € [1,...,J]), range samplesk € [1,..., K]), and detector pixels
(xel,.,.X],yell,..,Y])is

I [iji (2,y) + B (2, )] exp {— [iji, (z,y) + B (z,y)]}
djk (2, y)!

(2.69)

j7k7$7y
where the mean signalig; (x, y) + B (x, y) whereB (z, y) is the pixel bias and the blurry,
non-noisy signal;;; (z, y) is defined by

M N
ik (z,y) = Z Z ok (m,n) hj (x —m,y —n) (2.70)
m=1 n=1
where the object; (m, n) is defined at the object plane with coordinates € [1, ..., M]
andn € [1,...,N]). The(z,y) andk variables correspond to a pixel in the detector array
and to the returned signal time of arrival respectively. fiime of arrival is computed based
on the time from laser pulse transmission to photon deteciibis assumption may require
cube registration due to the possibility of moving targetsying sensor platform, or inter-
cube timing errors. Incorporating contributions from liglhopagation, optical abberations,
and atmospheric blurring, the intensity point spread flanc{PSF)%; (z,y) is constant
within a single cube while changing across cubes. In thisaseh, the PSF is considered
constant within a single cube since collection times sparteuforty nanoseconds and
any time-dependent effects would be essentially frozeadtition, the pixel bia®3 (x, y)
is constant between cubes as well as within a single cubedthetpixel's unchanging

physical material and response to incident light (ambiadtation is assumed negligible).

Every pixel in the detector array records a time-delayedadtahuated version of the

transmitted pulse. The physical outgoing pulse shape of &I386H LADAR is either
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Gaussian, negative parabolic, or some hybrid of the two. difject can be defined by an

amplitude term and a pulse shape or

op (m,n) = A(m,n)p, (m,n). (2.71)

Assuming a Gaussian transmitted pulse, the object is

_ A(m,n) — (ty — 2R (m,n)/c)?
o (m,n) = oo exp{ 207 } (2.72)

where A (m,n) is the object amplituder,, is the waveform standard deviatiof, is the
time variable ¢ is the speed of light, an®& (m, n) is the range to the target. If a negative

parabolic waveform model is desired, the object is defined by

op (m,n) = A (m,n) |1 — CE) _t“ﬂ rect <2R (m,n) _t’“c) (2.73)

(cpuw)? 2¢py,

where2p,, is the pulse width and rect is the rectangle function defined b

4

0, if|z|>1/2

rect (v) = ¢ 1/2, if |z| = 1/2 (2.74)

1, if 2] < 1/2.

Although, for simplicity and ease of differentiation, thiessearch adopts the Gaussian
model. For military targeting or navigation, range to tarflecated in the object term)
is the desired unknown variable. In attempting to perforngeaestimation, a range term
is not explicitly in the model, but it is buried within the @ujt, o, (m,n), term given by
Equation 2.72 or (2.73. If the object were exactly known, the target range coulthiea
extracted from the object by peak detection methods. Thisstent presents the ideal sit-
uation that ChapteY attempts to create with an object degraded by spatial biyiaind

noise sources.
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Given the LADAR'’s 3D nature, it is important to discern therf@tion of range slice
images shown in Figur2.3 versus the pixel waveform definition fro@.72. The range
slice images are formed at a particular time by a spatial @otion between the original
scene and the system’s impulse response. The original’'s@mglitude is variable at each
time instant due to target roughness and Gaussian shapesiniteed pulse. Therefore,
the returned amplitude changes for each range image famaperation. Considering
atmospheric turbulence, the system’s impulse responssisraed constant for eath V|
range image due to the short duration of the data cube doltegforty nanosecondsf].
Conversely, the pixel waveform definitions from Equati@i7@Q) define each pixel's un-
blurred and non-noisy received signal where the model assumly one target per pixel.
The range estimation process estimates the target's rangedry pixel. The following is
a concise explanation of the difference between data gemer@nd range estimation: the
simulation forms 3D LADAR data cubes in the spatial domairlevthe range estimator
operates in the range (time) domain. Also, as will be disedidater, image deblurring

operates spatially like the image formation process.

Following [25], a transfer function describes the LADAR'’s effect on thgéd return
assuming the system is linear and spatially invariant. fdresfer function in optics is called
an optical transfer function (OTF). If only considering #féects of the optical components,
the OTF is diffraction-limited because the only way to irage performance would be to
build better optical components. Otherwise, optical diftron theory bounds the system

performance.

While not the main focus of this research, it is important taerstand that 3D
FLASH LADAR operational use may encounter periods of coeisitlle atmospheric tur-
bulence that would modify the system OTF. As long as the imggcenario stays within
the isoplanatic angle, the PSF can still be consideredd|yativariant which is a prereg-
uisite to this deblurring techniqué]]. Given this condition holds true, the OTF is then a
function of the diffraction-limited OTF and the average Q€Bulting from the atmosphere.
Considering a substantial target distance, there couldrbespheric distortion and would

manifest itself by modifying the diffraction-limited OTIB6 form an overall OTFZ4]. Ne-
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Figure 2.5:  An example of a diffraction limited OTF. This OWas generated using the
parameters from this research.

glecting pixel integration effects, the form of the ove@NlF, H( /., f,), could be

H(fxafy) :Ho(fxvfy)HA(fxafy) (275)

where( f,, f,) are spatial frequency variablds,( f,, f,) is the diffraction-limited OTF, and
H4(f., f,) is the short-exposure average OTF due to atmospheric ambel The form of

H, is [24] [67]
Hy(v) = exp {—3.44 (i{:”)m [1 — (%)1/3] } (2.76)

with v = /f2+ f2, X the mean wavelengtly, the optic’s focal lengthy, as the atmo-

spheric coherence diameter or Fried’s seeing parametgrpDan the aperture diameter.
With the OTF defined as the inverse Fourier Transform of the Pigure2.5shows a two-
dimensional representation of the simulation’s diffractlimited OTF. Using centered 1D

cutouts, Figur.6shows the effect of the atmosphere on the OTF whereby thesgimece
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Figure 2.6:
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Cut-outs(0, f,)), of different OTFs to include diffraction-limited, atmo-
sphere, and overall. The degradation in the overall OTFezhby the at-
mosphere is evident with higher spatial frequencies bldcke
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degrades the overall OTF by narrowing the amount of spatajuencies the system can
pass. This truncation of spatial frequencies causes hagjuéncy details in the range slice
image (i.e. sharp corners, fine lines, etc.) to be lost. Thewang of the OTF in the spa-
tial frequency domain leads to a widening of the PSF in théiapdomain. This widening
causes increased pixel mixing due the the convolution eatfithe system. The result-
ing received waveform is further deviated from the idealizeceived waveform in2(72.
Blind deconvolution methods in Chapterwould effectively estimate any additional at-
mospheric blurring as long as the mode of operation remamg#tk isoplanatic angle (i.e.

spatially invariant) 25].
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Figure 2.7:  Organizational chart for the literature revielihe review is broken down
into the following sections: 3D FLASH LADAR Hardware and Afga-
tions - Sectior2.6.1 3D FLASH LADAR Post-Processing - Secti@6.2
Blind Deconvolution - Sectior2.6.3 CRB and Parameter Optimization -
Section2.6.4

2.6 Previous Research

This section contains the literature review of publicasioelating to hardware devel-
opment and post-processing of 3D FLASH LADAR data. The bemlgd review provides
a treatment of several important topics: 3D FLASH LADAR hasadle development and
applications, 3D LADAR post-processing algorithms, LADA&ge estimation, general
blind deconvolution theory and applications, lucky imagiand 3-D image registration.
Seminal papers are reviewed as well as appropriate recbhtations. For easy reference,

Figure2.7 shows the literature review organization.

LADAR theoretical development in the past 10-20 years haxeatrated on 3D
scanning LADAR systems almost exclusively because it wasotily 3D LADAR avail-
able. 3D FLASH LADARs are a relatively new development, exphg the lack of publi-
cations compared to more mature technologies. The curlE22RLASH LADAR literature
spans from hardware development to applications to pastessing. The post-processing
papers consider important algorithms enabling improvedeaestimation, feature extrac-

tion, foliage penetration, world modeling, mapping, andigational aiding.

The papers that do take advantage of the unique properte@8Df FLASH system
use a simplified data model. The spatial convolution nateteséen the object plane in-

tensity and the detector plane intensity is not accountedeading to errors in parameter
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estimation. There is a gap in the literature consideringsphagial effects of a 3D LADAR

system because the scanning systems simply don’t see gwselff the spatial impulse
response. Scanning LADARs don’t operate fast enough diyabiahave a wide enough
field-of-view (FOV) to observe the blurring effects of theaipl impulse response like the

FLASH systems do.

2.6.1 3D FLASH LADAR.

2.6.1.1 Hardware Developments. Although new advances LADAR hard-
ware development is not the focus of this research, it isgmutb know about not only the
hardware used in this research, but also other state-edsti@D LADARS. Understand-
ing where the technology stands and some of the detailsevil n appreciation for the
uniqueness and potential of the 3D FLASH LADARs. The advamade in the LADAR

hardware have increased capability, but have createdaulaiissues that need mitigation.

Based on work from@4], [65], and [66], the enabling technology allowing 3D
FLASH LADAR to be realized culminated in 2004 with the devmitent of a focal plane
array (FPA) capable of collecting a series of two dimendig2R) images of a remote
scene at varying depths from a single laser pulsé. [The modelling in this research is
based on this hardware. Additionally, this particular 3DAEH LADAR system will be
used for experimental data collection in the future. Theehtnardware design using de-
tector material made of either InGaAs PIN or Avalanche Ptliottes (APD), along with
the data acquisition board called the Readout IntegratecliC(ROIC), allows for rapid
data collection in the range dimension with each pixel abld@igitally sample the returned
waveform. The ROIC permits this rapid range sampling wittaakbof capacitors behind
each pixel capable of operating on the nanosecond scaleot®f a similar LADAR de-
veloped with the same goals is summarized?#|[ The only noticeable difference in this

LADAR was that it uses HgCdTe APD detector technology exckig.

The FLASH LADAR is considered an improvement over scanniddBARs when

considering all the scene’s information is collected in shet and that there is no need for
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pixel registration. Additionally, the 3D FLASH LADAR is “e¢safe” because it operates
in the short wave infrared (SWIR) regime (beyond 1.4 micjohidas been shown that the
selected detector materials perform well at this wavelemgth respect to both quantum
efficiency and electrical bandwidth. Also, there are sulishcost and weight savings

given that a mechanical steering mechanism is not neededhlithe scanning systems.

While there are obvious benefits, there are several drawliadke system that need
addressing in future hardware upgrades. There are a limitetber of range samples
available for each transmitted signal. Essentially, thee limit to the time the “shutter”
can be open. In one operating mode, this limits the operatknow where the target &
priori to within several meters. This limitation is not an issuéhi@ fiaboratory, but will need
to be addressed for operational use either in hardware degithat solve the problem or
by CONOPS (Concept of Operations). For example, anothesoserould roughly locate
the target and pass that rough location to the 3D FLASH LADARire tune the range
measurements. Another issue mitigateddf] [is pixel coupling occurring throughout the
detector array caused by a time-dependent gain variatiamally; as mentioned before,
spatial impulse response effects are now evident in thealadaare the primary focus of

this prospectus.

Advances in technology like the AFRL 3D FLASH LADAR are an exae of hard-
ware improvements opening up fields of research not otherwassidered. Evolving tech-
nology from scanning to FLASH LADARs will vastly increaseayptional capabilities and

pave the way for future applications.

Other efforts to produce 3D FLASH LADAR hardware have sudegeas well.
In [31], advances in detector, electric circuitry, and laserdnaitter technology are dis-
cussed with the capability to capture an entire 3D scene ént@msmitted pulse. The ad-
vances are similar t@fl] with some minor differences: (1) using the APD in Geigerdao
due to laser compatibility and size and power requirememtis(2) the capture circuitry
is CMOS-based resulting in a 0.5 nanosecond timing reswiutiThis timing resolution

corresponds to range information (i.e. taking a pictur@rgwa5 cm (30 cm for the AFRL

44



3D FLASH LADAR). A key point in the paper is the huge benefit af@oying a photon-
counting 3D LADAR with APD detectors versus a CCD camera LADA he difference
being the APD detectors are photon-counting devices emgabieasurements to be made at
very low signal levels (0.4 photo-electrons per pixel) asipared to the CCD camera (1.7
photo-electrons per pixel). The paper also highlightsafgdi penetration as another bene-
fit of 3D LADAR with APD detectors. Tests are run where the LARAan see through

semi-transparent material (i.e. camouflage netting).

Referring to 7], a LADAR capability is presented that can provide targébima-
tion on sea-skimming anti-ship missiles. Target informatincludes range and velocity
data. Range data is captured by the time-of-flight principteRADAR, the target’s ve-
locity information is captured from the frequency changesuveen the transmitted and re-
ceived pulses. Typical coherent LADAR architectures regmixing at light wavelengths
to capture the differences which is very difficult. This papbows an interesting work-
around combining the preciseness of laser light operatiahtiae mature radio frequency
mixing technology. The LADAR collects velocity informatidy using a linear frequency
modulated (LFM) radio frequency to amplitude modulate #sel pulse. The receiver col-
lects and coherently mixes in the RF domain rather than at laght wavelengths thereby

reducing complexity.

A gated 3D LADAR is described where the detector is an infeasiCCD camera
with a Nd:YAG passively Q-switched 32.KHz pulsed greeniat&32 nm §]. This wave-
length provides substantial underwater transmission. édew the system is not covert or
eye-safe at 532 nm like the SWIR 3D FLASH LADAR.

In order to perform data registration and extraction, a stenLADAR is teamed
with a 2D digital camerad5]. This paper illustrates an example of using an active and
passive system to increase capabilities. One of the clygtewith using two sensors is

fusing the data sets to represent the information in a ctamgisoordinate system.

A time-of-flight (TOF) “real-time” 3D video capability usgna 3D FLASH LADAR

is described in14]. This paper describes the architecture required whicterg gimilar
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to [81] with a focal plane array (FPA) and high-speed ROIC to capthe range data. Con-
sidering GPS-denied, GPS-degraded regions or geolodatimmvement goals, a method
is described where Global Positioning System (GPS) andi&h&teasurement Unit (IMU)

data are fused with 3D FLASH LADAR data by Kalman filtering teable autonomous ve-

hicle control (relative navigation) for space vehicle dogkor in-flight jet refueling.

2.6.1.2 Applications. Applications of the 3D FLASH LADAR technol-
ogy include target identification, rendezvous operatitwiggge penetration, mapping, and
guidance and navigation. Given the infancy of the capagtalitd the interest in active EO

sensing, this list will expand with a substantial increasparformance in each of the areas.

A comprehensive overview of the LADAR topic area is givenig][ The paper de-
scribes utilizing LADAR data to build synthetic environntgjdeveloping LADAR system
models, and using training sets for algorithms to aid ing¢argcognition and weapon ap-
plications (weapon guidance, aim point selection). At theef the authors used synthetic
data to simulate 3D FLASH LADAR data, but will have the hardevavailable in the fu-
ture for collects. The fusion of LADAR data with other sersgielding impressive results.
Among the many benefits, one of the most important benefitsoige mrecise targeting

thereby reducing collateral damage.

Using an innovative scannerless Multiple-Slit Streak Tuieaging LIDAR (MS-
STIL), [22] reports on LIDAR tests that demonstrate target imagingugh foliage and
other obscurants. Another test demonstrates capabilitpage surf zones to identify anti-

landing mines and other obstacles.

A variety of 3D scanning LADAR applications are discussedlir relating to the
use of APDs in the receiver design. The performance of APDsperted using different
materials and at different wavelengths. Applicationsudel: sensor-fused weapons, eye-

safe range-finding, and fire-and-forget missiles.

Similar to [14], a very useful application for 3D FLASH LADAR is for aeriagéficle
navigation in GPS-denied situatior&]. Teamed with IMU data, the 3D FLASH LADAR

is capable of providing autonomous space vehicle navigairolanding systems on the
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moon or other planets. IMU measurements drift over time duthé errors encountered
in integrating many sensor measurements. GPS is one notigathnique to combat this
drift. In GPS-denied or degraded regions, 3D FLASH LADARalean replace GPS data

to recalibrate the IMU measurements.

Another example of applying 3D FLASH LADAR data for autonamaoehicle nav-
igation focuses on spaceborne rendezvous and capititelhe LADAR data benefits this
application area by providing an independent range to tle&idg platform regardless of
the existence of other docking sensors. Additionally, tAd®RR could provide an image

of the docking platform used to verify its integrity.

2.6.2 3D FLASH LADAR Post-Processing.The post-processing of 3D LADAR
data (scanning and FLASH systems) includes range estimatigect retrieval, data reg-
istration, edge detection, feature extraction, planaufeadetection, multi-sensor assisted
navigation and target identification, multiple return aitan, surface imaging, noise reduc-
tion, detector response deconvolution, illuminationgrattrenormalization, jitter removal,
super-resolution, and image enhancement. With the fieluisagfe processing and RADAR
being very mature, the application of theory to 3D LADARsnfrdoth these fields is, in
many cases, novel. While the processing methods by theassate not new, the applica-

tion of these methods to the 3D LADAR data set may have near dene.

2.6.2.1 Range Estimation. In [9], the waveform parameters (target range,
target amplitude, and pixel bias) of a 3D FLASH LADAR are estted via a maximum
likelihood derivation. A Cramer-Rao Lower Bound (CRLB) cemge estimation is also
derived. The unknown target parameters are estimated by usaximum likelihood anal-
ysis on an idealized waveform model (no pixel coupling). Wssshow that centimeter
level range accuracy is attainable. Closed form solutionglfe CRLB are provided in
the follow-up work in B9]. Several different scenarios are investigated incluaimudtiple

returns and distorted return pulses due to slanted surfaces
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Referring to B3], an unusual approach to range estimation in a 3D scannimgAR
is employed called the Viterbi algorithm which is a maximukelihood sequence esti-
mator (MLSE). It is an intelligent search algorithm thatksidhe most likely sequence at
each stage resulting in the Viterbi path. The Viterbi patules in an estimated object from
3D LADAR scans. Without modifying the algorithm, computatal complexity for a real-
world array (e.g. 12& 128) make this algorithm prohibitive. Results from a modifié\
algorithm are compared to a peak detector and Wiener filténadeshowing that VA out-
performs the other methods in terms of range error. The noatiibin reduces the required

computations.

