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Abstract

The purpose of this research effort is to improve and characterize range estimation

in a three-dimensional FLASH LAser Detection And Ranging (3D FLASH LADAR) by

investigating spatial dimension blurring effects. The myriad of emerging applications for

3D FLASH LADAR both as primary and supplemental sensor necessitate superior per-

formance including accurate range estimates. Along with range information, this sensor

also provides an imaging or laser vision capability. Consequently, accurate range estimates

would also greatly aid in image quality of a target or remote scene under interrogation.

Unlike previous efforts, this research accounts for pixel coupling by defining the

range image mathematical model as a 2D convolution between the system spatial impulse

response and the object (target or remote scene) at a particular range slice. Using this model,

improved range estimation is possible by object restoration from the data observations.

Object estimation is principally performed by deriving a blind deconvolution Generalized

Expectation Maximization (GEM) algorithm with the range determined from the estimated

object by a normalized correlation method. Theoretical derivations and simulation results

are verified with experimental data of a bar target taken froma 3D FLASH LADAR system

in a laboratory environment. Simulation examples show thatthe GEM object restoration

improves range estimation over the unprocessed data and a Wiener filter method by 75%

and 26% respectively. In the laboratory experiment, the GEMobject restoration improves

range estimation by 34% and 18% over the unprocessed data andWiener filter method

respectively.

This research also derives the Cramer-Rao bound (CRB) on range separation estima-

tion of two point sources interrogated by a 3D FLASH LADAR system. Using an unbiased

estimator, range separation estimation variance was attained through simulation and com-

pared favorably to the range separation CRB theory. The results show that the CRB does

indeed provide a lower bound on the range separation estimation variance and that the es-
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timator is nearly efficient. With respect to the estimator, traditional pixel-based estimators

like peak detection and matched filtering are biased becausethey assume there is only one

target in the pixel. Therefore, an unbiased estimator was derived accounting for the possi-

bility of two targets within a single pixel.

Additionally, among other factors, the range separation CRB is a function of two

LADAR design parameters (range sampling interval and transmitted pulse-width), which

can be optimized using the expected range resolution between two point sources. Typi-

cally, a shorter transmitted pulse-width corresponds to better range resolution (the ability

to resolve two targets in range). Given a particular range sampling capability determined

by the receiver electronics, the CRB theory shows there is anoptimal pulse-width where

a shorter pulse-width would increase estimation variance due to the under-sampling of the

pulse and a longer pulse-width would degrade the resolving capability. Using both CRB

theory and simulation results, an investigation is accomplished that finds the optimal pulse-

width for several range sampling scenarios. For example, given a Gaussian received pulse

model sampled every 1.876 ns, both range separation CRB theory and simulation predict

an optimal pulse-width standard deviation equal to 0.88 ns.As the speed of the optical re-

ceiver is increased, the range resolution is improved with acorresponding narrower optimal

pulse-width attained by the ability to sufficiently sample ashorter pulse-width. Conversely,

the optimal pulse-width is wider with slower electronics with an associated negative impact

on range resolution.
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IMPROVING RANGE ESTIMATION OF A

3-DIMENSIONAL FLASH LADAR

VIA BLIND DECONVOLUTION

I. Introduction

T he ability to accurately view a remote scene has long been a human military en-

deavor. From primeval warriors using mountains or trees to see troop formations

with their naked eye to early seafarers using primitive optics to assess ship capabilities or

harbor defenses to today’s combatants operating advanced optics (manned and unmanned

platforms) and imaging satellites to observe troop or missile movements, the advantage to

the military that can accurately assess the remote battlefield has never been questioned.

With modern technology development, remote sensing has advanced and, in one par-

ticular sensor area, has bonded with another indispensablemilitary capability: RAdioDe-

tection And Ranging (RADAR). Since World War II, RADAR capability has been a critical

technology with respect to offensive and defensive capabilities and missile defense. Ad-

vances in RADAR have steadily progressed since the early effective use of RADAR by

Great Britain against Germany in the Battle of Britain. However, RADAR is fundamentally

limited in some ways by its operating wavelength in the electromagnetic spectrum. One

of the latest advancements is in the field of RADAR is adaptingthe use of lasers to the

ranging issue and developing aLAserDetection And Ranging (LADAR) system. LADAR

allows for the benefit of a smaller operating wavelength (e.g., resolution and material inter-

action) and the directionality of laser transmissions (which are ideal for urban environment

interrogation) while still retaining the imaging and ranging benefit of a traditional RADAR.

Just as there is no one branch of the military that can operateindependently in the mod-

ern battlefield, a LADAR is not meant to be a panacea and there are applications where

RADAR is still preferred. Though, as the technology continues to mature, LADAR will be

an invaluable contributor in imaging and ranging sensor suite available to the warfighter.
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Motivation for this research effort is accomplished in thischapter by introducing

LADAR and explaining the importance of range estimation. Specifics of the research con-

tributions are described with corresponding benefits. Finally, the document organization is

given.