3D surfaces are able to be characterized by a LADAR systembtamf handling
multiple returns in a single received signa?]. The LADAR can measure range and obtain
information about 3D structures at ranges from a few meteseveral kilometers. The
authors employ a Bayesian statistical approach based ersesjump Markov chain Monte
Carlo (RIMCMC) techniques to estimate the number, positaord amplitude of received
signals. Two types of receivers are considered for rangimhdepth measurement. The
types are Time-Correlated Single Photon Counting (TCSPR@)Barst lllumination Laser
(BIL) (e.g. range gating or repeated BIL). The analysis as=tia simplified case whereby
each pixel is independent from other pixels. A Bayesian @ggh is employed because it
accounts for uncertainties in the model and parameter salod it can incorporate prior
knowledge if applicable. A modified version of RIMCMC incorates a delayed rejection

step permitting the Markov chain to mix better through dife proposal distributions.

Based on their previous world®], the authors modify an assumptions by changing
the single independent pixel model to one that included ppatial interdependencie3d.
The inter-pixel dependencies are asserted to arise nigturamaging real world objects.
Again, the number, positions and amplitudes of the recesigdals are estimated using
RJIJMCMC incorporating either spatial mode jumping (changsiton of peak) or spatial

birth/death process (creating a new peak, or removing @ peak
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Two-dimensional range images are used to estimate the tacg¢ion and range3).
These estimates are attained by utilizing a three-dimeasdistortion tolerant filter on a
three-dimensional binary representation of the 2D rangagan The distortion tolerant
filter is derived by neglecting out-of-family correlatioasd minimizing the output energy
of the input scene due to additive noise. The filter is comsdilistortion tolerant by
using a reference target training data set to recognizetgets from various perspectives.
In [35], the 3D distortion tolerant filter work is extended to indtuthe effects of disjoint

background noise.

In [58], the authors describe a 3D FLASH LADAR sensor architectieeelopment
with theoretical development centered around range psotgsnd polarization discrimi-
nation with associated experimental results attainingeaesolutions of 1 inch range res-
olution for occluded targets and 0.3 inches for non-ocaiitdegets. The ranging algorithm
is called “bin-balancing matched filter” or BBMF which uses the known pulse shape to
find the range at which there is max correlation with the resgkipulse. A weakness of
this algorithm is assuming the transmitted and receivedegosihapes are matched. Sloped

targets and range clipping makes this assumption less valid

The authors in this paper use coherent detection LADAR d#tathe expectation-
maximization algorithm to develop a method to fit a multielesion (wavelet) basis to
LADAR range data in a maximum likelihood senst]. The Haar-wavelet basis is used
resulting in a computationally efficient and robust aldont The wavelet basis is used for

range anomaly suppression to decrease range error.

Referring to fi], alaser scanning LADAR and several ranging methods areritesl.
These methods include: thresholding, bump-hunting, marirtikelihood (ML), and Re-
versible Jump Markov Chain Monte Carlo Processing (RIMCNBD)np-hunting and ML
was found to be able to discern multiple targets from an apygaingle return. During low

light levels, RIMCMC was shown to be the best performer imgeof range accuracy.

2.6.2.2 Other Processing Methods. Integration methods are described

where 3D FLASH LADAR technology is integrated with inertrakeasurements to deter-
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mine position and attitude of UAVs whether GPS is availableai [27]. The LADAR data
is used to extract planar, line, or point features corredpmnto walls or corners. These

features are combined with IMU measurements to changeoptathttitude or velocity.

In[80], a 3D scanning LADAR is used to show the capability of 3D FLASADAR’s
penetration through camouflage and foliage. (The authatshdi have access to a 3D
FLASH LADAR at the time.) Waveform analysis is performed toow the multiple re-
turn detection capability important in FOPEN (FOliage PER@oN). The Expectation-
Maximization algorithm is used to detect the number of paaks given returned signal.
With the returned signal assumed to be a sum of Gaussiansne¢he (target location)
and standard deviation were estimated. By using wavefooogssing, algorithms are de-
scribed that exploit the multiple returns when the LADARuitiinates vegetation or cam-
ouflage. By deconvolution, hidden targets under obscuratie capable of being detected.
Estimation of target location and waveform width is perfedhassuming a Gaussian pulse
in a noiseless system, but no detail was provided as to theat&in method. The ability to
see inside a dark van and buildings through Venetian blisdghown. Vegetation removal

to aid in FOPEN is considered a research priority for futuoekyv

Using the AFRL 3D FLASH LADAR, an object retrieval algorithedeveloped for a
3D FLASH LADAR system illuminating a bar target using a miscanning techniquel].
Microscanning is required in this system due undersampiiripe spatial domain. The
microscanning method forces the eventual data output ta Myguist sampling require-
ments by developing a super lattice of points similar to supsolution techniques. The
object retrieval algorithm was derived by maximizing thg-likelihood function with re-
spect to a particular point in the remote scene (object) Wiéhfinal result similar to the
Richardson-Lucy algorithm. Cube registration (CR) is perfed by computing the trans-
lational shifts between the data cubes in all three dimessiB@ecause the data cubes are
sampled properly in the range dimension, cubes are shiftétei range dimension so that
each cube represents a common range to the target. The @avarage to the target in the
data cubes are calculated and then compared to produceasartgat each image frame

within the data cube corresponds to the same distance. Ispgal domain, transverse
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shifts between cubes are accomplished by the vector piajectethod by calculating the
global shifts between corresponding frames in each data anl then averaging the shifts
across all frames in the cube. This averaged global shitssraed the only shift for the

cube considering the fast acquisition time of the sensor.

In [72], a scanning laser and passive electro-optical (EO) caarerased to create
data sets enabling sophisticated data-processing metbag® for building 3D environ-
ments, data classification, bare earth extraction, 3DAgtcoction of buildings, and identi-

fication of single trees and estimation of their positionghe canopy size and species.

Processing methods are presented that convert raw 3D FLASMR data to cleaned
3D data cubes enabling information to be generated, disdlaand analyzed in real tim&7).
The processing methods include: “noise reduction, grolewdkepidentification, detector re-
sponse deconvolution and illumination pattern re-norpadion.” Of most interest in this
paper is the development of the APD response deconvolutdeally, each voxel would
represent a single area of the remote scene. However, thed&iotors are not ideal and
the voxel experience coupling between each other. SinceubeAPD detector response
is tough to measure, the effects of the multiple-pixel cowgpare mitigated by identifying

the range tails within the array and moving the tail’'s enatigger to the voxel of interest.

In [10], 3D FLASH LADAR data is used to collect lacunarity metrichish are used
to measure and characterize forest canopy gaps. The gamksablish the availability
of sub-canopy collections and to characterize the imagarfppmance of different canopy

and forest types.

Using a range-gated 3D LADARY)] describes the ability to to process the data and
characterize different targets such as forests, snow, htimeas, and the ability to penetrate

vegetation.

A Bayesian estimator is derived to perform deconvolutiarofgject retrieval improv-
ing 3D FLASH LADAR system range resolution and probabilifyletection []. From the

deconvolution, the system improves its ability to idensifyfaces where the return pulse re-
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flected thereby removing the range estimate ambiguity cHogéhe waveform pulsewidth.

Of note, no form of the object is specified (i.e. transmittatsp shape).

In [53], target detection is performed on 3D LADAR data by using aeh@D vol-
ume correlation filter. The filter operates by finding the paster value that maximizes
the volume correlation between the data and either a 3D nadiehown 3D reference.
Methods of perspective correction are also described swathobjects are represented by

their true relative size.

The limits of theoretical resolution in 3D LADAR systems dexived in f1]. While
previous work focused on coherent detection LADARS, thiggnaextends their work to
derive fundamental resolution limits in direct detectidhstanning and FLASH LADARSs.
The “volume of resolution” is a constant metric allowing th&DAR designers to balance

spatial and range resolution consistent with system goals.

Multiple post-processing methods for a 3D FLASH system ascdbed in §5]
including matched filtering, coordinate mapping, jittemval, and registration. Although,

no object retrieval methods are employed to improve results

A super-resolution method is developed for 3D FLASH LADAR[G8]. Perfor-
mance of the method using synthetic and real targets is stmb@&better than upsampling

and interpolating methods by using the Canny edge deteatgmmithm [L1].

In [15], this paper develops an image deconvolution techniquegugigularized in-
version followed by a denoising filter. Inversion refershe tll-posed problem of removing
the blur from the the imaging model. The inversion processpraduce poor results in the
presence of noise due to its uniform amplification acrosguieacies. Regularized inver-
sion (such as Wiener filtering) can alleviate such problehfsn, assuming there are similar
patches within a natural image, the de-noising filter is Basea block-matching and 3D
(BM3D) filtering method. This work extends the regularizaedarsion, regularized wiener
inversion, and BM3D work to handle colored noise. Of noteggutarization parameter

that is determined empirically is used in the inversion pesc
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2.6.3 Blind Deconvolution. As part of the research effort, blind deconvolution
techniques will eventually be employed given a laboratarfiedd test with a 3D FLASH
LADAR remote sensing scenario. A review of the pertinemdbldeconvolution literature
is appropriate given this realistic situation. 2D passieeteo-optical papers usually have
one object and many different blurring functions due totreddy slow image acquisition
times with corresponding atmospheric turbulence. Whetbas3D FLASH LADAR blind
deconvolution scenario has many different objects withldoging function regardless of
atmospheric turbulence strength. Each data cube of 3D FLUASBAR is considered to be

blurred by one point spread function due to the rapid actostime for the range images.

Overall, there wer@o papers found that attempted to restore the object by pefform
ing blind deconvolution on any type of 3D LADAR system. Theiogl astronomy field
dominates the image blind deconvolution publications. itaén difference between this
research versus the typical blind deconvolution is that tesearch endeavors to estimate
the waveform parameters located within the object and despjnt spread function while
the typical 2D image blind deconvolution problem estimates phase within the point
spread function and a single object. In other words, rathan parameterize the point

spread function, the object has been parameterized ingbesarch.

Generally regarded as one of the founding blind deconvariytapers,§9] performs
signal recovery for multiplied and convolved signals byngshomomorphic filtering uti-
lizing the complex cepstrum of the signals. Results of therfilg technique applied to

deconvolution problems are shown in speech processingamremoval.

The other founding paper concerning blind deconvoluti@overs the original music
from old-time vinyl records by homomorphic filtering or pownspectrum estimation tech-
niques B2]. The assumed mathematical model is audible music reguitirm the original
music convolved with a record players impulse response.y Babsequently extend the
theory to a simple imaging example whereby they look to regrtbe effects of image blur

caused by camera motion, inaccurately focused lenses taras$pheric turbulence.
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In[42], general blind deconvolution methods are reviewed angsdiad into 2 classes
which are (1) PSF estimation separate from the true imagea&sbn and (2) simultaneous
estimation of the PSF and true image. The first class useg@esiethnique called Priori
Blur Identification methods. The second class incorporage®ral techniques including
Zero Sheets Separation, Autoregressive Moving averagd/i@RParameter Estimation,
Nonparametric Deterministic Image Constraints Restonatand Nonparametric Methods
based on High order Statistics. In the follow-up papi,[the authors discuss other blind
image deconvolution methods that were omitted from the#vimus article which were

projection-based blind deconvolution and maximum liketid restoration.

Given the mathematical model in this research, the most@eerarticle is fromT1].
This paper develops a maximume-likelihood based blind dealotion technique on images
corrupted by photon noise without the need for a nearbyeafas point source which can
converge to the solution faster (e.g. less required franmes) techniques that do require
a point source. The blind deconvolution technique is calledGeneralized Expectation
Maximization (GEM) algorithm based on the seminal work bynipster,et al.[16]. The
GEM algorithm is advantageous due to its ability to redu@ertfaximization complexity

and to uncouple the object and blurring function.

In [46], the blind deconvolution is performed by error minimizativia conjugate
gradient minimization where the error is a composite of dgwns from image and Fourier
space constraints. Also, blind deconvolution techniquesused with phase estimation

methods for object retrieval on raw speckle images.

Using Kolmogorov statistics to model the turbulent atm@sphblind deconvolution

is performed on astronomical speckle images approximatiaghot noise by a weighted

Gaussian noise modelt]. The weighted Gaussian model is used because the author as-

serts that many imaging situations don't fit the usual PoisgaGaussian noise statistics.

In [21], an iterative blind deconvolution algorithm based on thehBrdson-Lucy al-
gorithm is developed and compared with a Wiener filter bliadahvolution algorithmd0Q], [62].

The authors choose to develop a new algorithm based on thafgon-Lucy algorithm
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due to its proven robustness in the presence of high noigslevihey also perform a
“semiblind” deconvolution by attempting improve the algom by addinga priori infor-
mation by assuming a functional form of the PSF. By “paramatey” the PSF, the num-
ber of unknowns of the PSF reduces drastically. Concludiams this paper are that the
Richardson-Lucy algorithm is more stable than other bliedahvolution algorithms and
has a better noise tolerance than the Ayers-Dainty and \Wfétez algorithms. FromZ],
the Ayers-Dainty algorithm generalizes the Feinup phaseval algorithm by implement-
ing an iterative technique based on Fourier transformsgalath energy conservation, an
image non-negativity constraint and Fourier domain cemsts to estimate the object and
PSF.

Another attempt to retrieve the object and PSF is accomgiidly a maximum a
posteriori (MAP) estimator on a 2D LADAR imaging systef?]. Although, in this case,
it is the optical transfer function (OTF) that is estimatgdoarameterizing the OTF based
on Fried’s seeing parameter. This paper also develops a Mfimator for the speckle

parameter in a negative binomial probability distributioadelling partially coherent light.

Considering the field of fluorescence microscopy, blind deotution is performed
using an iterative expectation-maximization approacthwiame prior knowledge of the
PSF characteristics and assuming Poisson noise stafi3ficsThe characteristics include
circular symmetry (general symmetry is also presented)aabdnd-limited nature. The
symmetry argument is appropriate due to the symmetricaireaif most apertures. The
band-limit constraint, which rules out the trivial solutioalso is appropriate due to the
low-pass filtering effect of optical systems. The trivialigen is the solution where an im-
pulse is convolved with the degraded image. Using thesd@ints, the algorithm suitably

reconstructs the original images.

In [87], image recovery is performed from noisy and blurred obetons by imple-
menting an adaptive finite impulse response filter. Coefiisi®f this filter are updated
using a two-dimensional Constant-Modulus (CM) cost fumtgimilar to one-dimensional

blind adaptive equalization found in the communicationisifie
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Focusing on astronomical applications, this paper buitdghe iterative blind decon-
volution result from Ayers and Dainty?] by utilizing methods that reduce edge effects,
account for different convergence rates of the object anmlile® response, shorten conver-
gence time, and perform noise dampeniglg The methods are valid when only constrain-
ing the data to be positive. A method of initializing the sglampulse response is attained

by using autocorrelations of the observed image.

Referring to [Lg], image reconstruction of a blurred and noisy optical sysi® per-
formed using phase diversity, deconvolution (Richardsooy based), and iterative blind
deconvolution. All three methods satisfactorily reconstrthe image with similar accu-
racy, but deconvolution is fastest. Their work handles re¢el scenes or scenes in which
the object either encompasses the FOV entirely or is largar the FOV. Consequently, the

edge effects cannot be ignored and must be accounted foe adgbrithms.

In [61], blind object reconstruction is accomplished by redudimg 3D problem
into a set of 2D problems. Along with imposing positivity abandlimit constraints, new
estimates of the 2D image and PSF are obtained by Wieneirfgtdne Fourier transform
of the image or PSF respectively with the current estimateerd is an important result
concerning 3D vs. 2D sampling requirements. As opposeda@ihimage scenario, 3D

blind deconvolution has a unique solution even if the dateotdNyquist sampled.

2.6.4 CRB and Parameter Optimization. Compared to the convolution model
contained in the present paper, previous work on boundmggrperformance in the LADAR
topic area focused on single pixel (i.e. single target inx@lpianalysis. In9], a CRB on
range estimation is derived for a single pixel of a 3D FLASHDRAR. In support of the
bound, the unknown waveform parameters (target rangegttargplitude, and pixel bias)
are estimated via a maximum likelihood estimation algomitiheoretical and simulation
results show that centimeter level range accuracy is attéen Closed form solutions for

the CRB are provided in the follow-up work iB9.

Another paper developed a signal-to-noise (SNR) basedaddthdetermine range

and spatial resolution limits of scanning and direct dededt ADAR [41]. While account-
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ing for the proper LADAR noise sources and operating parareethe SNR-based method
does not consider the performance of the algorithms redaor@stimate the resolution in

the presence of noise.

Other literature has utilized the Gaussian function to diescdhe object. In 28],
the object profile is defined by a Gaussian in one dimensianipted by additive Gaussian
noise. The CRB on a one target profile estimation is perforrirednother paper, the object
is a two-dimensional (2D) Gaussian describing the incideensity on a charge-coupled
device (CCD) arrayd9]. This 2D Gaussian is used to develop a two-dimensional CRB
for any unbiased position estimator as well as a maximueithkod (ML) position optical

estimator (position only, no range information or estinate

The use of the CRB in parameter optimization or performamagacterization has
been done previously in fields such as heterodyne Light Bieteand Ranging (LiDAR),
RADAR, and positron emisson tomography (PERY|[ [44], [48], [49], and [69]. In all the
papers, the method was to pick the optimum condition bas€dR# minimization either
through physically-based analytic expressions or bountpawisons over different parame-
ter choices. In§9], comparisons are made using the CRB concerning Dopplienasbn in
heterodyne and direct detection LiDAR given several défeioperating parameters. Also,
methods are discussed that enable heterodyne Doppleaéstimperformance to approach
that of the CRB. Concerning synthetic aperture RADAR (SARBS3idgn in 9], the CRB
developed in this paper showed that performance is enhdmcaudplementing a multi-
dimensional aperture over a one-dimensional apertureldnthe CRB is used to validate
the use of range compression in multi-input multi-outputND) RADAR. Also, wave-
form optimization in MIMO RADAR is accomplished via sevenainimization techniques
on the CRB matrix to include minimizing the trace, determinand largest eigenvalue.
Another paper uses the CRB to select an optimal RADAR beataegpansformation oper-
ator [20]. The optimality condition metric is physically-basedngithe analytical form for
the beamspace transformation that minimizes the CRB fomdatself. Finally, the design
parameters of avalanche photo diodes (APD) used in smatla@dET are optimized by

selecting those parameters from the search space that tivaize the CRB 44].
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[11. Laboratory Data Collection

n order to verify theory and simulation range estimatiorultss laboratory measure-
I ments were collected using an Advanced Scientific Conc&&€] Inc. three dimen-
sional FLASH LAser Detection And Ranging (3D FLASH LADAR)ahilluminated a
target corresponding to one used in simulation. The dédbaiend the collection are the

topic of this chapter.