1.1 Motivation

The driving force behind this research endeavor is to adopt arealistic physical model

for the return signals of a three-dimensional FLASH LAser Detection And Ranging (3D

FLASH LADAR) and then develop methods of improving the most vital unknown param-

eter from that model: range to target. More precise range measurements aid intelligence

gathering, target recognition, mapping, imaging, object classification, navigation, and pre-

cision strike capabilities. The trend towards computer vision systems with active illumina-

tion necessitates the use of 3D FLASH LADARs capable of rapidrange data acquisition

with a wide enough field of view (FOV) to allow the operator access to an appropriate bat-

tlefield representation. By acquiring the remote scene in this manner, however, the sensor

will be negatively affected by the spatial blurring inherent in the image formation process.

The importance of being able to correctly range to the remoteenvironment is charac-

terized by General T. Michael Moseley in a 2007 CSAF white paper:

The Air Force is often first to the fight and last to leave. We give unique options
to all Joint Force Commanders. The Air Force must safeguard our ability to:
see anything on the face of the earth;range it; observe or hold it at risk; supply,
rescue, support or destroy it; assess the effects; and exercise global command
and control of all these activities. Rising to the 21st Century challenge is not a
choice. It is our responsibility to bequeath a dominant Air Force to Americas
joint team that will follow us in service to the Nation [57].

Unlike 3D scanning LADARs that build a 3D scene by rastering multiple laser scans

with a dwell required at each point, a 3D FLASH LADAR system produces a set of se-

quential two-dimensional (2D) images due to a fast range gate (i.e. shutter) resulting in a

three-dimensional data cube (spatial and range) of the remote scene. In reality, the sensor

captures a fourth dimension which is the photo-electron count for each volume element

(voxel). Each 2D range slice image contains the detected photo-electrons at each pixel for

2



a particular range. The photo-electron counts are directlyproportional to the return signal

intensities incident upon the detector. Unique to the FLASHLADAR sensors, each pixel

in the array detects its own attenuated and time-delayed version of the transmitted signal.

Investigating pixel data, the blurring effects are evidentin the pixel’s received waveform.

3D FLASH LADAR range estimation errors of a remote scene can occur due to sev-

eral system factors including the optical spatial impulse response (diffraction limited, atmo-

spheric turbulence), detector blurring, photon noise, andreadout noise. These factors either

cause the scene’s intensity to spread, or blur, across pixels or add unwanted and disruptive

noise effects. The intensity spreading and noise corrupts the correct pixel intensities at each

range gate by mixing intensities with neighboring pixels thereby providing false intensity

values and therefore incorrect photon counts to the range estimator. Without blur and noise

compensation, the range estimates would then be inaccurateto a degree depending on the

blur and noise severity.

3D FLASH LADAR’s popularity is increasing due to its small size, rapid image ac-

quisition, and range resolving capabilities. There are several examples that highlight appli-

cations in practical situations: As part of its return to flight efforts following the Columbia

disaster, NASA uses a 3D imaging LADAR to inspect the integrity of the Space Shuttle’s

Thermal Protection System prior to reentry [45]. Sandia National Laboratory developed a

counter-sniper 3D coherent detection LADAR sensor designed to trace the source of the

bullet by optical signature and bullet trajectory analysis[74].

Augmenting the FLASH technology to the LADAR’s active sensing capability, the

possibilities of future technology include remote video feeds from airborne or spaceborne

platforms to command and control centers, precise autonomous navigation in GPS-denied

regions, autonomous precision strike with guided cruise missiles or intelligent gravity mu-

nitions, and battlefield awareness in day/night conditionsfor airborne or ground forces in

dynamic environments.
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1.2 3D FLASH LADAR Research Contributions

1.2.1 Improving Range Estimation by Spatial Processing (Chapter V) . Previ-

ous work in 3D FLASH LADAR has only modeled an ideal return perpixel and not the

real world effects of spatial blurring [9], [38]. This research will enhance the model by

adding the spatial impulse response thereby considering all the pixel’s signals in the range

estimation algorithm for a particular pixel. The benefit of this research is for future imple-

mentation in an operational environment. Previously, a 3D representation of a remote scene

was built by single-pixel LADAR scanners. Consequently, the scanning 3D LADARs have

limited spatial extents on each collect and do not see the effects of spatial blurring. As

laser vision hardware improves, the development will trendtowards FLASH systems that

capture scene data very rapidly over a large pixel array. Given proper spatial sampling, this

method of data capture would see the effects of spatial blurring. The spatial blurring would

contribute negatively to current methods of range estimation because each pixel’s return

waveform would interact with those of its neighboring pixels. New estimation solutions

must be developed that account for these blurring effects and essentially “deblur” the data

to increase range estimation performance. This research builds this enhanced model and

improves range estimation by spatially processing the datausing a well-known spatial filter

(deconvolution) and a novel object recovery algorithm (blind deconvolution) [56].

1.2.2 Unbiased Two Point Target Temporal and Spatial Estimator (ChapterIV).

This contribution supports the CRB work from the previous section. Given the two target

model, conventional pixel-based estimators like peak detection and matched filtering are

biased because they assume there is only target in the pixel.Therefore, an unbiased es-

timator was developed accounting for the possibility of twotargets within a single pixel.

Based on a least sum squares approach, the ability to sufficiently estimate the ranges and

amplitudes of two point targets is developed and verified to be unbiased.

1.2.3 Lower Bound on Range Separation Estimation Variance (ChapterVI) . An

important metric of a physical model with several unknowns is to understand the optimal es-
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timator variance achievable regardless of the specific estimation scheme. The Cramer-Rao

Bound (CRB) provides the lower bound on estimator variance given an unbiased estimator.

Previous CRB work in 3D FLASH LADAR adopted a physical model that did not account

for the spatial blurring between pixels [9], [38]. The benefit of including these spatial

effects in the CRB development is that the estimation and CRBresults would now be nega-

tively affected by the signals from adjacent pixels to a degree depending on the pixel range

differences. A two point target scene model is adopted to show the CRB on range separa-

tion estimation. The effects of changing the separation areshown to drastically affect the

ability to estimate that separation.

1.2.4 Optimal Pulse-Width based on Range Resolution (Chapter VI) . Utilizing

the CRB and unbiased two point target range separation estimator, a method is developed

where an optimal pulse-width is determined based on the expected range resolution using

the two point target model. Typically, a shorter transmitted pulse-width corresponds to bet-

ter range resolution (the ability to estimate two distinct targets in range). Given a particular

range sampling capability determined by the receiver electronics, the CRB and simulation

shows there is an optimal pulse-width where a shorter pulse-width would increase esti-

mation variance due to the under-sampling of the pulse and a longer pulse-width would

degrade the resolving capability. Using two distinct and separate techniques of CRB and

simulation, an investigation is accomplished that finds theoptimal pulse-width for several

range sampling scenarios. Benefits of this analysis includethe ability to aid in LADAR

system design using independent statistical methods (CRB).

1.3 Organization

The dissertation is organized as follows: ChapterII provides background theory, data

model, and a discussion of previous LADAR research. ChapterIII details the 3D FLASH

LADAR hardware used in experimental collects as well as the procedures used to condition

the data for appropriate use for the selected mathematical model. ChapterIV contains the

pertinent pixel-based range estimation algorithms. Chapter V shows that object recovery

5



does improve range estimation. ChapterVI derives the CRB for range separation estima-

tion and predicts an optimal pulse-width that provides the best range resolution. Finally,

ChapterVII summarizes the research contributions and outlines futureresearch opportuni-

ties.
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II. Background

T his chapter serves as a review of background theory and previous research related

to three-dimensional FLASH LAser Detection And Ranging (3DFLASH LADAR).

The focus on the theory and literature review will be relatedto the major topic areas: range

estimation, spatial processing, performance bounding, and optimal parameter selection.

This chapter is organized as follows: Section2.1 discusses imaging and coherence

theory and how it applies to 3D FLASH LADAR. Sections2.2, 2.3, and 2.4 discuss de-

convolution, maximum likelihood parameter estimation, and the Generalized Expectation

Maximization (GEM) algorithm respectively. Section2.5describes the data model that will

be used in ChaptersIII , IV, andV. Finally, Section2.6 reviews previous research related

to LADAR data processing, blind deconvolution, bounding performance, and parameter

optimization.

2.1 LADAR Imaging Theory

The goal of this section is to describe the 3D FLASH LADAR imaging operation

as a linear and spatially-invariant system. Linear systemstheory has many benefits with

the chief benefit of being able to describe the observed data (image) as a convolution of

the object’s intensity with a spatial impulse response. This convolution is an integral part

of the mathematical model used in this research describing the detected photons in the 3D

FLASH LADAR. The spatial impulse response completely describes the optical system to

include any random atmospheric disturbance. The argument that optical imaging can be

cast in the linear system framework has been established in the literature [24], [25]. Similar

arguments are made here to verify that this framework is applicable to this research. A

foundational understanding of why this object-image relationship holds is key because it

allows the use of object reconstruction algorithms from thesimple inverse filter to the more

complicated blind deconvolution methods. First, a method is needed to accurately describe

the illuminating light’s movement and interaction with itsenvironment and how light prop-

agates. Following, the linear system framework can be constructed with an example of a

spatial impulse response for a simple imaging system.
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2.1.1 Description of Light. From [30], there are three mathematical descriptions

in which the light used in optical imaging systems can be described. They are geometrical

optics, quantum optics, and physical (wave) optics.

The simplest and least accurate mathematical model is called geometrical optics (GO)

and is a good approximation when wavelengths are small compared to the dimensions of

the optics. GO analysis operates on the principle of light described as rays and is a valid

technique to determine basic properties of an imaging system like object distance, magnifi-

cation, and pixel area at the target. For instance, the location of an object’s image through

an imaging system is based on the ray tracing method. While being able to show optical

abberations, GO does not handle diffraction or interference effects and predicts the loca-

tion of an image to be a point (without aberrations). The blurring of the imaging system is

not accounted for in GO which makes it a poor choice to describe light propagation in this

research.