Using the three bar target template, a laboratory expetimas conducted using 3D
FLASH LADAR hardware consistent with parameters in TaBleé Experimental results
presented in a later chapter show range estimation imprenteafter applying the object
recovery techniques. However, modifications to the camedaav data were necessary to
enable a proper experiment and ensure that the data matehesodel from Sectiol.5.
The system point-spread-function (PSF) is also determexgxtrimentally using a step
target which is done such that the PSF can be used in the algeotoration algorithm
(Wiener filter) detailed in SectioB.1.1 Finally, the ability to use object recovery algo-
rithms is contingent on using the incoherent light modelkdesd in Sectior2.1. Thus,
the speckle parameter of the partially coherent light iflistion is estimated and compared
against the incoherent model. While some speckle noisadgetin the data, the estima-

tion results indicate that the incoherent model is a valjgrapimation.

The chapter is organized as follows: Sect®t provides details on the 3D FLASH
LADAR hardware, Sectior3.2 discusses the laboratory collection set-up used for experi
mental data processing in Secti®oi3, Section3.3identifies the default hardware configura-
tion as spatial aliased and describes the correction, &4 provides the steps required to
pre-process the experimental data including gain vanagualization and photon scaling,
Section3.5 specifies how the system PSF was attained from a step targk§extion3.6

derives a speckle parameter estimator and performs timeaggin on the experimental data.

3.1 3D FLASH LADAR Hardware Description

A 3D FLASH LADAR is an active, pulsed system that is both angmg and rang-

ing sensor. It produces a time sequence of two-dimensi@iglimages due to a fast range
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Table 3.1: 3D FLASH LADAR parameters

Parameter Value
Detector Array 128 x 128
Aperture DiameterD) 2mm
Mean Wavelength 1.55 pm
Focal Length 0.30m
Target Range 521m
Transmit Energy 10 mJ
Pulse Standard Deviation() 3ns
Beam Divergence 0.009 radians
Detector Spacing 100 pm
Detector Array Fill Factor 100%
Detector Bandwidth 0.5 um
Target Reflectivity 10%
Solar Irradiance 10 Watty/m? /ym
D/r, Seeing Condition 1.43
Frame Rate 30 Hz
Time Samples 20
Sample Period 1.876 ns

gate resulting in a 3D data cube of spatial and range scenendldt excellent range reso-
lution [19], [81]. FLASH technology principally differs from scanning LADAby being
able to form a 3D representation of a remote scene in one pagee rather than rastering
a 3D scene together using many pulses. This capabilityteesufaster scene collection
times with lighter weight, lower power, and reduced mecbalntomplexity as compared
to the scanning systems. Operating in the eye-safe shes-imfrared region (SWIR) of
the electromagnetic spectrum at 1570 nm, a representgttens shown in Figur8.1is
built by ASC, Inc. and has receiver electronics consisting 28 x 128 detector array and
associated circuity capable of producing twenty (20) 2yeaslice imagesd6]. Detector
pixel separation is 100 micrometers with nearly 100% filkdeclue to a focusing micro-
lens array in front of the detector pixel array. An extrentast range sampling interval
of 1.876 ns makes it nearly impervious to platform motioriatison for a single cube col-
lection. Depending on the LADAR operating mode, each pirelld either have a distinct
starting range dependent on received photon levels (“hdef)cor have the same starting

range (“sular mode”). Capable of “real-time” 3D movies,ibguces a cube of spatial and
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Figure 3.1: A picture of the Applied Scientific Concepts (A%a. 3D FLASH LADAR
system including the laser, receiver optics and electsmnd laptop. ASC
provides a laptop to operate the LADAR and view and processebeived
signals.

range scene data where each 2D range slice image contattet#wted counts proportional
to the incident photo-electrons upon each pixel in the detesrray. Four dimensions of

data are available to include the two spatial coordinategye, and intensity.

As previously described, a 3D FLASH LADAR operates in onevad mmodes. The
first mode is called “hit mode” where each pixel element (ileindependently triggered
when its intensity reaches a preset threshold. This modie#ageous when searching for
a target where the range is not already known. However, atedcwaveforms can occur
leading to range estimation errors. The second mode isdc&ldar mode” where the
pixels are triggered to start recording data together basedpreset range. Benefits of this
mode include being able to successively capture fine dethilse target and background.
Drawbacks are that the target range must be known a prionraveforms are truncated
for targets near the end of the collect. An potential CONog¢Perations (CONOP) is for
“hit mode” to operate like a search RADAR and, once the taiggatquired, “sular mode”

would track and identify the target.
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The breakthrough technology in the ASC 3D FLASH LADAR is theser RADAR
Processor (LRP) which allowed for the fast range samplirgd)iadependent pixel con-
trol [63]. Due to advances in semiconductor technology, the LRP wiggnally a 32 x
32 detector array with 400m pixel separation which improved to a 128 x 128 array with
100um pixel separation using Indium Gallium Arsenide (InGaAslanche photo-diodes
(APD) as the detector material. APD detectors generate ralyrons for a single inci-
dent photon and are useful in low-light situations. The fasge sampling is achieved by

analog and digital circuitry independently located beleadh of the pixels.

3.2 Data Collection Details

Located at Wright-Patterson AFB, OH, the Air Force Reseasmboratory (AFRL)
Sensors Directorate contains facilities acceptable ferafpn of the 3D FLASH LADAR.
Ideally, the intent would be to operate the LADAR from the flmor of the building across
a considerable distance (kilometers) right after dusk feeence atmospheric turbulence.
However, due to the constraints of the aperture size (dsgtlig1 Sectior8.3), the target
range is shortened to meters to allow for a sufficient sigoadeise ratio (SNR). The range
to the first surface is 5.21 m and is set up to be 1.7 m into thgeraollections. Range
to the second surface is 1.22 m from the first surface to giughty four range samples

between surfaces.

Receiver optics required some modifications from the detauifiguration €], [9].
The optics are focused on the first surface which means thaiubcessive range collects
are slightly de-focused. The resulting data shows littfeatffrom the lack of focus. Con-
sidering the short range distance, a one degree diffusauti®mpthe laser transmission
optics to enable the entire target to be illuminated by thebwithout lowering the SNR
prohibitively. The focal length is set at 300 mm. Due to samgpissues covered in a later
section, the aperture diameter is changed to 2 mm by usivgbecardboard with a circu-
lar hole cut in the center placed in front of the supplied aper(10 cm). Using similar

triangles, each detector pixel field of view (FO¥) corresponds to 1.7 mm at the target
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Figure 3.2:  True ranges of the three-bar target with firstaserat 5.21 m and second
surface at 6.43 m with 1.22 m of separation in between swsface

location determined by the following calculation:

T _ T
Ty Ji
Tp 100 pm
521m 300 mm
r, = 1.7mm (3.1)

wherez; is the target range;, is the pixel separation, anfl is the focal length.

Referring to target template depicted in Fig@r@, the first surface targets are con-
structed from white, flat cardboard with the bars cut out & board (first surface) and the
other board is left untouched (second surface). There arslimmer rectangle targets and
one larger rectangle target. The slimmer targets are 0.5 icitinWwy 5 cm length and the
larger target is 1 cm width by 5 cm length. All three targets iadividually separated by
1.5 cm (edge to edge).

3.3 Spatial Aliasing

Due to limits in current detector technology requiring ag&afootprint for the elec-
tronics behind each pixel, the receiver optics are spgtieltier-sampled which needs to be
mitigated in order for the received data to be unaliased. dliasing would cause uncer-

tainty in the received data and violate the data model. Tleutteconfiguration is aliased

62



because of the Nyquist sampling theory in which the samptitg must be at least twice
the highest frequency content in the signal. The optics arataral low-pass filter with
the highest frequency called the cut-off frequency. Foolherent imaging, the cut-off

frequency is 25|
D
N )\Zi

Jo (3.2)

whereD is the aperture (exit pupil) diametex|s the light wavelength, ang is the image
distance. Therefore, the focal plane must sample at twisesgiatial frequency @D/ \z;.
The typical apertures for this camera are in the centimekensexample, an aperture of 10
cm would equate to a spatial frequency sampling requireraiensx10° cycles per meter.
At 100 um spacing, the detector array does not meet this requiremérnhe aperture
is reduced to 2 mm, then the spatial frequency sampling reopgnt is now ag.6x10?
cycles per meter which the detector array can meet. Howehesgperture reduction comes
at the expense of reduced light gathering and shortenedc rianghich the LADAR can
be operated. Thus, the target range is placed at 5.21 metss the minimum ranging
distance of the sensor) to obtain high enough signal to maitse (SNR) in the collected

data.

3.4 Data Pre-processing

The data observations from the 3D FLASH LADAR hardware needgrocessing
steps to be suitable for insertion into the Wiener filter arfeM5algorithms. In simu-
lation, the noisy and blurry data are well-controlled andréffiore, well-behaved. While
the experimental 3D FLASH LADAR data exhibits expected pixaveform shapes (i.e.
Gaussian-like) and spatial blur, the data is ill-behaved tiegree due to inherent features

of the hardware performance.

Referring to B8] and [73], the experimental hardware experiences a gain phenomenon
whereby a pixel's gain drops when laser energy is incideahugplarge area of another part
of the detector array. With the three bar target, the laserggnis incident on the front

surface first which causes second surface pixels to experig@main drop. Figurd.3(b)
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Figure 3.3:
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(a) Gain profile correction resulting from exog Equation 8.7). By look-

ing at background pixels, the hardware gain dip is clearlgew at the first
surface (near range sample five) and the second surface raregg sam-
ple nine). The first surface gain drop is larger than the s&somface gain
drop due to the larger number of pixels illuminated (i.egéarsurface area).
Amount of gain drop is proportional to received intensitydieand quantity
of pixels illuminated.
(b) Investigating Pixel(19,32) from experimental three tzaget, the pixel
waveform benefits from the gain variation correction by remg the gain
drop near range sample four. After correction, the pixel efasm looks
more like the intended pulse model, but with unwanted naistaets.
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shows the gain drop for a second surface pixel. The methoddiwecting the gain is to
calculate an average gain profile by looking at backgrourelgii.e. returned laser energy

not incident on these pixels).

Assuming the system noise follows the Poisson distribudiath the gain is constant

between pixels, the data model for an arbitrary pixel is
d(t)=G(t)[Is(t) + I (t)] (3.3)

whereG (t) is the unitless, time-varying gaitig (¢) is the laser signal in units of photons,

and/; (t) is the background signal. A new variahiét) is determined by

d(t) == (3.4)

whereip (t) = G (t) I (t) is a known average background signal with gain apdt) is
the mean background signal without gain. The variapl€) is separately calculated in
the laboratory by averaging the detected background signaélected voxels across many

data cubes. Looking at the background pixels odly,) is

d(t) = = _GW0Is() _Is(t) (3.5)

var (cZ(t)) = F

= _Lvar (Ig(t)) = 5 ®) = = ! . (3.6)

Applying this result and using a sample varianceldh place of the statistical variance

(s> = var (ci (t))), the gain is determined by

G(t) = =% =ig(t)s* (3.7)




and can be seen in Figuge3(a). This gain profile is used on each of the pixel's waveforms
to correct for the hardware deficiencies and to more closelgimthe model. For example,
Figure3.3(b) shows the benefits of the gain correction for one secorfdipixel. Also
observed in the previous work, a side benefit of gain cowadt both first and surface
pixels is the waveform becomes more symmetrical. The ethldeer pulse shape is a
hybrid of a Gaussian or negative parabolic shape with soiymmgtry. Gain correction

takes out some of the asymmetry.

The 3D FLASH LADAR is also not a photon-counting device whame digital count
equals one photon. The receiver optics use Avalanche PhiodeB (APD) where one
photon equals many detected counts. Consequently, ittestsiling must be performed
to condition the data to be consistent with the Poissonildigton. The conditioning is
performed by using the statistics of the light and the detkechean and variance of the
data. The detected mean of the data/iSwhereq is a scaling factor with units of detected
counts per photon anfl is the true mean in units of photons. Since incoherent intaigin

assumed, the detected variance becomes

¢Po’ = @K (3.8)
noting that the mean and variance of the Poisson distribwdre the same. The data is
scaled by solving fog and then converting the detected counts to photons by

o =& (3.9)

whered,,;, is the data in units of photons adgl. is the data in units of detected counts.

3.5 Experimental PSF

The Wiener filter is used to provide a comparison to the GEMrdtligm [55]. In order
to implement the Wiener filter, the PSF must be known. Sineel#rivative of a system step

response is the system impulse response, the PSF is deterbyitaking the derivative of a
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experimental step target. Figudel(a) shows a range image of the step target collected with
the same hardware as the bar target data. Although, the eatige image does not meet
the requirements of being a step target due to the non-umiiotensity on the left-hand-
side (LHS). Therefore, a symmetric impulse response wasyass and the right-hand-side
(RHS) of the impulse response was copied and flipped oveetasithe LHS. Figurd.4(b)
exhibits the resulting profile with an outer product openaproducing the two-dimensional
PSF. Phase retrieval is then performed via the Gerchbettpi$algorithm to arrive at the
PSF used by the Wiener filte2J]. This requirement to know the PSF is a shortcoming
of the Wiener filter algorithm. Figure3.4(c)-(d) show the optical transfer function (OTF)

where the optics exhibit a nearly diffraction-limited pmrhance.

3.6 Speckle Parameter Estimation — Incoherent Imaging

Both the negative binomial and Poisson distributions candeel to capture the non-
negative, discrete nature of the laser light. The negatierbial distribution would be
the most optimal in describing the illuminating partiallgrerent laser light, but blind de-
convolution methods are cumberson2d][ Whereas, blind deconvolution methods with
the Poisson distribution (incoherent imaging) are moretatae and, thus, utilized in this
research. Even if the speckle is severe, the benefit of nmayldie speckle does not out-
weigh the cost of implementing a partially coherent blinddaesolution model for the
3D FLASH LADAR system. Previous research using the incafiedata model for a 3D
FLASH LADAR has also experienced succeSk [39].

To gain more insight into this assumption, a simple appraacto estimate the
amount of coherence contained within the 3D FLASH LADAR dayaestimating the
speckle parameter of the negative binomial distributioaaly from the datag4]. Captur-
ing both temporal and spatial coherence, if the specklenpeter estimate is high enough,
the negative binomial distribution will look Poisson-lilelowing the data observations
to be modeled as arising from an intensity convolution (lrerent imaging). Including
speckle and photon noise effects, the negative binomidigiitity mass function (PMF)

describes the photon distribution of a partially coheremging system for a single pixel
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Figure 3.4: (a) One range image of the step target data cubleouyh the board edge
is clearly visible, the variable intensity across it cauaasissue with the
impulse response calculation. The step response defingguires a con-
stant amplitude at all spatial positions. The target boandign of the step
response does not meet this requirement, but the non-tmege(right-hand-
side) does exhibit a constant amplitude. The portion of tep sesponse
function where it turns off is this non-target area. Perfioignthe step re-
sponse derivative only on this non-target area solves thiglgym of variable
target board amplitude.

(b) 1D cut-out of the resulting PSF. Assuming circular syrmnean outer
product operation is used to find the corresponding 2D PSF.

(c) Optical transfer function (OTF). The OTF is found by taithe Fourier
Transform of the experimental PSEH.

(d) 1D cut-out (zero spatial frequency) of the OTF. The pedsthows nearly
diffraction-limited optics with a cut-off frequency at 40%ycles per meter.
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or [24]
P(K)=

(K + M) [ M}_K{ K]‘M (3.10)

14+ —= 1+ —
K +1)T'(M) K M
whereM is the speckle parameter ahdis the pixel’s average photon count. Changing the
distribution for a 3D FLASH LADAR, the illuminating laserght statistics for a particular

volume element (voxelx( y, kK remain constant) across many data cubes is

P (Djg (z,y) = d]k (r,y)Vj € (1,2,....]))

[l e tan |, 4, £

My>+1>r<M> R

(3.11)
j=1
wherej represents the data cubésis the range image (i.e. time variable) within a data
cube,(z,y) are the coordinates in the image plane, dpdz, y) is the data observation.
The voxels are assumed statistically independent from etdr because of the discrete
nature of photons and the detected photons do not affeatefutetected photons. The

maximum likelihood solution for the average voxel intepsitdetermined by
_ 1
K= j; diy (z,7). (3.12)

Taking the natural log of EquatioB(1]) yields

[P (Dji (z,y) = djx (2, y) Vj € (1,2, ..., J))] =

el e

j=1

~MIn [1 + %} (3.13)

where graphical methods are employed to find the specklenatea that maximizes this
log-likelihood. Using the same experimental data as in #mge estimation efforts, a col-
lection of voxels with the strongest laser light is choseegtmate the speckle parameter.
Figure 3.5 shows the similarities between the negative binomial ands®a distribution

using an average of the estimated speckle parameter.
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Figure 3.5:
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This plot shows the negative binomial (NB) usargestimated average
speckle parameted{ = 414) versus the Poisson distribution with the same
mean (¢ = 3447). While not identical, the negative binomial distribution
compares well enough to the Poisson distribution to assnowsderent imag-

ing.

Even without considering speckle parameter estimationtsgghe argument can be

made for incoherent imaging due to the Poisson distribigiahility to model the non-

negativity and discrete nature of ligtt][ [39]. This argument is solidified by the speckle

parameter estimation results indicating that the speatdeenappears low enough for the

incoherent imaging model to be used with confidence.
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V. Range Estimation

ange estimation in three dimensional FLASH LAser Detectimdl Ranging (3D
R FLASH LADAR) has been limited thus far to statistical metedtat operated on
data models that did not incorporate the blurring effechefd$patial impulse response. In
other words, there was a one-to-one mapping between thetqgidgme and image plane
points. Considering a the 3D FLASH LADAR system as a linepace-invariant process,
the relationship between the object and image plane is tidgcribed by a convolution
between the object plane intensity and the intensity pgrgad function (spatial impulse
response). Consequently, the simple models ignore thé-joi@xel coupling that could
significantly degrade range estimation results. Refertin@hapterll, whether using a
simplified model or a higher fidelity model, the method of raggs exactly the same in

that each pixel in the detector array is ranged indepengdentl

This chapter details several pixel-based ranging algostinclude: Sectiod.1 —
peak detection, Sectioh2 — maximum likelihood $5], Section4.3 — normalized cross-
correlation p6], Section4.4 — two point target estimator, and Sectidrb — two surface
estimator. The two-point target estimator is a novel cbatron that is able to spatially and

temporally estimate two point targets in a scene.