From [30], the most accurate and complex mathematical description of light is called

quantum optics (QO) and is valid in all optical scenarios (wavelength, irradiance levels,

and optic dimensions). In QO, light is considered an electromagnetic wave with its en-

ergy quantized into massless particles called photons rather than a continuous wave. While

being the most physically accurate, computations tend to beslow and cumbersome. Con-

cerning imaging applications, the extra time and resourcesrequired for QO is not beneficial

when trying to understand and mitigate the macroscopic light blurring effects of an optical

system.

Also from [30], the remaining mathematical method is called physical optics (PO),

or wave optics, in which the light is considered to propagateas a transverse electromag-

netic wave. In general, PO can be used to describe diffraction and interference effects by

Maxwell’s equations using a scalar theory approximation. Rather than a vector-based the-

ory, scalar theory is valid for describing light behavior when the wavelength of the light

is much less than the dimensions of the diffracting objects and when traveling through a

uniformly dielectric medium. Whereas GO describes an imageto be a point, PO utilizes
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Figure 2.1: Simplified depiction of an imaging system. In the3D FLASH LADAR, the
object is the target under illumination, the lens are the front end optics, and
the image would be the 2D range slice image of the intensity return from the
object at a particular return time.

diffraction effects through the optical system to depict the image spread about the point that

GO predicted. While there may be situations where the physical optics assumptions and

approximations fail, the more accurate quantum optics approach tends to be impractical

due to increased complexity and processing times for operational use. In most practical

situations, PO is sufficient to describe the light’s movement and interactions with structures

given high enough irradiance levels.

A common practice in imaging systems is to treat light as an electromagnetic wave

using PO until the light hits the detector in which the light is then considered a particle

or photon. This assumption allows for the benefit of the dual nature of light and will be

adopted for this research. Furthermore, PO is sufficiently accurate to describe an optical

imaging system as a linear system.

2.1.2 Optical Field Propagation. Based on [25] and referring to Figure2.1, the

purpose of this section is to be able to describe how to mathematically propagate an optical

field from one plane to another with varying levels of accuracy. In order to mathematically

propagate an optical field, a diffraction formula must be used due to the many point sources

in the observation plane.
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Through Maxwell’s equations, the Huygens-Fresnel principle, and Kirchhoff’s the-

ory, a closed-form mathematical solution for the optical field at a remote point can be

attained called the Rayleigh-Sommerfeld diffraction formula. This diffraction formula

is a general result from scalar diffraction theory with the only assumptions lying within

scalar diffraction theory. With monochromatic and narrowband assumptions, the Rayleigh-

Sommerfeld diffraction formula is given by the following equation for the complex phasor

Ua of the scalar optical field at a distancez away from the source fieldU [25]:

Ua(u, v) =

∞
∫

−∞

∞
∫

−∞

U(�, �)e
j2�R(�,�,u,v)

�

j�R(�, �, u, v)
d�d� (2.1)

where (u, v) are observation plane coordinates, (�, �) are source plane coordinates,� is the

mean wavelength, andR(�, �, u, v) =
√

z2 + (� − u)2 + (� − v)2 is the distance between

every point in the source plane to every point in the observation plane. The complex phasor

is related to the scalar optical field by

ua (u, v, t) = Re {Ua (u, v) exp (−j2��t)} (2.2)

where Re{} means the “real part”,j =
√
−1, � is the frequency of the light, andt signifies

time. The optical field theory focuses on the complex phasorU development since the time

dependence is already known [25].

A useful simplification called the Frensel approximation (near-field or paraxial ap-

proximation) can be employed to reduce the complexity of therange term, although the

two instances of the range term need to be handled differently. Small errors in range term

in the denominator are usually not critical due to the range to target (z) being much, much

bigger than the spatial extents in the observation and imageplane. Conversely, small errors

in the range term residing in the exponential can be significant given that it is divided by the

light’s wavelength which is on the order of hundreds of nanometers in the light or infrared
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spectrum. Using the binomial approximation forR in the exponential results in

R =

√

z2 + (� − u)2 + (� − v)2

= z

√

1 + ((� − u) /z)2 + ((� − v) /z)2

∼= z
(

1 + 0.5 ((� − u) /z)2 + 0.5 ((� − v) /z)2
)

∼= z +
(� − u)2

2z
+

(� − v)2

2z
(2.3)

and approximatingR ≈ z in the denominator, results in the Fresnel diffraction formula

given by [25]

Ua(u, v) ∼=
ej

2�z
�

j�z

∞
∫

−∞

∞
∫

−∞

U(�, �)ej
�
�z [(�−u)2+(�−v)2]d�d� (2.4)

which describes a convolution operation for the free space propagation of an optical field

from one plane to another. A spatial impulse response (spatial point spread function) for

free space propagation is then defined by

ℎ (�, �) ∼= e
j2�z

�

j�z
ej

�
�z [�2+�2]. (2.5)

It is interesting to note that even free-space propagation can be cast in the linear systems

framework. A later section will make the argument that an imaging system can be repre-

sented as a linear system as well.