4.1 Peak Detection

A very simple ranging algorithm is peak detection. This aitlpon selects the range

sampleD (z, y) based on where the peak sample count occurs or
D (z,y) = argmax dy (x,y) . (4.1)
k

whered, (x,y) is the received waveforni; is the range sample variable, afd y) are

the pixel dimensions. Theoretically, if the received wawaf was sampled continuously,
one could perform peak detection and not encounter anypiol@ion or quantization error.
However, real systems have a sampling period which creates sambiguity when peak
detection is used. Therefore, more capable methods arénsthag enable estimation to

be sub-sample. Some of the errors though could be mitigatéutdrpolation. The effects
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of spatial coupling and shot noise would further degradeviheeform of a sub-sample
target in addition to the deformation already encounteseiissub-sample range position.
These effects would make obtaining accurate estimatesdtandard peak detection very
difficult.

4.2 Maximum Likelihood

Based on%5], this section reviews the development of a maximum likedith method
to estimate range to the target at a single pixel given arnmnétexd Gaussian pulse with ad-
ditive Gaussian noise. Maximum likelihood is chosen beeanists relation to the Gener-
alized Expectation Maximization (GEM) algorithm used inudSequent chapter where an
iterative technique possibly leads to the maximum likedithgolution. From@4], the max-
imum likelihood estimator is the parameter estimate wheeertaximum of the posteriori
density occurs. Using Gaussian statistics to describentt@ming noise, this posteriori

density for an arbitrary pixdle, y) and range sampleis

1 —(dy (z,y) —ig(z,y)>

e 202 4.2
\21o (4.2)

whereo is the Gaussian noise standard deviation. The remainingatien assumes de-
pendence ofix, y) and drops the notation. Since there afdime samples and assuming
the time samples are statistically independent of eactr,dtiestotal distribution across all

time samples is the product of the individual distributions

K
1 —(dp—ip)?
P[Dy=diVkell,.K)| =] e 207 . (4.3)
Pl \2mo

Given that maximizing the natural log of a function is the saas maximizing the function

itself, taking the natural log of EquatioA.Q), L = In(P(d(¢x)), results in the advantageous
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form

Lo B[P ()
Sy [ R B, (CL)] o

k=1

Because the range and amplitude are both unknown param#tersstimation process

must estimate the amplitude first and is found &4 [

Qi (R) = argmax L. (4.5)
A

Taking the derivative with respect tbin Equation 4.4) and setting it equal to zero results

in

= pi(R) =0 (4.6)

i [2<dk — Api(R) - B)
k=1

where the term that doesn’t depend.étas been dropped. Grouping terms and canceling
o’ gives

> ([ — Blpi(R) — Ap(R)) =0 (4.7)

Solving for the amplitude of the received wavefor#,results in

i[dk— Blpu(R))
G (R) = =1 . (4.8)

kZ::l Pr(R)

One important observation of the Equatioh§) is its dependence on range. For each
pixel, the amplitude estimation process consists of selget candidate rangg in p, and
stepping through each time sample to determine the maxinkeihiood solution forA.
Using this amplitude estimate, the only other unknown foiverypixel is the target range.
Finding a similar closed form solution for a range estimate#aublesome due to the range

term residing in the exponential. Hence, finding the maximafnthe distribution with
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respect to range by

Ty = argmax L (4.9)
R

is mathematically equivalent to using the amplitude esnta calculate the values fdr
in Equation 4.4) for each candidate range and selecting the range thatspomds to the
largestL value. This range serves as the estimated range for thdt pixe algorithm for

estimating the range in each pixel is thus:

1) Select pixel locatiofiz, y)

2) Select candidate range

3) Estimate waveform amplitudd,

4) Using the candidate range and amplitude estimate, el
5) Repeat Steps 2-4 until all candidate ranges have beeultest
6) Select the range that corresponds to the maximuralue

7) Go back to Step 1 for all pixels in detector array.

4.3 Normalized Cross-Correlation

In order to mitigate inter-sample targets, scaling, andef@wn truncation issues,
sub-sample ranging is performed on a pixel's pulse-shape:, n) (e.g. EquationZ.72
or (2.73) by using a normalized cross-correlation (NCC) methodeasn the Pearson
product-moment correlation coefficient. Using this coédfit forces each pixel’'s waveform
to be zero mean and unit standard deviation. A symmetricakfeam is assumed for
notation simplicity . However, an asymmetrical waveformtinoel could be implemented.
The correlation matrix would then be increased by one dimendue to breaking up the

pulse-width standard deviation into two variables: legdind trailing.

Analogous to a cross-correlation range estimatod#h, the normalized cross-correlation
method is constructed as follows: The range vector of sasnpithin a cube is represented
by
R (k) = zmint2inc (k) (4.10)
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wherek € [0,..., K — 1], K is total number of samples (sani as defined in the data
model in SectiorR.5), z,.;, is the range of the first sample, ang. is the range increment
per sample. Another range vectadr, is constructed with the same maximum and mini-
mum extents a&, but with a smaller range increment per sample defined byailenfing
equation:

Kr (Q) = ZminT2f (Q) (411)

whereq € [0, K’ — 1], K’ is the number of samples ifi,,, andz; is the range increment.
Since the extents o, matchR, the following inequalities holdK” > K andz; < zj,.. A

2D reference Gaussian waveform matrix is used withiAhe/ector as the reference target

Tk (q) = exp { —(t = 2K+ (9) /e) } (4.12)

2
202

location or

wheret, = 2R (k) /c and is the time vectoRR (k) is the range vector from Equatio#.(0),
c is the speed of light in vacuum, amg, is the transmitted pulse standard deviation. The

zero mean and unit variance version-pffor all & € [1, ..., K] andg € [1, ..., K'] is
S, (k. q) = @ — Tk (@) (4.13)

wherecs? andr, are the variance and averagergfin the time dimension. Considering
the range estimate for then, n)"" pixel, the zero mean and unit variance version of the

pulse-shape of interegt (m,n) forall k € [1, ..., K] is

M=

k lpk(mvn)
Pk (m7 n) - K
oy (m,n)

Si(k) = (4.14)

whereag is the variance opy. (m,n) in the time dimension respectively. Withy and.S,

determined, the normalized cross correlation denotedibyerformed by

Sy xS
O = 2K/1

_ (4.15)
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The cross correlatior operation is carried out using a matrix multiply given by
Sy xS = (55)" xS (4.16)

where S, and S, have dimension§X, K’| and K| respectively,“T” is the transpose op-
erator, andx is a matrix multiply. The result of the matrix multiply is aater of values
Ck, with dimension K] that correspond to the strength of the similarity betweenréi-
erence waveforny, at different target ranges and the data wavefSimFinding the range
estimate is accomplished by peak detection (i.e. selethim¢arget range with the highest

value from the matrix multiply) o', or

R(m,n) = argmax Ck, (q) . (4.17)

Zmin +Zf (q)

The NCC method is used exclusively in Chapter

4.4 Two Point Target Range and Spatial Separation Estimator

With FOliage PENetration (FOPEN) applications, this sattievelops a range sep-
aration estimator by using a least squares approach ad@pitegrevious work that only
considered two targets within a single pixel in a non-blwenvironment §]. While no
noise source is specified in the subsequent developmeimag¢st results in a shot-noise

limited environment are given in Secti@ni2

4.4.1 Two Point Target Data Model. The mean of the observations in units of
photons of a two point target scene interrogated by a 3D FLABBAR are defined by
a convolution between the object and the system point-dgtgaction (PSF) added to a
pixel bias or p5], [37]

ik (x,y)zZZok (m,n)h((m—m,y—n)+B(x,y) (418)

m=1 n=1
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where(z, y) are the pixel plane coordinates withe [1, X| andy € [1,Y], k is the range
dimension coordinate, an@n,n) are the object plane coordinates with € [1, /] and
n € [1, N]. The integer range dimension varialile= [0,K — 1] corresponds to a range

distancer; in units of meters according to

- (’”20) (4.19)

with K being the initial/starting range of the data cuheas the range sampling interval

in seconds, andbeing the speed of light in meters per second.
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Figure 4.1: (a) For illustrative purposes, this figure is ageimage of the truth data
where the reference target is in the center of the array & h@ters with
the unknown target placed at,, = 2 pixels andA, = 1.7 meters.

(b) Defined by Equation4(22), this shows the ideal waveforms of the un-
knownp (r, — K;) and reference target(r, — K,) from Figure4.1(a) with
a pulse-width standard deviatiof), = 0.88 ns.

Considering both range and spatial dimensions, the twot paiget scene consists
of one target at a known position and one target at an unkn@sitipn. The targets are
constructed this way since the paper’s focus is on rangeaspabetween the targets and
not absolute range. This assumption keeps the parametatieoést (range separation) in-
tact while simplifying the data model by preventing an aiddial unknown parameter. The
targets are considered point targets spatially, but doipec returned waveform. Consid-

ering the two point target scene illustrated by Figuteléa) and (b) , the objeet, (z,y) is
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defined by

Ok (mv n) = Atp (Tk: - (Kr - Ak’)) 0 (m - Ama n) + Arp (’l“k - KT) 0 (m7 n) . (420)

where A, and A, are the point target amplitudes(r, — (K, — Ax)) andp (r, — K,) are
the received pulse shapes wihh as the known reference target af\g as the range sep-
aration between the known and unknown targéf) (or A, = K, — K;. While the range
sampling capability-;, of the LADAR is fixed by the receiver electronics, the unknown
targetK; could occur anywhere within the range gate to include rabgtseen samples.
Also, the spatial point targets are defined by Kroneckerdaltctionss (m — A,,,n) and

d (m,n) andh (z,y) is the known system PSF. The final term is the pixel ks, v)
and is intended to account for any ambient light, dark cureectron noise, and pixel-to-
pixel impulse response variations. This bias is assumedkrand to be governed by the
Poisson distribution due to the discrete, random naturbesfd noise sources. Concerning
the validity of the assuming a known pixel bias, it is targetépendent and can be sepa-
rately determined during LADAR operation by a calibratioepswhere the data is collected

without activating the laser.

Performing the convolution in Equatioa.(8) results in the simplified form

i, (.T,y) = Atp (Tk - (Kr - Ak)) h ('T - Am7y> + Arp (Tk - K?") h(l’,y) + B (Jf,y)

(4.21)
where the received pulse shapes are assumed symmetria&earsd defined by
1 —(Tk)2
= e — 4.22
0= et @22

with 0,4 as the pulse-width standard deviation in units of metersaefthed asr,; =

copt/2 Whereo,, is the pulse-width standard deviation in units of secondsiugsian-
shaped pulses are a valid approximation for the pulse shepesnitted from 3D FLASH
LADAR hardware B9]. After analysis on experimental data, it was also found the

received pulse-shapes display an inherent asymmetry. hier atords, the pulse-shape
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definition is changed such that there are two pulse-shapeata deviations concerning
Equation 4.22: one for the leading edge (pre-target) and another for rthiény edge
(post-target). Although the effects of asymmetrical psilea the CRB and range sepa-
ration estimation is a source of additional research, tmensgtry or lack thereof in the
received pulses does not change the conclusion that anatuise exists given the range
resolution metric. Symmetrical pulse-shapes are assuoresirplicity and are simply a

subset of asymmetrical pulse-shapes.

Furthermore, a spatially, invariant 2D Gaussian PSF isambgcause its differenti-
ation is straight-forward while still providing a functida sufficiently blur a target scene.
This type of impulse response has been used previously tride$lurring due to atmo-
spheric turbulenced[7]. The PSF is defined as

1 —(2* + v

wheres;, > 0 is the PSF standard deviation (measured in units of pixal$)saffected by

light diffraction effects, receiver optic’s quality, anth@spheric turbulence.

4.4.2 Estimator Derivation. Given the variable definitions from Equatiods18)-
(4.23, the sum squared error term is the sum of the square of tfexetice between the

observed data and the estimate or

B =SSy (@,y) — ik (z.))] (4.24)

where the dependence aXy, will subsequently be dropped for conciseness. There are
four unknowns including the two amplitudes, range sepamatind spatial separation. The
procedure to find the range and spatial separation estinsatesteratively step through
each possible combination of range and spatial separadibles (these values are known

a priori) and then determine the amplitudes that minimizedhror. After an exhaustive
search of combinations of range and spatial separatiomggatmbination that results in the

least sum square error is chosen as the estimates.
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For a particular amplitudd;, the approach is to take the derivative of the error (Equa-
tion (4.24) with respect to that amplitude, set the result equal to,ze¢F /0A; = 0, and
solve for the amplitude term. This method gives the ampditudiue that minimizes the
error term due to the positivity of the second derivativenc8ithere are two amplitudes, a
well-posed system of equations is set up by performiAgoA, = 0 andoE /0A, = 0 and

solving for A; and A, respectively resulting in two equations and two unknowrmshby

CinA + C2A, = Dy

Cn = ZZZ (K, — Ak))h(x—Am,y)]Q
Cip = Cm—ZZZ—p (K = Ap) h(z = Ay y)p (k= Kp) h(z,y)

Co = ZZZ— p (k= K.)h(z,y)
Dl - ZZZ dk {L' y)) (k_(Kr_Ak))h(x_Amvy)

The amplitudes are then determined by solving the systerguatens.

The following provides the estimation steps:

1. Select a range separatiak,

N

. Select a spatial separatiah,,

3. Determine the estimates for amplitudek, and A,, via the system of equations
in (4.25

B

Calculate error term using EquatichZ4)

o

Repeat steps 1-4 until all range and spatial separateresteen selected
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6. Select range and spatial separation corresponding nth#est error

4.5 Pixel-Dependent Two Surface Range Separation Estinnato

The purpose of this estimator is to be able to estimate thgereontwo surfaces within
a single pixel. Similar tog], this scenario differs in that the first surface in rangeriewn
while the second surface, further in range, is unknown.Heuyunlike the previous section
where the data model includes all pixels and range samplissdtimator operates on one
pixel at a time. Sectiol.3.2uses this estimator against a complex, two surface target to

find the optimal pulse-width with respect to range resotutio

The data model for an arbitrary pixel is

dk = ik + ng (427)

whered,, is the observed data, is the blurry, non-noisy data, and, is the noise. Since
a pixel can follow more than one data model, hypothesisrigst performed to decide
whether there is one or two surfaces in the pixel. In a twoamerftarget scene, a par-
ticular pixel might contain one or two surfaces. Therefdahe blurry, non-noisy data is

hypothesized to be either a “two surface pixel” by

i, = Ap (k — Ky) + A,p(k— K,) + B (4.28)

or “one surface pixel” by

iv = Agp (k — K,) + B. (4.29)

where A, and A, are the received target amplitudes (includes convolutfteces), p (k)

is the received pulse witl; as the unknown, second-surface target rangefénds the
known, first-surface target range, amdas the pixel bias term. Note, either the first OR
second surface can represented by the “one surface pixgliation @.29) case wherel,
and K, are generic variables representing either surfaces pkatiamplitude and range

respectively. The unknown target ranffe can also be defined by a range separatign
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from the known targeK, by K; = K, — A,. The terms that must be estimated (i.e. the

unknowns) ared;, A, (if “two surface pixel”), andA,..

Regardless of the number of surfaces in the pixel, the sumrsdwerror metric is the
same € (Ay) andE; (Ay) for a “one surface pixel” or a “two surface pixel” respectige

and is defined as

E (&) =) (di —ix)’ (4.30)

k
which is similar to the previous previous section with theaeption that the pixel detector
dimensions are dropped. The procedure to estimate the wnkparameter of interest,
range separatiof, is to estimate the range separation using both “one supiae# and
“two surface pixel” data models and choose the “one surfaed’ase and corresponding

range separation estimate if
Einin
Eénin

<7 (4.31)

where~ is a threshold "™ = arg max F; (Ay), and B = arg max Fy (A). If the
Ak Ak
inequality in Equation4.31) is not true, then choose the “two surface pixel” case and its

range separation estimate.

The amplitude and range estimate on the “one surface” dateehawe attained by
selecting a candidate range separation and then takihngo A, = 0 and then solving for
A; given by

S {dup (k — K,) — Bp(k — K,)}
A, == . (4.32)

The “two surface” amplitude estimates are determined insie manner as the
previous sections using Equatiosd5 and @.26) and dropping the pixel dimension (

andy) summations.

The steps of the estimator are:

1. Select a range separatiak,
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. Determine the amplitude estimates for the “two surfagelpcase via Equationgl(25
and @.26

. Determine the amplitude estimate for the “one surfacelpoase via Equatiord(32.
. Calculate error termg,; and E;, using Equation4.30
. Repeat steps 1-4 until all range separations have besrtesx!

. Using the hypothesis test from Equatiegh3l), select the range separation corre-
sponding to the smallest error. The range separation fqoited may be zero if the
“one surface pixel” case is chosen and if the pixel is a “fitgface pixel” as well

with a known range of,.
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V. Improving 3D FLASH LADAR Range Estimation via Object
Recovery

he motivation in this chapter is to provide a means of imprgvange estimation by
T object recovery (i.e. spatially deblurring data) from thdemensional FLASH LAser
Detection And Ranging (3D FLASH LADAR) observations. Reiieg to Figure5.1(a),
the idea is to process the data in the spatial dimensiong (vhile improving ranging
performance in the time dimensioh)( Taken exclusively from6], this chapter covers
novel material including amplitude, pulse-shape, systapuise response, and pixel bias
estimation. Original efforts also include object, systenpulse response, and pixel bias

estimation.

Building on material presented in ChaptérsandIll, a method to model the 3D
FLASH LADAR data operating in “sular mode” is that the 2D ranighages are formed
via a convolution between the object at a particular timetaedspatial impulse response.
In Figure5.1(a), a range imagé(t,) is one of the 2D slices of the data cube. Considering
the laser illuminating a target, one collect from a 3D FLASADRAR sensor results in a
data cube consisting of a series of range imagéef¢m Figure5.1) representing detected

photons. (NOTE: Figur®.1is shown again for convenience.)

Attempts at 3D FLASH LADAR range estimation of a remote sceae result in
errors due to several factors including the optical spatglulse response, detector blur-
ring, photon noise, timing jitter, and readout noise. Thastors either cause the scene’s
intensity to spread across pixels or add unwanted and digeuppise effects. The intensity
spreading and noise corrupt the correct pixel intensitiemixing intensities with neigh-
boring pixels thereby providing false intensity values #metefore incorrect photon counts
to the range estimator. Without blur and noise compensati@range estimates would be

inaccurate to a degree depending on the blur and noise geveri

The theoretical development of the range estimator algworiis covered first and
then verified using simulation and experimental result® dlgorithm is a variation on the
Expectation Maximization (EM) algorithm called GeneratizExpectation Maximization

(GEM) and is desirable due to its iterative likelihood maigation, convergence proper-
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Figure 5.1:

range
slice

d(tr) d(tz) d(tz)  d(tn)

FLASH LADAR

Samples 1-5

Sampla N
(b)

(a) 3D view of LADAR system model in Cartesian iwhioates with each
data cube having dimensions of pixelpixel x time sample. The variable
d(t;) corresponds to the’ receiver detected range image witke [1, N] .

(b) Another view of the 3D FLASH LADAR operation. Each rangeaige’s
full field of view (FOV) is 128x 128 pixels with a range gate near 2 nanosec-
onds corresponding to the 3D FLASH LADAR system used for @rpental
collects.
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ties, and ability to decouple term§84]. The GEM algorithm is powerful in that it can
perform blind deconvolution in situations with severe @ei® or other aberrations includ-
ing atmospheric turbulence. To account for different soesatwo versions of the GEM
algorithm are derived that either recover fhdse-shaper theobject The primary differ-
ence between the two involves data required and accuratye-shapestimation requires
less data, but is less accurate tludnjectestimation. Additional details of the differences
are presented in Sectiobsl.2and5.1.3 Both pulse-shape and object GEM algorithms are

novel contributions to the research area.

In addition to the GEM algorithms, a Wiener filter method isdifo attempt range es-
timation improvement via object recovery from 3D FLASH LABAbservationsi7], [55].
Requiring spatial impulse response knowledge a priors, thethod can only perform de-
convolution unlike the blind deconvolution ability of theE®I. The purpose for adding
this other method is to show that the GEM outperforms a comgealgorithm that already

knows part of the answer (spatial impulse response).

This chapter is organized as follows: Sectmi describes the Wiener filter theory
and derives the pulse and object iterative estimators wa@BM algorithm, Sectio®.2
presents results from simulated data showing improvemeaiatnige estimation after object
recovery, Sectiorb.3 details the results from an experimental collection anc@ssing
also showing an improvement in range estimation after olgmovery, and Sectiob.4

provides conclusions based on observed results.

5.1 Theoretical Development

This section details the object recovery methods used oulaied and experimen-
tal data. Even though the laser light is partially coherém, argument is made that the
detected light is able to be modeled as fully incoherent. ifkheherent light model still
captures the discrete, non-negative nature of the recgivetbns that the partially coher-
ent model exhibits. In addition, experimental data procgssom Sectior8.6 showed that
the speckle parameter estimation results tend towardstioderent model. Consequently,

this incoherent light model assumption allows for the nesuto be a result of a linear,
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spatially invariant (LSI) system involving an intensityrsolution (instead of amplitude
convolution) between the intensity point spread functiod the remote scene. Linearity is
a consequence of electromagnetic wave propagation thaadyspatial invariance results
from remaining with the isoplanatic anglgq]. Utilizing this LSI convolution model, two

GEM blind deconvolution algorithms are derived that enatviproved range estimation.

All references to the scenario or data model refer to madteresented in SectioR.5.

The unknown parameters in this scenario are the objecteftargplitude and target
range) PSF, and bias. The variable of interest in this pagp#re range term residing in
Equation .72 or (2.73. Direct estimation of the range term is problematic beeaafs
its location either in an exponential or in a squared terner&fore, the approach to range
estimation is to retrieve the range from the estimated psiege or object. This method-
ology relies on the knowledge that the target produces thefoem peak in the detected
returns. Concerning the PSF, blind deconvolution techesquust be employed since the
PSF is unknown. Blind deconvolution has a rich heritage troagmical imaging provid-
ing a bevy of literature attempting blind deconvolutionth&ugh, blind deconvolution in
astronomical cases consists of trying to recover one objettone PSF (or many PSFs if
using multiple frames). In trying to recover the target rfigm one 3D FLASH LADAR
data collect, this problem consists of many objects with BBE. There are many objects
due to the transmitted waveform causing each range sliceritaim different intensities
corresponding to where the waveform is incident on the dbj€kberefore, these incident
points become distinct objects in the blind deconvolutimnfework. If multiple cubes
are necessary, the atmosphere is changing with each culdéngsn multiple PSFs that
must be estimated resulting in a “multi-frame” or “multikl’ scenario. If no atmospheric
turbulence exists or is non-volatile, the PSF is considfemmughout the cubes and the

subscript can be dropped.

5.1.1 Object Deconvolution. As noted previously, the goal of this research effort
is to improve range estimation of a target illuminated by aRRIASH LADAR. Deconvo-

lution is necessary due to the imaging nature of the 3D LADA&Ipcing blurred return
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pulses. A solution is to use image restoration techniquestéonpt to restore the original
range slice images thereby improving the range estimafidre image restoration algo-
rithm applies a 2-D filter to the a pixel detector array at ei@wie sample (i.e. range slice
image, etc.) resulting in a “de-blurred” data cube. The bilered” data cube’s pixels now
more closely mimic the unblurred return pulse from Equa(i@? and result in improved

range estimation.

A standard linear filter that can perform the image restorais the pseudo-inverse

Wiener filter. From B7], the definition of the pseudo-inverse Wiener filt€%y ( f., f,), is

H*(fz, fy)

TV [ e

(5.1)

whereH (f,, f,) is the overall optical transfer function (OTF), * is the coggte operator,
andSNR is the signal-to-noise ratio in the image. One image pracgstefinition of the
SNR is to set it equal to the image mean divided by the image stdndkeviation [/(].
Given that the signal is dominated by shot noise, R is defined at particular range
samplek to be the mean of the detected range imageivided by the detected range image
standard deviatiory/zq or

SNR = \/jia. (5.2)

Using the pseudo-inverse Wiener filter, the deblurred insgeparticular range sample
is
jk(x7y> :F_l {GW (f:pafy) Dy, (f:pafy)} (53)

with F~! as the inverse Fourier transform any (£, fy) is the Fourier transform of the
detected range imagé,(x,y). After the cube has been filtered, the normalized cross-
correlation (NCC) range estimator method uses the filteadd tb determine the range
estimate using Equatiort(17). The waveform variabley (m,n) in Equation 4.14) is

replaced byl (, y) during the NCC implementation.

5.1.2 Pulse-ShapBlind Deconvolution via the GEM Algorithm. The previous

section assumed a known PSF. This section covers the blgwhdelution case where the
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PSF is unknown. Blind object recovery is accomplished usiaapproaches concerning
the pulse-shape and object variables from Equat?on?. The pulse-shape estimation is
very powerful in that the estimator only neemtsedata cube (one-shot, one-kill). However,
if the best accuracy is required and the 3D data cubes areyapgistered, the multi-cube

object estimation provides lower error.

Referring to the GEM theory from Secti@4 and the data model from Secti@rb,
the model is reformed to consider pulse-shagm®very with one cube required for process-
ing (with j = 1). Consistent with the GEM algorithm, the original daidx, y) is called

the incomplete data and is defined By

M N
:ZZ k$y|mn + qr (z,9) (5.4)

m=1 n=1

where two new variableék(x, y|m,n) andq (z,y), are called complete data. This formu-
lation provides two sets of complete data that account ®ptioton noise/image formation
and pixel bias respectively. The formation of the complet@dhighlights the powerful na-
ture of the GEM algorithm. In this application, completealean also be called unobserved
data and carries no explicit physical meaning. It is usedrecty benefit the EM algo-
rithm. Consistent with71], careful definition of the complete data allows decoupliig
unknown variables while preserving physical meaning inetkgected value of the incom-

plete data.

The expected value of the complete data sets is given by
E [cik (z,ylm,n)| = A(m,n)pr (m,n)h(x—m,y —n). (5.5)

and

E g (z,y)] = B (x,y) (5.6)

whereB (z,y) is the constant pixel bias. The expected value of the incetaplata is thus
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which is consistent with the data observations depictederhigh fidelity model (i.e. con-
volution model) of Figure2.4. Adding the pixel bias to the model covers non-modeled
noise effects and pixel-to-pixel impulse response vamti The pixel bias is assumed to
be governed by the Poisson distribution due to the disceetdam nature of dark current
and electron noise. Physically, the pixel bias is added ¢optotons incident upon the

detector and is part of the detected photon counts. The PMiRéghoton noise is

[A (m’ n) Dk (m’ n) h (JZ‘ —m,y — n)]czk(%y) e—[A(m,n)pk(m,n)h(ac—m,y—n)]

(5.8)

while the PMF for the pixel bias is

( ) (z,y) e—B(I )

(5.9)

Assuming statistical independence between all the pixeldatween the photon noise and
pixel bias noise, the complete data log-likelihood funeitonsidering all random variables
is

Lo (pk,A,h,B):ln[ I1 P(Jk (:c,y\m,n))P(qk (x,y))] (5.10)

k7x7y7m7n

or (NOTE: summations wrap around unless otherwise stated)

Lep (pr, A, h, B) Z di (x,y|m,n) In [A (m,n) pe (m,n) h(x —m,y — n)]

k,xz,y,mmn

Referring to Equation2.64), the function then becomes

Q (pr, A, h, B) = E [Lep (pr, A, b, B) |dy (2, y) , pp, A%, b, B] (5.12)
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where the estimates for the amplitude, pulse-shape, P8Bjasare considered maximum-

likelihood estimates. Taking the conditional expectattbiquation 5.12) results in

Q(pkaAv hv B) =

Z #;Jkd (‘T> Yy, m,n; AOldapzldv hOld) In [A (m7 n) Dk (m’ n) h (1’ -y - n)]

k7x7y7m7n

—[A(m,n)px (m,n)h(z —m,y —n)] + ,ugld (:c, Y BOld) In[B (z,y)]

—B (z,y) (5.13)
where
uGt (xoy,mon; g, A% R = B [cfk (z,ylm, n) dy, (2, ), p7?, A", h(’ld} (5.14)

and
ped (x,y; BY) = E Gk (x,y) dx (2,y) , B™] . (5.15)

Equations .14 and 6.15 represent the expected value of one set of complete daga giv
the incomplete data. For Poisson random variables, thggtations turn out to be ratios
of the data times one expected value of the complete datdediny the all sets of expected
values of the complete dataq]. For the first set of complete da@, (z, y), the conditional

expectation is

dy, (x,y) A% (m,n) pzld (m,n)h (z —m,y —n)

i (z,y) + B (2, y) G 1’6)

while the second set of complete data concerning the pisslhi(z, y), has a conditional

old . old old 70ld\ __
Mjk (x7y7m7n7pk 7A 7h )_

expectation equal to

dy, (x,y) B (z,y)

old old E\T,Y Y

ol (1, y; BY) = - . (5.17)
i ( ) i (2, y) + B (x,y)

The maximization of th&) function for all parameter unknowns (target amplitudegear

pulse shape, PSF, and pixel bias) is theoretically intbdetdue to coupling. It is required
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to break apart thé function into separate components such that

Q=0Q,+Qn+Qas+ 0B (5.18)

where each component of thefunction can be maximized independently. Thus, the GEM

algorithm becomes

Qp (pzew|pzld’ A/élold7 hold

v

Qp (ptk):ld|pzld’ Aold’ hold)

QA (Anew|pzld’ A/élold7 hold QA (Aold|pzld’ A/élold7 hold)

v

Qh (hnew |pzld’Aold7 hold Qh hOld‘led,AOld, hold)

N—— SN— SN— N——
v

QB (Bnew‘Bold

v

QB (Bold|Bold) (519)

which, if these conditions are met, ensures that the likelthis increased with each itera-
tion [54]
L (pzew’Anew’ hnew’ Bnew) Z L (pzld’Aold’ hold’Bold) (520)

resulting in a GEM sequence converging to a local maximum.

Beginning the estimation process of the sepa€ateinctions starts with the target

pulse shape), which is

K
Qp - Z :u%lkd (‘Ta Yy, m, n;pzld7 AOlda hOld) In [pk (m7 n)] —A (m7 n) [Z Pk (m7 n) - 1]

k,x,y,mmn k=1

(5.21)
where a pixel-dependent Lagrange multipligi;m, n), is introduced to force the pulse
shape to add to one for each pixel. This constraint is nepessadecouple the pulse
shape from the target amplitude and PSF. Taking the deréevafi Equation %.21) with

respect to a particular object plane point and range sarsgttng the result equal to zero,

92



0Q,/0px, (m,, n,) = 0, and solving for the pulse shape, results in

new o AOld (mm o dk ZIZ' y) hOld (‘T — Mo, Y — nO)
P ) = ) (Al )57 Sl

)\(mouno) z=1 y=1 Zko (xay)+BOld (.I',y)
(5.22)
where
X Y
di (x,y) hOld(x—mo Y—Ny)
A (moyno) AOld moa No Zpdd Mo, To Z Z old old 7
— pr ot y) + B (z,y)
(5.23)
and
M N
izlod (x,y) = Z Z A% (m,n) pzld (m,n) k" (z —m,y —n). (5.24)

m=1 n=1
Equation b.22) is the iterative solution for the pulse shape per range tanNext, the®)

function is partitioned into its target amplitude compotsen

M N

Qa= Y {nd" (@ymmipt®, A" W) I [A(mn)] = > " A(m,n) (5.25)

k,x,y,mmn m=1 n=1

where

DD h(ry) =1 (5.26)

z=1 y=1

K
> pi(m,n) =1 (5.27)
k=1

have been utilized to decouple the pulse shape and PSF tesmdHe target amplitude.
Maximizing Equation$.25 by 0Q 4 /0A (m,, n,) = 0 and solving for the amplitude term

results in the iterative solution for the target amplituelert

Anew(m n):AOld(m n )Zpold(m n )iidk('rvy)h()ld(x_mouy_no)
0y Yo o0y 'to k 0y 'to Z.Zld(,flj',y)—FBOld([L"y)

(5.28)
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The PSF is the final unknown parameter that uses the first semoplete datad;, (z, ).
The @ function for the PSF is

Qn =

Z :u?[id (.T, Yy, m, n§p21d7 AOld7 hOZd) In [h (.T -m,y— n)]

k7x7y7m7n

= [A(m,n) px (m,n) h(x —m,y —n)], (5.29)

which still has the target amplitude and pulse shape ternmila® to [71], a change of
variables is required to remove the dependence on the pudge sand to allow for easier
differentiation. UtiIizingElepk (m,n) =1and settingn’ = x —mandn’ =y —n, Q,

then becomes

Qn =
Z {Mgid (.T, Yy, — m/7 y — n/;pzld’ Aold) hold) In [h (m/’ n/)]}
k,x,y,m’ n’
- Z A(x—m',y—n')h(m' ,n). (5.30)
z,y,m’.n’

SettingdQ,,/0h (m],n!) = 0 and solving for the PSF produces the iterative solution

o’ 7o

new o dk (.T, y) AOld ('I _ m:ﬁ y— n:)) pOld ('T _ mlm Yy — n:))
b (m/ n'):hld(m' n/)z — k

kay (99 (v,y) + B (z,y)) :1 > :1 Arew (. —ml, y —nf)
x=1y=
(5.31)

Usually, the target amplitude term in the denominator wdoddan issue because it is con-

sidered the new estimate. However, Equatior2® is the new estimate and can replace
the target amplitude in the denominator resulting in a iast solution for the PSF. Fi-
nally, the pixel bias must be estimated. In order to estirttegixel bias, the second set of

complete dataj (z, y), is utilized. The() function for the pixel bias is

KX Y g 2.y) B (z,
s ; ; y; Z'Zldk((x, y%)jt Bol(dx(xy,)y) (B () = Bley) (5:32)
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SettingodQ /9B (z,,y,) = 0 and solving for the pixel bias results in an iterative santi

K

B (29, 95) = B™ (o, o s (o, ) 5.33
(@0, Yo) = Y ; 9 (2, Yo) + B (20, Yo)) ( )

corresponding to the pixel bias iteration.

After a pre-determined number of iterations on Equatiédn23), (5.28, (5.31), and
(5.33, range estimate updates for each pixel are generated by th@ NCC method be-
tween a reference waveform at sub-sample ranges and theEkeeGtimate for the pulse
shapep°”. The range-dependent reference waveform that resulteihighest correla-
tion is chosen and the corresponding range is the new rarigea¢s for that pixel. The
new range estimate is fed back into the pulse-shape to gensnaewp?'¢ followed by
another set of GEM iterations. The process (GEM iteratiatiswed by range updates)
repeats with the new range estimates used in calculatfigising Equation§.22) and
ceases when the mean square error (MSE) between the data@mbisy range images
reaches the stopping criteria. All previous amplitude, R pixel bias estimates carry
over from one range update to the next. More specificallyaitens cease when the MSE

is lower than the average data variance or

K X Y K X Y
ZZ (djk (z,y) — I (z,y) — B"" (z,y)) 2 < ZZZVk z,y)  (5.34)
k=1 z=1 y=1 k=1 z=1 y=1
with
M N
I (2, y) Z Z A" (myn) ppe” (m,n) K" (x — m,y —n) (5.35)
m=1n=1
and
J 2
_Z_l djok (7, y)
Vi(w,y) =3 | din(@y) = F———— (5.36)

J=1
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whereV, is the variance for the volume elements (voxels). In the erpental data, a spe-
cific distribution for the variance is not chosen in orderd¢o@unt for all noise sources. For
the simulation data, the primary noise source is defined@tplby the Poisson distribu-
tion. Therefore, data variandg is defined by the variance of the Poisson distribution (i.e.

mean of the data).

In summary, the pulse-shape estimation algorithm steps are

1. Initialize PSF, amplitude, and pixel bias

2. Determine initial ranges and define pulse-shape

3. Perform GEM iterations using EquatiorisZ?), (5.29, (5.31), and 6.33
4. Use NCC to find new range estimates with Equaté?)

5. Generate new pulse-shapes based on new ranges

6. Determine MSE and compare to stopping criteria

7. Repeat Steps 3 through 6 until stopping criteria violated

8. Range estimates taken from last execution of Step 4

In step one, the PSF is initialized by the diffraction-liedtPSF of the system with some
defocus to allow the iterations the freedom to modify théweste. The amplitudes and the

pixel bias are initialized by a matrix of ones.