An alternate way to view the free-space Fresnel diffractionintegral is by factoring

out the variables that don’t depend on the variables of integration and results in

Ua(u, v) =
e

j2�z

� e
j�(u2+v2)

�z

j�z

∞
∫

−∞

∞
∫

−∞

U(�, �)e
j�(�2+�2)

�z e
−j2�(u�+v�)

�z d�d�. (2.6)

which is a scaled Fourier Transform of the aperture field and the quadratic exponential. The

Fresnel diffraction formula still accounts for the curvature of the wavefront, but assumes
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a parabolic rather than spherical wavefront shape. While Equation (2.6) specifies the op-

tical field (volts/meter) at a distance, the intensity at that point is the quantity of interest

in imaging. Considering the wave is monochromatic, the intensity (watts/meter2) can be

determined by taking the magnitude squared of the complex phasor of the optical field or

Ia (u, v) = ∣Ua (u, v)∣2. When the wave is not monochromatic, the intensity becomes the

time-average⟨⋅⟩ of the amplitude squared of the scalar optical field

Ia (u, v) = ⟨∣ua (u, v, t)∣2⟩ (2.7)

whereua (u, v, t) was defined in Equation (2.2). All future references to an “optical field”

refer to the complex phasorU unless explicitly stated otherwise.

Equation (2.4) or (2.6) can now be used to describe the imaging operation where

optics are placed between the object and image. The next section summarizes the resulting

impulse response of a general imaging scenario.

2.1.3 Impulse Response of an Imaging System with a Thin Lens.The purpose of

this subsection is to illustrate an example of the impulse response from a simple imaging

architecture. The imaging system converts the diverging spherical waves emanating from

an object to converging spherical waves culminating at the image. The lens is assumed

to be a thin lens meaning the light enters and leaves the lens at the same coordinates. Of

course, there is a diameter to all lenses as well as irregularities that make this assumption

invalid. However, it will suffice for the purposes of a theoretical understanding of the lens’

effect on incident light.

In general, the purpose of the imaging system is to reproducean object in a better

manner than possible without the system. With no aberrations, the geometrical optics anal-

ysis predicts a “perfect” image aside from a scaling term, although this image is only valid

as the wavelength goes to infinity (� → 0). Wave optics predicts a more physically accurate

image that is dominated by the effects of diffraction. As stated previously, a significant con-

cept in this research is that the 3D LADAR is operating in a linear system. This assumption
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allows for the LADAR to be entirely represented by a spatial impulse response. The images

are then produced by the convolution of the object and spatial impulse response. The key is

to be able to describe an optical imaging system by a spatial impulse response. By placing

a point source in front of a lens, the impulse response of the lens can be attained. This

lens impulse response is valid for compound or more complex optics since all the imaging

system optics convert a diverging spherical wave into a converging spherical wave.

Under the general assumption of the linearity of wave propagation, the relationship

between a field at the image and object plane can be given by a superposition integral [25]:

Ui (u, v) =

∞
∫

−∞

∞
∫

−∞

ℎ (u, v; �, �)Uo (�, �) d�d� (2.8)

whereUi andUo are the image and object plane optical field respectively andℎ is the

impulse response and is an optical field at(u, v) produced by an amplitude point source

at (�, �). The spatial impulse response can describe optical systemsfrom simple free-

space to the most complicated optics. If the system is considered space invariant (i.e. an

isoplanatic imaging situation exists) thenℎ is ℎ (u− �, v − �) where Equation (2.8) is now

a convolution integral. From [25], however, the Fresnel diffraction integral (Equation (2.4))

is used along with the phase transformation of a lens to derive the general form for a spatial

impulse response of a single thin lens to be

ℎ (u, v; �, �) =
1

�2z1z2
e

j2�
z2
(u2+v2)e

j2�
z1
(�2+�2)

×
∞
∫

−∞

∞
∫

−∞

P (x, y) exp

{

j
�

�

(

1

z1
+

1

z2
− 1

f

)

(

x2 + y2
)

}

× exp

{

−j
2�

�

[(

�

z1
+

u

z2

)

x+

(

�

z1
+

v

z2

)

y

]}

dxdy (2.9)

with (u, v) being the image plane coordinates,(�, �) as the object plane coordinates,� as

the wavelength,z1 as the distance from the object to focal plane,z2 as the distance from the

focal to image plane,f being the focal length,P as the pupil function, and(x, y) as the focal
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plane coordinates. Using assumptions about the quadratic phase terms and normalizing the

coordinates to eliminate effects of inversion and magnification, the general form reduces to

a normalized point spread function

ℎ̃(u, v) ∼= A

�z2
F [P (x, y)]fx= u

�zi
,fy=

v
�zi

(2.10)

with A being the optical field amplitude,F as the Fourier transform operator, and(fx, fy)

are the focal plane spatial frequency coordinates. It is only under specific conditions that

Equation (2.10) results from the more general impulse response. First, thelens law must be

satisfied:
1

f
=

1

z1
+

1

z2
(2.11)

which is a mandatory condition for imaging to occur and thus

exp

{

j
�

�

(

1

z1
+

1

z2
− 1

f

)

(

x2 + y2
)

}

(2.12)

in Equation (2.9) reduces to unity. Second, since the goal of imaging is to obtain the in-

tensity of the image, any multiplicative phase terms with dependence only on image plane

coordinates can be discarded. In other words, the termexp
(

j2�
z2

(u2 + v2)
)

can be ignored.

Finally, the quadratic phase term dependent on object planecoordinates,exp
(

j2�
z1

(�2 + �2)
)

,

is ignored by noting that the object is a point source and the span of the object coordinates

are very small. Therefore, it would contribute a trivial amount to the intensity on the focal

plane. With these three conditions satisfied, the impulse response for a thin lens takes the

form of Equation (2.10).

This result is an example of an ideal impulse response for an optical imaging system.

It is ideal in the sense that there are no aberrations or atmospheric turbulence. Using the

principle planes concept from geometrical optics, most optics in an imaging systems can

be considered a “thin lens” with light entering the system with one orientation and exiting

at another orientation without regard to the inner optical structures. Thus, the thin lens

impulse response is a good approximation or starting point for reconstruction algorithms.
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2.1.4 Optical Imaging as a Linear and Nonlinear System.In order to validate

the mathematical model adopted in this research, the relationship between the object in-

tensity and image intensity needs to be a linear relationship. Depending on the coherence

properties of the illuminating light, this linear relationship may or may not exist. This sub-

section gives examples of both. The next subsection concentrates on coherence theory, how

it affects the object-image linear relationship, and why this research can assume a linear

relationship between the object and image intensity does exist in a 3D FLASH LADAR.

Presented again for convenience, the relationship betweena field at the image and

object plane can be given by a superposition integral due to the linearity of wave propaga-

tion

Ui (u, v) =

∞
∫

−∞

∞
∫

−∞

ℎ (u, v; �, �)Uo (�, �) d�d� (2.13)

whereUi andUo are the image and object plane optical fields respectively and ℎ is the

impulse response and is an optical field at(u, v) produced by an amplitude point source

at (�, �). Again, if the system is considered space invariant (i.e. anisoplanatic imaging

situation exists) thenℎ is ℎ (u− �, v − �) where Equation (2.13) is now a convolution

integral.

In a simplified imaging situation, the imaging system consists of an object, a lens,

and an image. The ideal image predicted by geometrical optics is

Ug (u, v) =
1

∣M ∣Uo

( u

M
,
v

M

)

(2.14)

whereM is the magnification andUo is the object. This ideal image is the result of the

superposition integral as� → 0. Using this result as the object plane amplitude in Equa-

tion (2.13), the field at image plane is a convolution of the impulse response and image

predicted by geometrical optics [25]:

Ui(u, v) = ℎ(u, v)⊗ Ug(u, v) (2.15)
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This result highlights the spreading effect that diffraction imposes on the ideal image.

Unless further propagation is necessary where the optical field is required, the optical

intensity at the detector is the quantity of interest. Results for image intensity will be stated

here and justified in the next section using coherence theory. The image intensity is the

time-averaged, magnitude squared of the field and is defined by an intensity convolution

for incoherent illumination

Ii(u, v) = ∣ℎ(u, v)∣2 ⊗ ∣Ug(u, v)∣2 . (2.16)

This result for image intensity is the important result of this section. It serves as the ba-

sis for the mathematical model and allows for advanced techniques for object restoration.

If coherent illumination is encountered, the linear relationship for intensity vanishes and

image intensity is defined by an amplitude convolution:

Ii(u, v) = ∣ℎ(u, v)⊗ Ug(u, v)∣2 . (2.17)

which results in a non-linear relationship between the object and image. Clearly, it is seen

that incoherent illumination is linear in intensity and coherent illumination is linear in am-

plitude. The spatial impulse response for incoherent illumination is the amplitude squared

of the coherent illumination spatial impulse response.

It must be shown or proven that the 3D FLASH LADAR produces or approaches

incoherent object illumination in order to develop algorithms for the recovery of the original

object,Ug, using deconvolution algorithms. Otherwise, the mathematical model would

change from object intensity (i.e. photon counts) to objectfield recovery in order to benefit

from linear systems theory. Since the observed data is basedon the image intensity, backing

out the object field from coherent illumination would require other methods rather than

deconvolution.

2.1.5 Coherence Theory and Laser Light Statistics.Using [24] and [25], this

section serves as background on coherence theory and how to use this theory to express the
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image intensity as in Equation (2.16) or (2.17). Coherence theory also dictates the statistics

that govern the laser light incident on the detector surface.