5.1.3 ObjecBlind Deconvolution via the GEM Algorithm. When multiple cubes
are available and properly registered spatially and tealjypanother method to perform
range estimation is to relax the constraint on the pulseel@d assume just an object
in the data model. This change mitigates the issue in theNzaeddata where the pulse-
shape is vaguely known. Therefore, estimation is perforored, rather than o, from
Equation 2.71). The problem setup is similar to the pulse-shape estimé&tiow with more

than one cube) by calling the original data,(z, y), the incomplete data and specifying

M N
din (2,9) = D> > dy (z,ylm, n) + Gix (2, 9) (5.37)
=1
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where two new variables;.(z, y|m,n) and ;; (z,y), are defined and called complete
data. This formulation provides two sets of complete das slscount for the image for-
mation and pixel bias respectively. The same PSF can be assiomadjacent collections
due to atypical data collection scenario where environsgimbuldn’t be changing rapidly

(ignorej). Thus, the expected values of the complete data sets ae g
E [cijk (z,ylm,n)| = ok (m,n)h(x —m,y —n) (5.38)

and

whereB (z, y) is the constant pixel bias. The expected value of the incetaplata is thus
Eldj (z,y)] = ix (2,y) + B (z,y). (5.40)
The PMF for the photon noise is

P (dk (z,y|m, n)) =

o (1) b (& = m,y = )P exp { o (o) b =y =)} gy
ij (x,y\m,n)' '
while the pixel bias PMF is
~ B z, (fj/c(l’vy)e—B(x,y)
P (G (w)) = 220 . (5.42

ij (x,y)'

Assuming statistical independence between all the pixeldatween the photon noise and

pixel bias noise, the complete data log-likelihood is then

LCD(ok,h,B):ln[ I1 P<ij(x,y\m,n))P(djk(x,y))] (5.43)

jik7m7y7m7n
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or

Lep (og, h, B) = Z ij (x,y|m,n)Infox (m,n)h(x —m,y —n)]

j7k7x7y7m7n

— ok (m,n) h(x —m,y —n)|] + Gjx (x,y) n[B (x,y)] — B (x,y) . (5.44)

Referring to p4], the @@ function becomes the expected value of the complete data log

likelihood function with respect to the incomplete data aldiparameter estimates
Q (Oka h7 B) =F [LCD (Okv ha B) |d]k ([L’, y) ) Ozld7 hOld7 BOld:| : (545)
Taking the conditional expectation from Equati@yb) results in

Q (Ok7 h7 B) = Z ijli (Zlf, Yy, m, n; Ozld7 hOld) In [Ok (m7 n) h (‘T -—m,y— n)]

jik7‘r7y7min

— ok (m,n) h(x —m,y —n)] + ugld (x, y; BOld) In[B(z,y)] — B(z,y) (5.46)

where
Ng‘ii (ZE, Yy, m,n; Ozldv hOld) = K [Czjk (flf, y|m7 TL) |djk; (ZE, y) s Ozld, hOld]
~ dyg (2, y) o (myn) K (@ — m,y — n) (5.47)
- “old Bold (x ) .
Zk (.CL’, y) + Y
and
e (2,5 B = E Gk (2,9) |djx (x,y) , B
djk (ZIZ’, y) BOld (1’, y) (548)

i (z,y) + B (2, y)

Similar to the pulse-shape estimation, the maximizatiamet) function for all parameter

unknowns (object, PSF, and pixel bias) is theoreticallyaictable due to coupling. It is
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required to break apart thg function into separate components such that

Q=0Qo+Qn+Us (5.49)

where each component of thefunction can be maximized independently. Thus, the GEM

algorithm becomes

Ozew | Ozld7 hold)

v

Qo (Ozld|021d, hold)

Qh (hold|ozld7 hold)

v

Qo (
Qh (hnew|ozld7 hold)
QB (Bnew‘Bold) > QB (Bold|Bold) (550)

ensuring that the likelihood is increased with each iterafb4]
L (Ozew’ hnew’ Bnew) Z L (Ozld7 hold’ Bold) (551)

resulting in a GEM sequence converging to a local minimume ptocedure to find the
maxima of the) functions is the same as in pulse-shape estimation. Hiesphject solu-

tion is found by specifying

Qo= D ngy (x.y.mn; 00" h) In o (m,n)] — o (m,n) h(x —m,y —n).
1.k,xymm
(5.52)
In order to maximizé),,, the derivative of Equatiorb(52 with respect to a particular object
plane point and range sample is set equal to z&(,/doy, (m,, n,) = 0. Solving for the

object results in

Old mo,no T dix, (z,y) hOZd T — My, Y —
ORe (Mg, mp) = —om Py TN TN e i ( ) (553

j=1 z=1 y=1 + Bl (2, y)
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with J as the number of cubes and utilizing

DD h(ry) =1 (5.54)

and where

M N
izld (Zlf, y) = Z Z OZld (mv n) hOld (‘T -—m,y — n) (555)

m=1 n=1
Equation b.53 is the iterative solution for the object per range samplbee PSF is the
other unknown parameter that uses the first set of complmecf_:j,a(x, y). The@ function
for the PSF is

Qu= 3 ugt (e mom o, ) Infh (x —m,y —n)|=o (m,n) h(z = m,y —n).
1.k,xymmnm
(5.56)
Similar to [71], a change of variables is required to remove the dependamdke pulse

shape and to allow for easier differentiation. Settinlg= = — m andn’ = y — n, Q), then

becomes
Qn =
Z {uféi (z,y,2—m',y—n; g, hozd) In [ (m/, n')]}
J,k,xym!/ n’
—op (x —m/;y —n')h (m',n'). (5.57)

SettingoQ; /0h (m.,n!) = 0 and solving for the PSF produces the solution

o’ 7o

hOld (m:N n:)) Z djk (.T, y) Ozld ('T _ mlm Yy— n;)

i (z,y) + B (z,y)

A () =
J [ > 0 (w —mi,y — n:»] phy
o (5.58)
The object term in the denominator is the new estimate frooeEgn 6.53. Since, there
are phase abberations across the aperture and the PSF adedsanstrained, phase re-

trieval is performed on Equatiorb 68 by the Gerchberg-Saxton algorithra3. In the
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pulse-shape estimation, it was the object (i.e. pulsee)that was constrained making the
phase retrieval unnecessary. Constraints on the estiragagquired to avoid the trivial
solution where the object is the data itself and the PSF idta fimction. Finally, the pixel
bias must be estimated. In order to estimate the pixel biass¢cond set of complete data,

g (z,y), is utilized. The® function for the pixel bias is

S E & dy (@) B (a,y)
V=22 2 Gy + B () NP ) P 659

SettingdQ /9B (x,,y,) = 0 and solving for the pixel bias results in

BOld xo yo L& ik (xo yo)
Brew (xm y()) _ ) Z Z ( Old ] ) ) (560)

it (%o, Yo) + B (20, o)

GEM iterations continue and cease when the mean-squardgli®&) violates the stopping
criteria. Once the stopping criteria is reached, rangenadéis are determined by using the

NCC method on the object estimate.

The object estimation steps are:

1. Initialize object, PSF, and pixel bias

2. Perform one GEM iteration using Equatiobss3), (5.58, and 6.60
3. Determine MSE and compare to stopping criteria

4. Repeat Steps 2 and 3 until stopping criteria reached

5. Use NCC to find new range estimates with Equatibt?)

The initial estimates in step one are the sam@B3/,, with the exception that the object is

initialized by a matrix of ones.

5.2 Simulation

In order to verify the theory, a simulation scenario was ttgyed whereby targets are
interrogated by a 3D FLASH LADAR defined by the parametersifitable5.1. The goal
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Table 5.1: 3D FLASH LADAR parameters

Parameter Value
Detector Array 128 x 128
Aperture DiameterD) 2mm
Mean Wavelength 1.55 pm
Focal Length 0.30m
Target Range 521m
Transmit Energy 10 mJ
Pulse Standard Deviation() 3ns
Beam Divergence 0.009 radians
Detector Spacing 100 pm
Detector Array Fill Factor 100%
Detector Bandwidth 0.5 um
Target Reflectivity 10%
Solar Irradiance 10 Watty/m? /ym
D/r, Seeing Condition 1.43
Frame Rate 30 Hz
Time Samples 20
Sample Period 1.876 ns

is to improve range estimation given the noisy, blurry ddtsesvations. Results show range
estimation improvement by performing object recoveryegitha a Wiener filter method or
GEM algorithms as outlined in Sectiobsl.2and5.1.3 Previous research has taken the
approach to use a Wiener filter on each individual range sintethen use a pixel-based
ranging method on the resulting “deblurred” data culfg.[ The PSF for the Wiener filter
is set as the diffraction-limited PSF of the system. Pertoroe will illustrate that the GEM
algorithms provide increased error performance over thendfifilter while, at the same
time, being more robust. Again, the GEM algorithms are molmist in that they do not

need to know the point spread function, unlike the Wienegrfikchnique.

Using a Gaussian transmitted pulse, a 3D FLASH LADAR imagicgnario is devel-
oped in simulation using various geometrical shapes asts&sipown in Figur&.2(a)-(f).
One important clarification on the receiver optics is thatdletector array has an effective
fill factor of 100% by placing a micro-lens array in front ogtpixels to focus the light onto
the pixel. Also, the data includes effects from an averagwapheric turbulence to enable

blind deconvolution. Range estimates are also determintdwut processing to enable
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Figure 5.2:  True ranges for simulation targets: (a) thres,i{h) Many bars, (c) Various
blocks, (d) Cylinder, (e) Slanted boards, and (f) Connebtedks. The target
names in this caption correspond to the targets in TaleT he three bar tar-
getis also the experimental data target. Other targetsriite the robustness
of the estimation algorithms.
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further comparison between no processing and object regattempts. Results for all the

targets and methods with error metrics are summarized ikt Ba2 The numbers in bold

indicate the best performer for the data set.
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Figure 5.3:  Estimated ranges for simulation targets: (apMzessing - three bars, (b)
GEM, processing - three bars, (c) No processing - Many bars, grelH{d/1,
processing - Many bars. Utilizing the EM, algorithm, simulation results

show the image quality improvement and improved range esiom (RMSE
improves 75% for 3 bar target).

104



Table 5.2 clarifications: “RMSE” is root mean square error (RMSE) intems be-

tween the true ranges and estimated ranges of a target aaldusated by

> 3 (Rmm) — R(m.m)’
RMSE = || Z=1n=t VAN

(5.61)

whereR (m, n) are the true ranges anﬁ:i(m, n) (Equation 4.17)) are the estimated ranges.
“Corr” is an image quality metric referring to the corretaticoefficient between the true
range image and estimated range image signifying lineatioalship strength (not to be

confused with the NCC method) and mathematically give by

P> {(Rm.n) = ) (R (m.m) = ) } o2

ORO R

whereur andoy are the mean and standard deviation of the true range imageatévely
andu, andoy, are the mean and standard deviation of the estimate ranggeineapec-
tively. “OD” refers to the original data (OD) with no deblurg and ranges estimated by
the NCC method, “WF” relates to range estimation using a @fi¢nlter technique with
NCC [55], “GEM,” is the pulse-shape estimation GEM algorithm, ai@EM,” is the

object estimation GEM algorithm.

The targets of primary interest are the three bar targett@dultiple bar target be-
cause the three bar target is also the experimental tardghamultiple bar target is most
sensitive to spatial blurring of all the targets. The bagéts are constructed in simulation
consisting of two flat, perpendicular optically rough suoda at different ranges. Referring
to Figuress.2(a) and (b), the first surface in range has rectangular custtapes while the
second surface contains no cutouts. This type of target v@sen to highlight not only the
coupling/blurring effects of the pixels along the edgesefitectangles, but also the decou-
pling and ranging capability of the GEM algorithm. The otkemgets are built in similar
manner. Bar target shapes were used because the distadcgisage dimensions can be

physically measured in a laboratory environment to showyeastimation improvement.
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Figure 5.4:
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(a) Using the data from Figuse3(c)-(d), investigating pixel (8,23) shows
the estimated waveform (object plus pixel bias) closelyamialg the true
waveform while the detected waveform does not. The estunatege is 6.6
m while the true range is 6.7 m. The algorithm also implicgbtimates the
pixel bias term accurately.

(b) Again, using the data from Figue3(c)-(d), investigating pixel (17,14)
shows the estimated waveform improving upon the detecte@faem, but
not able to match the true waveform as well as the previous .pikhe esti-
mated range is 5.7 m while the true range is 6.7 m. Incorrecfa@stimation
after theGEM, algorithm relates to blurring severity (edges of cut-outs i
first surface) and/or a particularly noisy realization frtime Poisson distri-
bution.
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Table 5.2: Range estimation results for simulation data
Data set Metric oD WF GEM, GEM,

Three bars RMSE (m) 0.402 0.346 0.1630.100
Corr 0.767 0.830 0.963 0.984

Many bars RMSE (m) 0.596 0.5610.346 0.365
Corr 0.687 0.664 0.786 0.794

Slanted boards RMSE (m) 0.225 0.171 0.1610.131
Corr 0.945 0.971 0.967 0.983

Cylinder RMSE (m) 0.184 0.153 0.160 0.153
Corr 0.877 0.925 0.945 0.962

Various blocks RMSE (m) 0.473 0.209 0.3440.175
Corr 0.595 0.931 0.725 0.955

Connected blocks RMSE (m) 0.208 0.133 0.158.112
Corr 0.853 0.955 0.918 0.970

Table5.2and the range images from Figufe and5.3show the negative effects of
the blurring on range estimation juxtaposed with the pesgiffects from attempting to re-
cover the original object through Wiener filtering or the GEl\gorithms. Figures.4(a)
shows pixel waveforms successfully recovered while Figudb) exhibits a situation
where the recovery was not as successful. Implicit in theltess the ability to accurately
estimate the pixel bias. Without it, the object model faljgud and range error becomes

extremely large.

An additional concern is assessing the computational timethe object retrieval
methods (WHEM,,, andGEM,). Although, it should be noted again that the WF method
requires the PSF to be known a priori. The computationaldiwere analyzed using opera-
tions counting. For example, this counting means that artiadddivide, or multiplication
count as one operation each. Also, the Fast Fourier TrangfleFT) is utilized to accom-
plish convolution and correlation and countd\sg, (N) operations wherB! is the number
of points [L3. The number of operations required in the WF method (Sedid.]) are
6 x 10°. Implementing steps 2-7 from Sectiéil.2until the stopping criteria is reached,
the GEM,, algorithm used .8 x 107 operations per iteration. Finally, tfi&EM, algorithm
has a computation burden v x 10° operations per iteration while performing Step 2-4

(until stopping criteria violation) from Sectioh.1.3 The numbers computed for all the
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methods correspond to a pixel aread6fx 40 with 18 range samples. One cube was used
for the WF andGEM,, methods while two cubes was used @EM,. The additional bur-
den onGEM,, is from the inner iterations which include 100 GEM iterasdollowed by

an update on the pulse-shape and a repeat of the processg. téhihcrease in computation
time is substantial compared to the WF method (i1, andGEM, algorithms represent

a significant increase in capability with respect to rangaueacy and to required a priori

information.

Through simulation, the model and object recovery atternate been verified. The

final step is to use experimental data to validate simulagsnlts.

5.3 Experimental Results

Using the pre-processed experimental data described ipt@h#, Table5.3 and
Figure5.5illustrate the range estimation benefits of object rettieVae bold numbers in
the table indicate the best performing method for the ddtals$e pulse-shape and object
estimation give an RMSE improvement of 25% and 34% respagtover the original data.
Additionally, the pulse-shape and object estimation giv&WMSE improvement of 7% and
18% respectively over the Wiener filter algorithm. Figbr&(c) shows the image quality
improvement over the original data range image in Figustb). Pixel waveforms provide
additional information on the object recovery abilitiesiglre 5.5d) demonstrates this
ability on a second surface pixel, (32,18), where the raweafi@wm results in an incorrect
range determination. In contrast, the object recoveryrédlgo (GEM,) yields an improved
range estimate by sufficiently estimating the true wavefoAdditionally, attempts were
also made to use asymmetrical pulses in the NCC method. Howeange estimation
error did not significantly change. This result is partly doi¢he gain correction where the
waveform becomes more symmetrical after correction. Siheeexact pulse emitted by
the laser is unknown, the pulse-shape estimation used gte@pproximation based on the

observed data.
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Figure 5.5:  Experimental target : (a) True ranges with fustaxe at 5.21 m and second
surface at 6.43 m with 1.22 m of separation in between swsface
(b) Ranges using NCC without using object recovery
(c) Estimated ranges usirigtEM,, algorithm followed by NCC
(d) Considering pixel (32,18), its estimated waveform éabplus pixel bias)
shows similar results from the simulated data. The estidhateeform more
closely resembles the true waveform with the range closarige sample 9.
Also, the algorithm correctly estimates the pixel bias aomfig that the bias

must arise from a noise source following the Poisson digtion (i.e. dark
current).

Table 5.3:  Range estimation results for experimental data
Dataset  Metric OD WF GEM, GEM,
3bars RMSE(m) 0.301 0.243 0.2260.198

Corr 0.818 0.883 0.900 0.924
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5.4 Conclusions

Utilizing waveform sampling capability, the positive efte of object recovery in 3D
FLASH LADAR range estimation is clearly evident. The innbva 3D FLASH LADAR
sensor provides both an imaging and ranging ability engldstablished theory to be ap-
plied to a novel manner. Given simulation and experimemsiilts, it is clear the chosen
model and noise sources are an appropriate choice for 3D AUASDAR data operating
under certain conditions (“sular mode” meeting spatial glamg requirements). The raw
data coming off the sensor does not fit the model, but strdayiatard pre-processing steps

convert the data to an acceptable form for the algorithms.