The image intensity related to different types of coherenceis governed by the laser

light’s spatial coherence between two points called mutualintensity. In order to understand

how coherence affects imaging, the monochromatic light assumption has to be relaxed and

the light model changed to polychromatic. This yields a generic optical scalar field defined

by

u (u, v, t) = {U (u, v, t) exp (−j2��t)} . (2.18)

where the complex phasor is changed to be time-varying. The image plane complex phasor

Ui (u, v, t) results from a convolution between the impulse response andthe object plane

complex phasorUg (�, �, t). Neglecting the different time delays from different coordinates,

the subsequent image plane intensity (from Equation (2.7)) becomes

Ii (u, v) =

∞
∫

−∞

∞
∫

−∞

d�1d�1

∞
∫

−∞

∞
∫

−∞

d�2d�2ℎ (u− �1, v − �1) ℎ
∗ (u− �2, v − �2)

×Jg (�1, �1; �2, �2) (2.19)

with the mutual intensity defined as

Jg (�1, �1; �2, �2) =
〈

Ug (�1, �1; t)U
∗
g (�2, �2; t)

〉

. (2.20)

The physical properties of the two coherence extremum (fully coherent and fully incoher-

ent) can be exploited to define mutual intensity. Considering coherent light, all the points

in the field interfere with each other (statistically dependent) and it is characterized by the

mutual intensity

Jg (�1, �1; �2, �2) = Ug (�1, �1)U
∗
g (�2, �2) (2.21)
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and the resulting image intensity is

Ii (u, v) =

∞
∫

−∞

∞
∫

−∞

ℎ (u− �1, v − �1)Ug (�1, �1) d�1d�1

×
∞
∫

−∞

∞
∫

−∞

ℎ∗ (u− �2, v − �2)U
∗
g (�2, �2) d�2d�2

=

⎡

⎣

∞
∫

−∞

∞
∫

−∞

ℎ (u− �, v − �)Ug (�, �) d�d�

⎤

⎦

×

⎡

⎣

∞
∫

−∞

∞
∫

−∞

ℎ (u− �, v − �)Ug (�, �) d�d�

⎤

⎦

∗

=

∣

∣

∣

∣

∣

∣

∞
∫

−∞

∞
∫

−∞

ℎ (u− �, v − �)Ug (�, �) d�d�

∣

∣

∣

∣

∣

∣

2

(2.22)

where the relationship between the object and image intensity is described by the magnitude

squared of an amplitude convolution relationship between the amplitude impulse response

and object optical field.

For incoherent light, the object’s phasor amplitudes are considered statistically inde-

pendent from each other or, in other words, the amplitude at one point on the object does

not affect the amplitude at a different point. The mutual intensity describing incoherent

light is

Jg (�1, �1; �2, �2) = �Ig (�1, �1) � (�1 − �2, �1 − �2) (2.23)

with � being a real constant and the resulting image intensity is

Ii (u, v) =

∞
∫

−∞

∞
∫

−∞

d�1d�1

∞
∫

−∞

∞
∫

−∞

d�2d�2 × ℎ (u− �1, v − �1) ℎ
∗ (u− �2, v − �2)

× �Ig (�1, �1) � (�1 − �2, �1 − �2) (2.24)
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and simplifying gives

Ii (u, v) = �

∞
∫

−∞

∞
∫

−∞

ℎ (u− �, v − �)ℎ∗ (u− �, v − �) Ig (�, �) d�d�

= �

∞
∫

−∞

∞
∫

−∞

∣ℎ (u− �, v − �)∣2 Ig (�, �) d�d� (2.25)

where the image intensity is a result of an intensity convolution between the intensity

point spread function and the object intensity. Equation (2.22) and (2.25) confirm (2.16)

and (2.17) concerning the differences concerning intensity calculations between incoherent

and coherent illumination.

In LADAR, it is common to collect many images to increase the signal to noise ratio

(SNR) to better enable detection and data processing. An additional benefit is the partial co-

herence of the illumination tends to go from coherent to incoherent when averaging collects

together. This fact is due to the many coherent images with correlated randomly varying

phases and amplitudes combining to yield a statistically independent incoherent image map.

Another way to look at why the coherent illumination goes to incoherent illumination from

a statistical point of view is through the resulting probability mass function (PMF) of a par-

tially coherent system. The PMF of a partially coherent system governing the probability

of photons hitting the detector within one sampling interval is the the negative binomial

distribution given by [24]

Pk(K) =
Γ(K +M)

Γ(K + 1)Γ(M)

[

1 +
M

K̄

]−K [

1 +
K̄

M

]−M

, k = 0, 1, 2, 3... (2.26)

whereΓ (n) = (n− 1)! for any positive integern, M is the speckle parameter dictating

the amount of coherence, and̄K is the expected number of photons. At the limits,M = 1

specifies totally coherence andM = ∞ leads to total incoherence. In practice, all systems

fall somewhere in between the extremes, but assumptions canbe made about which end of

the spectrums dominates. A simple method to check the coherence limits from statistics is
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to look at the mean and variance of the negative binomial distribution given by

�NB = K̄ (2.27)

�2
NB = K̄

(

1 +
K̄

M

)

. (2.28)

As the speckle parameterM increases towards infinity at the limit, the mean stays constant,

but the variance changes to

lim
M→∞

K̄

(

1 +
K̄

M

)

= K̄ (2.29)

resulting in the mean and variance being equal. This fact is acharacteristic of the Poisson

distribution which has been derived independently to characterize the probability of photon

hitting a detector given incoherent object illumination [24]. Figure2.2 shows the effects

of speckle parameter increase on the negative binomial PMF as it approaches the Poisson

PMF.