In mild spatial blurring conditions, simulation resultsegdict that the GEM algo-
rithms increase range estimation performance substigntaer no-processing and the
Wiener filter method. Again, the Wiener filter even has an wrddvantage because it
is provided with the exact (or estimated) PSF function usegenerating the data while the
GEM algorithms have to estimate the PSF. Considering therarpntal data, its perfor-
mance is nearly diffraction-limited as evidenced by theegikpental PSF and OTF. How-
ever, the GEM algorithms still increase range estimatiafopmance over the Wiener fil-
ter. Supported by simulation results, it is appropriatestpthat the GEM algorithm would
show even better range estimation performance versus taieaMilter in severe isoplanatic

atmospheric blurring conditions or with sub-optimal optic

A trade-off exists for Wiener filter and object recovery aitjums between compu-
tation cost and range accuracy. The Wiener filter is the l@sputationally taxing object
recovery algorithm, but is the least accurate and requipe®ea knowledge of the PSF. The
GEM algorithms are computationally expensive, but prowite best range performance
and can perform blind deconvolution. Considering the GEl§bathms, the pulse-shape
estimator is extremely valuable in that it can perform raggémation on a single cube
thereby removing potential for any registration or timimgpes. If multiple cubes are avail-
able and properly registered, object estimation is undmilptthe best algorithm to use.

Although, experimentally, none of the algorithms were ablenatch the success found
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in simulation. Any residual error in the experimental résuan be attributed to system
noise, the detected light containing residual laser sgeckbkidual gain error, and detector

blurring.

There are prospective avenues for continued investigatimhimprovement. The
pulse-shape estimation is very dependent on the selectesfaven model. Improvements
in the range estimation would be realized if a true waveforodeh for the transmitted
laser pulse was derived or calculated experimentally. r&nrm the experimental data re-
sult from assuming a generalized shape that is corruptedsbyrting effects (spatial blur,
pixel blur, and noise). In addition, the variable of intér@ange term) would ideally be
directly estimated. The maximum likelihood solution foe tange term could be achieved
if another model was discovered. The algorithm in this paxracts the range from the
maximum likelihood solution for the pulse-shape. Also,reaier the pre-processing steps,
the experimental data exhibits noisy behavior. A more thghocharacterization of the 3D
FLASH LADAR noise sources would augment or verify the choseise sources. Finally,
isoplanatic imaging is valid for the experimental set-uphiea laboratory. However, object
recovery from 3D FLASH LADAR observations subject to heamsaplanatic turbulence
would provide an ability to improve range estimation in ai@gr of field or operational

situations.
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VI. Range Separ ation Performance and Optimal Pulse-Width
Prediction of a 3D FLASH LADAR using the Cramer-Rao Bound

he purpose of this chapter is to use established estimatianca theory applied to
T a three dimensional FLASH LAser Detection And Ranging (3DABH LADAR)
sensor in order to bound estimator performance and enabtkction of optimal resolu-
tion performance. The theory in this chapter supports “latlet and “sular mode” of 3D
FLASH LADAR operation. Additionally, pixel spatial and tgroral integration is a com-
mon concern for photo-detectors. For this paper, the ppatial response is assumed to
be ideal while the temporal integration is assumed to bethesshalf of the range interval.
Supplemental simulations were completed that investibategration effects. The results
show that these effects have a negligible effect on theiblyigeverity and received pulses.
The entire chapter contains novel and original efforts: @RBvation on range and spatial
separation as well as target amplitudes, optimal pulséhnwddtermination given simple
and complex targets, and optimal pulse-width determinajiven a normalized pulse def-
inition.

The Cramer-Rao Bound (CRB) is an important theoreticallt@sestimation theory
that can be applied to numerous fields in science and engiggér]. Pertaining to a two
point target scene illuminated by a 3D FLASH LADAR (Sect#n.]), the CRB is utilized
to bound the range separation estimation variance. Thelsisgene is adopted to allow
for closed-form results and to allow conclusions to be drabout the effects of range
separation on the bound. Once the range separation CRBiv&dean unbiased range
separation estimator is developed to enable comparisahg tORB. The expected results
are shown in an example comparing the estimator varianceéh@nblound across possible

range separations.

Additionally, the CRB is used to predict system performandech could aid in
the LADAR development process. Per conventional RADAR the@nge resolution im-
proves (i.e. becomes smaller) as the effective pulse-visdshortenedq6]. Although, the
RADAR engineer must be concerned about other factors astavaiclude the high peak

power requirements of a narrow pulse. In the case of 3D FLASBAR, there is the abil-

112



ity to produce ultra-short laser pulses in the femtosec@ids!'®) compared to the laser
pulse in the nanoseconds)—?) used in this researclbf], [88]. Along with benefits to
target ranging and identification, one would expect thairtheease in the range resolution
would be improved by several orders of magnitude with aratgtrort laser pulse. How-
ever, similar to the RADAR engineer concerns about high geaker for short pulses, the
LADAR engineer has to be concerned that the receiver elgicsaan sufficiently sample
the returned pulse. With the laser pulse-width lasting étéms of nanoseconds, the current
receiver technology can only generate a finite amount of f&sue to the complicated
design that is required to sample the pulse every coupleradserondsl9. Recognizing
the design issues, CRB theory is employed to analyze the-wtidbetween laser pulse-
width and range sampling interval. CRB theory and subsedcgietulation determine that
there is an optimal pulse-width that produces an optimajearesolution for a particular

range sampling capability.

The chapter is organized as follows: Secttohderives the range separation CRB for
a two point target scene, Secti6r discusses the results of the unbiased range separation
estimator and compares it to the CRB, and Seciduses CRB and simulation to find
an optimal pulse-width for several different range sampkcenarios for the two target
case. This section also finds an optimal pulse-width conisigenore complex targets.
Additionally, an optimal pulse-width for the two-targetes® if found using a normalized
pulse that is independent of range sampling. Finally, 8e@&i4 draws conclusions based

on the observed results.

6.1 CRB on Range Separation Estimation

In this section, the CRB for range separatibdpis derived using the two-point target
data model from Sectiod.4.1 Other bounds are determined as well including spatial
separation and the target amplitudes. For a particularimgagenario, the range separation

CRB is shown in a figure across the possible range separations

For multiple unknowns, the CRB is defined by the diagonalk@fisher Information

Matrix (FIM) inverse and provide a lower bound on the varentany unbiased estimator
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which is shown for a general, multiple unknown parametee ¢gs[84]

(6.1)

0

var [é (D) — 92} > [J7Y]

where “var” is the variancef; (D) is the estimate of a particular unknown, non-random
variabled;, D is the observation space, addis the FIM. The elements of the FIM are
the negative expected value of the double derivative lbglhood function and provides a
measure of the amount of information of an unknown paranwetained in the random

process. Mathematically, the FIM is defined By

P In P (dy, (z,y) = Dy (z,y) Yk, z,y)
96;00,

wherekE is the expected value operation, “In” is the natural log, & the probability
mass function (PMF) for all 3D FLASH LADAR observations with (z, y) as the real-
izations of the observations. Assuming statistical indeleece of each volume element

(voxel), the PMF for the data model is defined by

)dk ($7y)

T (Y exp {—iy, (2,9)}
Pldy (z,y) = Dy, (v, y) Yk, z,y] = HHH i) (6.3)
k=1x=1y=1 ’ ’

where the assumed dominant noise source is photon (shef described by the Poisson
distribution. While lasers exhibit partial coherence megrthe negative binomial distri-
bution should be used for the light statistics, this photois@& assumption is valid when
the operating environment produces a large enough speekéangter so that the nega-
tive binomial distribution approaches the Poisson diatrdn [24]. Previous 3D FLASH
LADAR work has shown the speckle parameter to be adequatestovae the Poisson dis-
tribution [9]. Additionally, the Poisson distribution CRB provides avier bound to the
negative binomial CRB considering the higher negative miiab variance §0]. This fact
creates a true lower bound (most pessimistic) with the Boidsstribution CRB regardless

of the imaging conditions.
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After performing the required operations, the generaltsmiufor the FIM elements
is determined to bed], [39]

Jo = XK: ZX: ZY: 1 Oy (x,y) Oix, (x,y) 64
? k=1 z=1 y=1 i ([L’, y) 092 89] ’ .

Particular to this work, there are four non-random unknowriables in the data model,

0 = [An, Ax, Ay, A,], resulting in a 4x4 FIM with its elements determined to be

A S S S )[Atpm—<Kr—Ak>>%h<x—Am,y>]z
A ) S )[Atw—Am,y)aiAkp(m—<KT—Ak>>r
= YTy i (0~ A0 b~ A
T 5) 9) DRI SYIE

Ji2 = ZZZ (1 )(At)zp(rk_(Kr_Ak))h(l'_Am,y)aiAkp(’l“k—(Kr—Ak))...

he = 3NN At[p(rk—(KT—Ak))]Qh(x—Am,y)%h(x—Am,y)

heo= S A — ) p (e — (K — A b (5,y) o (a = Ap,y)
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where

W = A (rr — (Kr — Ay)) ih(x = B, y)

oA,
0A,;

TAT —P(Tk _Kr)h(xvy)

0 (v —=Ay) — ((x — Am)2 + y2)
Eh(m—Am,y)—TgﬁeXp{ }

O pre— (K, — Ay = e E ZA) { —(re = (K = A)) } . (66)

3Akp 2%03 g

= p (e — (K — A h (5~ D)

NOTE: The “x” in J;5 is a multiply operation. The FIM is inverted and the CRB foclea
of the unknowns is on the diagonal of the inverted FIM matrithwhe range separation
CRB at[J'],,. The purpose behind supplying the FIM element expressiassaprovide

enough information to enable the work to be reproduced.digin an example plotis given
later in the section, the range separation CRB expresselfiis not shown due to its length

and complexity.

Besides the four non-random unknown parameters, the CRBdalsends on non-
random known parameters to inclueg, o5, andt,. In order to view a useful plot, all
other unknown and known factors are held constant whilethés stepped from the be-
ginning to the end of the range extents. Following this pdoce, Figures.1 shows the
range separation bound for a specific scenario With= 1 pixel, o, = 3 pixels,o,; = 3
ns, A, = 0.5 x 10* photons,A, = 2 x 10° photons,B (z,y) ~ N(750, 38) in units of
photons, and range sampling = 1.876 ns. These values were chosen to represent a
scenario where the 3D FLASH LADAR interrogates adjacergdes with different reflec-
tivities while experiencing significant turbulence in thenasphere. Furthermore, the bias

definition is consistent with estimation results from expental data.
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Figure 6.1:
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25 1

CRB(Ay,) m?
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This plot shows an example CRB wit), = 1 pixel, 0, = 3 pixels,
o = 3 ns, A, = 0.5 x 10* photons, and4, = 2 x 10° photons. The
bound behaves appropriately considering the variance gpes the sepa-
ration becomes smaller corresponding to the notion thaeeio targets are
tougher to resolve. The peak of the bound occurs when thesrand spa-
tial coupling are at their maximum. Further, when the rargasation near
zero, the range coupling is diminished, but the bound doggnto exactly
zero because the spatial coupling is still present.
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The shape of the curve in Figufel reflects the negative effects of the range and
spatial blurring as the targets become closer. Although efifects of range blurring are
minimized when the targets are at nearly identical rangdgtabound primarily depends
on the spatial blurring. Additionally, the increase in thmubd pastt2 meters of range
separation is due to the truncation of the pulse at thoseegrfgn assumption in the bound
derivation is a fully contained pulse within the range eigenThe impact is negligible
considering the eventual application of the CRB towardgearesolution. Targets with
+2 meters of range separation would be easily resolved. Clangiese values affect
the bound in a predictive manner. For example, increasingndo,, doesn't affect the
general shape of the range separation CRB, but it does setka bound’s magnitude due

to increased spatial and range blurring hampering rangaragépn estimation.

More specifically, Figuré.2 shows several examples of how the range separation

CRB is affected by changing parameters in the model inctythnget amplitude, blurring
severity, and spatial separation. Each individual figudesall other parameters constant
and plots the CRB while changing one parameter. For exarRpgare6.2(a) changes the
unknown target amplitudé, while keeping all other parameters constant. Unless oikerw
noted, the standard values for the parameters age= 3 ns,,, = 1 pixel, o, = 3 pixels,

ts = 1.876 ns, A, = 0.5 x 10* photons, and4, = 2 x 10° photons. The next few para-
graphs detail how the changing parameters effect the rapggation CRB. The parameter

changes affect only the bound values, but not the generpksbfahe bound.

Figure6.2(a) - A, effects. As the unknown target’s amplitude is increaseslptiund
decreases meaning that higher SNR values of the unknowt taids in range separation

estimation efforts. (Inversely proportional to bound)

Figure6.2(b) - A, effects. Changing the known target's amplitude has the sifgpo
effect of A;. As the A, amplitude is increased, the bound also increases meanatg th
range separation estimation becomes more difficult dueetanitreased blurring between

the targets. In other words, estimating the range separbtoomes very difficult when
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Figure 6.2:  Effects on CRB\;) when changing several parameters in the model includ-
ing target amplitude, blurring severity, and spatial sapan.
(a) A; - inversely proportional to bound
(b) A, - proportional to bound
(c) oy, - proportional to bound
(d) A,, - inveresly proportional to bound
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considering a very bright known target next to a much dimmemown target and vice

versa. (Proportional to bound)

Figure6.2(c) - o, effects. As the blurring severity increases, the boundialseases
meaning that more blurring (i.e. more coupling between éngets) hinders range separa-

tion estimation performance. (Inversely proportional doibd)

Figure6.2(d) - A,, effects. Finally, as the spatial separation increasess ika log-
ical corresponding range separation estimation perfocm@anprovement due to decrease

in coupling between the targets. (Inversely proportioadddund)

6.2 Range Separation Estimation Results

Using the model governed by Equatidhd) and the standard parameter values from

the previous section, an unbiased range separation estifmain Sectiord.4.2is applied

to enable comparisons of the range separation estimatancarto the CRB. Other pixel-
based range estimators are available including peak dmieabatched filtering, and nor-
malized cross-correlation. However, in this two-targetgrsrio, these estimators are all
biased because they assume that there’s only one targeixeér While one may try to
deblur the data, the operation will not be totally succdsafial some bias will still result.
The estimator used in the subsequent sections is diffenehét it is defined as having two

targets per pixel thus eliminating the bias.

Prior to comparison, the estimator must first be determinduoetunbiased. An es-
timator of an unknown parameter is unbiased if the expecadaevof the estimator is the
unknown parameter itself (i.e., on average, one expectgstimator to choose the true
value of the parameter to be estimate8h][ In terms of this simulation, the estimator is
considered to be unbiased if the bias squared contributitimet mean square error (MSE)
is small compared to the range variance contribution. Té&tionship results from the fact
that MSE equals the range variance plus bias squared. Agallgiethods to determine the

bias are available, but graphical nature of the algorithohiits such undertakings requir-

120



ing the generation of statistics based on many instantiatd the observed data through

simulation.

Therefore, a two point target simulation is constructedeotiihg the observation
model defined in Equation6(3). Shown in Figure6.3, the simulation results include
MSE, bias and range separation variance. As expected,&g8(c) shows the bias de-
crease as the iterations increase with a small bias left thféelast iteration. Referring to
Figures6.3(a), (b), and (c), the range variance dominates the MSE antiih point target

estimator is determined to be unbiased.

With the estimator established as unbiased, the rangeaeparariance is com-
pared to the CRB to observe how each is affected given changbe range separation.
Figures6.1and6.3(b) show the CRB and range separation variance respectidhough,
in order to gain more insight and show trends, Figér#compares the CRB and range
variance in the same plot where the similar behavior is nodes\. In fact, the estima-
tor range variance is such that it approaches equality Wwe&hobund. This equality would
make the estimator efficier8f]. The definition of an efficient estimator relates to the CRB.
CRB theory states that any unbiased estimator must a variaeal to or greater than the
bound. An efficient estimator is an unbiased estimator whvasance equals that of the
bound. Although this estimator was shown to be unbiasesinivt theoretically guaranteed
to be efficient. In addition, toward the edges of the rangausgpn+ 1.5 m, the bound
should theoretically go to zero like the variance does, bdbésn’'t because the Gaussian
pulse never goes to zero. This non-zero bound can be ignoree sstimation is easily
performed at those range separations and can also be mdtiggusing other pulse models

such as a negative parabolic that equals zero until the putseeived §3].

6.3 Optimal Pulse-width Investigation

Referring to Equation4.22, o,; controls the pulse-width of the received signal.
Pulse interactions with the target cannot be controlletithritransmitted pulse-width can
be factored into the design of the LADAR system. Figdr#(b) shows an example of a

pulse witho,, = 0.88 ns. Following standard RADAR theory, a smaller effectivéspu
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Figure 6.3:  These plots show the range separation estim@&tsults of a two point target
data model simulation.
(a) Mean square error (MSE) between the truth data and theatst
(b) Range separation estimate variance.
(c) Each curve is a bias calcuation for a differéxt over many trials. At
each trial, the estimated range is an average of the preegiimated ranges
(i.e. arunning average).
(d) Bias results taken from the last trial from (c). Compgria), (b), and (c),
it can be seen that estimator is unbiased due to the variamedting the
MSE.
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Figure 6.4: Taking the results from Figuréd and 6.3(b), this plot compares the CRB
and the simulated range variance showing agreement bdtk @ramer-Rao
inequality and in the curve shapes.

width is desirable due to its ability to resolve targets eloa®gether. However, given the
discrete nature of digital sampling employed by the elextroeceivers (denoted ky from

Equation 4.19), a smaller pulse-width may actually degrade performaheeto aliasing.

Therefore, the CRB is used to predict an optimal pulse-widthg a range resolution
metric. Subsequently, a simulation is accomplished talasdi the CRB results. Due to their
separate and distinct methods, agreement on the optimsg-witiths between the CRB
and simulation lends confidence to the results. The rangmuton metric is defined by
comparing the square root of the CRB (or range separatioanee in simulation) with the
actual range separation,,. Referring to Figuré.5, the location where the values equal is
defined as the range-resolution of the system. In other wdrilie actual range separation
is within one standard deviation of the range separatiameast, then targets would not be
resolvable due to the estimation uncertainty. This definitmplies that, on average, the
estimator would be able to resolve targets separated funthie targets closer together
than that value are not resolvable. After searching oveiypaise-widths, the pulse-width

that provides the best range resolution (i.e. lowest vatusglected as optimal.
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Figure 6.5:  This figure shows an example plot of how the raegelution metric is de-
termined. The circled value is the range resolution andespnds to the
location where the square root of the CRB is equal to the raegaration.
At smaller range separations, the square of the CRB is griete the sepa-
ration and vice versa.

Table 6.1:  Optimal pulse-width results - two point target

Range Samplingt;) | CRB, o,: (ns) Simulationg,,; (ns)
0.6t,, (1.126 ns) 0.52 0.52
0.8, (1.500 ns) 0.70 0.70
tso (1.876 ns) 0.88 0.88
1.2t,, (2.251 ns) 1.06 1.04
1.4, (2.626 ns) 1.22 1.16

6.3.1 Optimal Pulse for Two Point Target. Considering the two point target
scenario, Tablé.1 summarizes the optimal pulse-widi), CRB and simulation results
for several range sampling cases varying from faster (().® slower (1.4,,) electronics.
Figure6.6shows the data points for each range sampling case. Forieybart,, changing
the pulse to be either narrower or wider than the optimallteguan increase in the bound
or variance and deterioration in the range resolution. Themum value of each curve

corresponds to the reported optimal pulse-width.
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Figure 6.6:
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(a) For differing range sampling cases, theeaagolution derived from the
CRB is plotted versus the pulse-width. As the range samplingecomes
either faster (0.4, and 0.8,,) or slower (1.2,, and 1.4,,), the optimal
pulse-width respectively becomes narrower or wider wittoaesponding
improvement or degradation in the range resolution.

(b) The simulation range resolution determined from thegeaseparation
variance is plotted versus the pulse-width. As expectexidbolution values
are larger than those predicted by CRB theory. Also, thexadtpulse-width

trends in a similar manner as the CRB results.
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Figure 6.7:  Utilizing the optimab,, values from Table5.1, this plot shows the near
exact percentage change of the CRB and simulation optimaépudths
with respect to the percentage change in range sampling.

As can be seen in Figui&7, the optimal pulse-width scales in a similar manner as
the range sampling. For example, if the range sampling wescezl by 80%, then the
optimal pulse-width also changed by approximately 80% fithithe CRB and simulation

results.

6.3.2 Optimal Pulse for Complex Targets. The goal of this section is to show
through simulation that the optimal pulse-width theorydsdior more complex, two surface
targets. The CRB theory in Secti@l was developed for a simple, two point target and
doesn’t directly pertain to these new targets. Howevegesthe bound and the ensuing
simulation both predict an optimal pulse-width for the sienfwo point target, intuition
dictates that an optimal pulse-width could also be foundriore complex targets. Three
additional targets are selected (SectmB): multi-bar, three-bar, and connected blocks.
The first surface of all these targets is a flat, optically ctfle board with shapes cut out.
The second surface is also flat and optically reflective apthsed behind the first board at

a specific range separation. This second surface has natutidepending on the target
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Table 6.2:  Optimal pulse-width results - complex targets

Target Simulation,o,; (ns)
Multi-bar 1.1
Three-bar 1.0

Connected blocks 1.0

geometry, blurring strength, and surface reflectivity,\@gipixel might contain significant
contributions from either one surface or two surfaces. Boctseness, the multi-bar target

method and results are discussed in-depth while just thitseme shown for the other two.

The method to determine the optimal pulse-width is the éxa&lce same as the pre-
vious section: vary the range separations and accumulatiststs at those separations
and choose the pulse-width that produces the minimum rasgggution. Particular to this
scenario, the pixel-based two surface estimator from Gedti5 is used to generate the
estimates using a threshold of= 0.97. This threshold favors the “one surface pixel”
model due to false peaks created by noisy realizations dhthident low-light levels. The
first surface (in range) is fixed and assumed known while tibersk surface is placed at
successively larger distances from the first surface. At eaicge separation, only the pix-
els classified as “two surface” are used in order to keep thaelress close as possible to
the simple two-point target CRB of Sectiéril. The estimation statistics collected include
variance, mean square error, and bias. Due to the complekitye target and inherent
coupling between adjacent pixels, low light levels (15-86aived photons) where required

to increase the effect of the variance on the observed data.

A simulation is set up where the complex targets are intesexjby a 3D FLASH
LADAR. Results of the simulation are shown in Tal8e2 and Figures6.8(b), 6.9(b),
and6.10b) where the optimal pulse-width standard deviation ofdk.0.1 ns show moder-
ate agreement to the CRB results, = 0.88 ns) from the simple, two point target. Again,
there is no claim that the results have to match, but thatlfettthey are close for several

different targets is encouraging.

From [5], it was shown that the two-surface estimator is unbiasedrga simple

scene. However, in order to justifiably compare to the ogtipudse-width predicted by
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Figure 6.9: (a) True target scene.
(b) This plot shows the optimal pulse results for a threetaagyet witht, =

tso-
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(b) The optimal pulse is shown for a connected blocks targétiy = .

the CRB in Sectior6.3.3 the estimator must be shown to be unbiased given the complex
scenes where the convolution effects introduce severeftiagstimates. Thus, the light
levels had to be lowered to levels where the maximum peakeedastserved waveforms are
between 15 and 30 photons. This low light level allows foriasace to have a significant

impact on observed photon counts.

Figures6.11(a)-(d) ande.12a)-(d) show the statistics for different range separation
and pulse-widths respectively for the multi-bar target.e Hignificant factor across the
plots is that there is a relatively low or non-dominatingsbiia the region of range separa-
tion where the range resolution is selected. This regiohé&st-performing pulse-widths
from Figure6.8(b) (o, = 0.9,1.0, 1.1, and 1.2 ns) shows low bias and therefore variance
dominance in the MSE near the selected range resolutions8ab®.9 centimeters (re-
ferring to Figure6.12a)-(d)). These results indicate that some regions of thechespace
(range separation and pulse-width) are more biased thansothhe areas that are of most
interest tend to be less biased and, thus, permit a condittmmparison to the CRB results.
Furthermore, the optimal pulse-width results for the tHrae and connect blocks targets
show that their estimation statistics act in a similar mankéth the variance dominating
in the areas of interest, the majority of the error lies witthie variance allowing for the use

of the range resolution metric and subsequent comparisthretGRB results.
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Figure 6.11:  Statistics across pulse-widths for variongesseparations for the multi-bar

target. The statistics include mean square error, bias;arge variance.
(a) Range separation 1.6 mm.

(b) Range separation 11.6 mm.

(c) Range separation 21.6 mm.

(d) Range separation 31.6 mm.
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(d)o,. =1.2ns.
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6.3.3 Optimal Pulse for a Two Point Target using NormalizedisB Definition .
Another method to investigate the optimal pulse-width isadomalize the pulse with respect
to the range sampling. Rather than define the width of theegas,; in units of seconds,

the pulse is defined by, in units of samples given by

o ~(n)?
p(n)= o exp{ 3 } (6.7)

wheren € [1, N]is an integer range sample and the standard deviation is

ctg cty ts

with o,; as the pulse standard deviation in units of meters the speed of light in meters
per seconds,, is the range sampling in seconds per sample,cgnés the pulse standard
deviation in units of seconds. The benefit of this definitisnhie ability to determine an

optimal pulse-width independent of range sampling capgbil

Pertaining to the range resolution metric, the optimal @gksandard deviation, is
found by using the same investigation procedures as theomegection. Figuré.13a)
shows the optimal pulse shape in terms of a standard deviatgasured in samples. Using
Equation 6.8), the optimal standard deviation in secomgscan be found for a particular
ts as seen in Figuré.13b). These values far,, are consistent with the values from the

previous section.

Considering all the above optimal pulse-width studies,rmapdrtant observation is
the number of significant samples across the pulse for thenappulse-widths from Ta-
bles6.1, Table6.2, and the normalized pulse section. In each case, the nurhigndicant
samples across the optimal pulse is three. Referring tor&gya(b), a significant sample
is defined as a non-zero, sizable contributer2’% of pulse peak value) to the waveform.
This consistent number of significant samples indicatetsiivaie samples (i.e. larget,; )
than the optimal harms the range resolution capabilityevi@ver samples fails to provide

the estimator with enough data and under-samples the eztpivise causing the variance
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Figure 6.13:  (a) Using the normalized pulse model, this lgstipws the CRB optimal
pulse standard deviation referring to Equati6rvy.
(b) CRB optimal pulse versus range sampling. The optimatewidth
changes proportionally as the sampling changes.
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to increase. Even for a complex target whose estimatiomneg is not described by the

CRB theory, the simulated optimal pulse-width still maingthe three significant samples.

6.4 Conclusions

The CRB is used to bound system performance by giving a meaddrow well an
unbiased estimator can perform. In this paper, the CRB b®timel performance on the
ability to estimate the range separation of two spatial fp@irgets. Using the point target
estimator, the unbiased estimator variance is shown to badea by the CRB with both

trending in a similar manner.

Additionally, the CRB can be used to not only predict perfante, but to give a
LADAR engineer the capability to predict critical LADAR dermance without regard
to the particulars of estimation. Considering the optimakp-width study, all the range
sampling cases produced an optimal pulse-width with a amilimber of significant sam-
ples across the pulse. Three significant samples acrossitbe provides the best range

resolution while not experiencing the ill-effects of ungdampling.

The overriding conclusion is that a shorter pulse-widthha femtoseconds does
not always provide improved range resolution performarntiere is a range resolution
performance link between the electrical circuitry samploapability and the width of the
transmitted pulse. In conjunction with other performanoalg and design limitations, the
LADAR engineer concerned about range resolution shoulgusbfocus on a shorter pulse-
width without making improvements in the receiver’s capigbto sample the detected

return pulses.
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VII. Summary

he contributions of this research increase the body of kedgé and the ultimate per-
T formance of three dimensional FLASH LAser Detection And §lag (3D FLASH
LADAR). By decreasing ranging error, characterizing estion performance, or optimiz-
ing system parameters, sensor capability has been enhahicisdncrease is aided by an
increase in the data model fidelity from previous contritmsiin the field which have all but
ignored the spatial blurring effect of the image formatioogess. By incorporating these
blurring effects, new problems and opportunities to exyle data were formed. Solutions

were subsequently found that took advantage of the “exrf@timation available.

Given 3D FLASH LADAR'’s future in imaging, computer visionyglance, naviga-
tion, and targeting, this work builds a basis of understagaioncerning data models and
data processing. The research has unique attributes éhatrarconsidering other other sig-
nal processing research. The 3D FLASH LADAR is a powerfuksecombining RADAR
principles, laser transmission, waveform processing, eladtro-optical phenomena and
requires equally powerful algorithms to estimate and ditar&ze parameters of interest.
The focus of this research centers around a particular peesmarget range. Although,
other areas of research may be possible given that it is skiwatra particular data model

appropriately characterizes data from a 3D FLASH LADAR sens

This chapter summarizes the previous chapters in the dadune®iews the signifi-

cant research contributions, and outlines several avadbuégure research.

7.1 Chapter Summary

Chapterll provided background theory related to imaging, coheredeepnvolu-
tion, maximum likelihood principles, and generalized estpon maximization. It also
presented the data model used prevalently in this disemrtaFinally, previous research
was summarized in the areas of 3D LADAR hardware and dataepsitg, blind deconvo-

lution, performance bounding, and parameter optimization

Chaptetll detailed the 3D FLASH LADAR hardware and laboratory sesinged in

experimental collects. This chapter also describes theggdires used to condition the data
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for appropriate use for the selected mathematical modelalllyj it explains how the ex-
perimental point-spread-function is determined as wethaspeckle parameter estimation

which increases confidence with the chosen incoherentringiutel.

ChapterlV contained the pertinent range estimation algorithms ttudepeak de-
tection, maximum likelihood, normalized cross-corraat{matched filtering), a two point
target range and spatial separation estimator, and a tviacsurange separation estima-
tor. The normalized cross-correlation is usually the metbbchoice due to its ability to
perform intersample ranging and handle truncated wavefoAtithough, it may encounter
some bias depending on spatial blurring severity and/oetfeetiveness of deblurring (de-

convolution) algorithms.

ChapterV implemented object deconvolution and blind deconvolutonblurry,
noisy data observations using simulation and experimetdgt showing that object re-

coveryimprovesrange estimation.

ChapterVI derived the CRB for range and spatial separation as well gditaiche
estimation considering a two-point target scene. Consigeseveral range sampling cases,
the range separation CRB and estimator also predicted amalgtulse-width that pro-
vides the best range resolution. Additionally, an optimakp-width is found using more

complex targets and for a normalized pulse-definition.

7.2 Summary of Contributions

7.2.1 Improving Range Estimation by Spatial Processin@he benefits of spatial
processing are evident when comparing range estimatiamdéahd after the object recov-
ery algorithms. Simulation shows substantial increasdénitnage quality and decrease
in the range estimation errors. The experimental data sihoywsovement, but not as dra-
matic due primarily to the excess speckle noise evidendm#ta. A favorable result is that
the blind deconvolution methods outperformed deconvoiugven when the deconvolution
was given the exact form of the blurring function. The apita process three-dimensional

data in two dimensions and range in the third dimension wasrthovative vision. This
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contribution proves that this vision can be theoreticaligyen and demonstrated through

simulation and experimentation.

7.2.2 Unbiased Two Point Target Temporal and Spatial Edma Using a two-
point target scene, an unbiased spatial-temporal estingtierived that is able to accu-
rately estimate spatial and range separations and recamplitudes. Through simulation,
its range separation estimator variance compares fayotatithat predicted by the CRB.
This estimator can even handle truncated waveforms whicbtipredicted or suitable han-
dled by the bound. Without this unbiased estimator, the C&filts would have nothing
to compare to and there would be less confidence its conalsisithe agreement between
the CRB and simulation variance is exceptionally significard vital since they arrive at

virtually the same answer by different methods.

7.2.3 Lower Bound on Range Separation Estimatiof.hrough the use of a two-
point target scene, the CRB on range separation estimaterived. The CRB on spatial
separation and amplitude estimation is derived as welkaiP@ng to range separation, the
CRB shows that range separation does not severely afféctadgtn performance until the
targets are close. When the range separation is identmailty, the bound does not go to
zero due to the spatial blurring still present in the dategés are still spatially separated).
Additionally, the shape of the bound is remains constargpetdent of several parameters
including spatial blurring strength, signal-to-noisaodSNR) of the reflectors, and spatial
separation. The dependence between the bound and the persimehe absolute level of
the CRB. As the blurring strength increases, the bound atseases and vice versa. When
the SNR of the unknown target reflector is either increasedegreased, the bound acts
oppositely and decreases or increases respectively. Teéasés should be intuitive where
increased blurring would make estimation more difficutt.(ivariance would increase) and
an increase in the unknown target SNR would enhance theastimabilities (i.e. variance

would decrease).
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7.2.4 Optimal Pulse-Width based on Range Resolutionvith this contribution,

it is shown that the CRB can perform system parameter opsithoiz with respect to a very

important system characteristic and requirement — rarggguon. Independent of estima-
tor choice, the bound shows that an optimal pulse-widthtexbereby the expected range
resolution is minimized. After developing an unbiasedraator for the target scene, the
optimal pulse-widths predicted by the CRB are verified tiglosimulation. The agreement
between CRB and simulation is very significant given thay thive at range separation
variance either through Fisher information theory or tiglovepeated trials using a simu-

lation.

Furthermore, the range sampling interval is both incredslkeaver electronics) and
decreased (faster electronics) which shows the resulfatimhal pulse-shape becoming
wider and narrower respectively. In other words, fastertedaics that sample the range di-
mension faster can incorporate a narrower pulse-width ehiéae better range resolution.
To lend confidence to the results, optimal pulse-widths &e fsund for more complex
targets. Also, in terms of samples, an optimal pulse-widihgithe CRB is found using a
normalized pulse model. This definition means that the tesué independent of the range
sampling interval. Finally, and perhaps most enlightenaigthe optimal pulse-width re-
sults reflect that the received pulse needs to have thre#isag samples in the received
data. Fewer significant samples caused by a narrower triéednpulse or target interac-
tions does not provide enough information to match the mpdisle-shape and could even
be entirely missed by the electronics. Following, whileypding enough information,
more significant samples would certainly be less optimal égrdding range resolution

performance.

7.3 Future Research

There are numerous additional research avenues avail#hleaspect to 3D FLASH

LADAR and data processing including the following:
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7.3.1 Outlier Detection. To overcome speckle produced by coherent lasers and

increase signal-to-noise ratio (SNR) because of low resignal levels due to low trans-
mit energy, propagation distances, or target reflectariad, ADAR systems may need to
average many cubes of scene data. In practice, certain audpede warped due to mis-
registration or atmospheric effects. Also, a particulatepmay be defective for a small
amount of time resulting in an out-of-family pixel that is &yped” in a cube of data. If
the warping is severe enough, the averaging process maygagivedy affected by these
particular cubes or pixels. It would be advantageous toesygierformance (i.e. object
recovery, range estimation) to develop a means to intelligeemove these frames before

the averaging process.

7.3.2 FOliage PENetration (FOPEN) Capability Investigati A key military
mission for any imaging or ranging sensor is the ability twognize man-made targets un-
der foliage that can either be man-made itself (camouflageatural (trees). Successful,
experimental efforts have already been accomplishedgrionascertain the 3D FLASH
LADAR’s FOPEN capability. However, a rigorous theoretioabdel has not been adopted
yet. This model and subsequent simulation and experimawvdtigation would numeri-
cally characterize FOPEN potential in a myriad of environteencluding different cam-

ouflage configurations, look angles, weather conditiorgs (gind velocity), and targets.

7.3.3 Pixel Impulse Response Deconvolution.As with any high-performance
military hardware, characterization under environmeoparational conditions is a manda-
tory exercise. The operator must know the limits where onelevexpect nominal perfor-
mance. As part of the hardware characterization efforesptkel impulse response impact
on the reflected pulse is important when developing accprate models. The pixel’s im-
pulse response is not ideal and does have some distortemt efi the returned waveforms.
Using simulated and experimental data, the research effoutd calculate the distortion

severity and dependence on system parameters.
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7.3.4 Object blind deconvolution using partially coherkgihtt model. Described
by the Poisson distribution, the incoherent light modeldusethis research is an approxi-
mation for the partially coherent model which is the mosuaate portrayal of the detected
laser light. Detected partially coherent light is statialiy described by the negative bino-
mial (NB) distribution. Blind deconvolution methods usitige NB distribution are cum-
bersome and nearly intractable unless the point-spreaciifun can be parameterized. If an
object estimation method can be found to use the Generdlixpdctation Maximization
(GEM) algorithm with the NB distribution, the resulting esator would theoretically out-
perform the object estimator in this research due to thesas® in noise model accuracy.
The key issue in the derivation comes when taking the caditiexpectation of the log of
the complete data with respect to the incomplete data andlthestimates. A vital prop-
erty of the Poisson distribution is that a sum of Poisson @amgtariables is still Poisson.
The same cannot be said for a sum of NB random variables. Goesdy, a variation of

the GEM or data model is necessary to complete the derivation
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