The following question still needs to be answered explicitly: Can the 3D FLASH

LADAR be considered to be a result of an incoherent imaging process? Are many cubes

needed or just one? The two analytical methods to provide convincing proof center around

obtaining a high speckle parameter in the partially coherent (negative binomial) PMF.

The first method to attain a high spatial speckle parameter isto take many indepen-

dent collects of a particular remote scene. The speckle parameter for each collect is added

together to yield a combined parameter which is typically high enough to assume incoherent

object illumination. For example, with a mean number of photons of 50 (̄K = 50), it takes

a speckle parameter of about 200 for the negative binomial PMF to appear Poisson. This

fact means that even if the light is totally coherent (M = 1) the resultant speckle parameter

from summing the collects would be sufficient to assume incoherent object illumination.

The obvious question then arises: Does an operator have boththe time and loitering capa-

bility to take 200 collects of the exact same scene? Assumingthe LADAR takes 6.7�s to

take one collect at a range of 1000 meters, 200 collects wouldonly require 1.3 ms which

is a reasonable amount of time. The assumption that the 200 collects consist of exactly the
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Figure 2.2: (a) This figure shows the negative binomial PMF for increasing values of the
speckle parameter at a mean photon count ofK̄ = 50. As M increases, the
probability gets more Poisson-like with the main hump centered on the mean
photon count.
(b) This figure shows the negative binomial PMF at a speckle parameter of
M = 200 and a mean photon count of̄K = 50 compared with the Poisson
PMF with the same mean.
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same scene is more troublesome. If an airborne platform is targeting in the direction of

its velocity, then the consistent scene could be realized (if the target isn’t moving either).

However, as the laser firing direction shifts to either side,the scenes are most likely rapidly

changing due to typical airborne platform speeds. A mitigation to the changing scenes is

to use available 3D image registration algorithms. With respect to averaging, Bayesian

estimation attempts have been made to mitigate the shifts between cubes for a particular

pixel using partial coherent light [63]. Since the 3D FLASH LADAR used in this research

mounts on a tripod and can easily obtain 200 or more collects of a scene, the LADARcan

be used to collect data with the approximation of incoherentobject illumination.

The second method to ascertain if the speckle parameter is large enough is from direct

calculation. From [24], the overall speckle parameterM can be defined as

M = MsMt (2.30)

whereMs andMt are the spatial and temporal degrees of freedom respectively. Given the

operating configuration, the area of the detectorAd is smaller than the coherence areaAc

resulting inMs = 1 [24]. The area of the detector isAd = (100 �m)2 = 10 nm2 while the

coherence areaAc is defined by the amount of coherence present in the light given by [24]

Ac =

∞
∫

−∞

∞
∫

−∞

∣� (Δx,Δy)∣2dΔxdΔy (2.31)

with � (Δx,Δy) as the complex coherence factor that provides a measure of the amount

of coherence between two points and(Δx,Δy) are the difference in coordinates between

two points in the observation plane. In the imaging case, it is shown that for any incoherent

source that

Ac =
(�f)2

As

(2.32)

with � as the mean wavelength,f as the focal length, andAs as the area of the incoherent

light source. For a circular aperture, the area of the light source isAs = �r2. Thus, the
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coherence area becomes

Ac =
((1.55 �m) (0.3 m))2

�(1 mm)2
= 69 nm2 (2.33)

and it can be seen thatMs = 1 due toAd < Ac or 10 nm2 < 69 nm2. The other part of the

overall speckle parameter is the temporal degree of freedomMt which is defined for a light

beam with a rectangular power spectral density by [24]

Mt =
Δ

�c
=

Δ
1/Δv

(2.34)

whereΔ is the pixel integration time,�c is the coherence time, andΔv is the bandwidth of

the laser light. The mean frequency of the laser lightv̄ is

v̄ =
c

�
=

3×108 m/s

1.55 �m
= 194 THz (2.35)

and assuming a bandwidth of±0.05 �m gives a frequency bandwidthΔv = 12.5 THz.

Considering an integration timeΔ = 1 ns, the resulting temporal degrees of freedomMt is

Mt =
Δ

1/Δv
=

1 ns
1/12.5 THz

= 12500. (2.36)

Consequently, the overall speckle parameter isM = 12500 which is most likely high

enough to assume incoherent imaging by considering the Poisson distribution a valid ap-

proximation for the negative binomial distribution. This assumption would probably still

be valid even ifΔv orMt is reduced by several orders of magnitude.

2.2 Deconvolution

With the optical system able to be represented by a linear system, the attention turns

to the main topic area in this research: range estimation from object retrieval from data

observations of a 3D FLASH LADAR. The system is modeled by a linear system charac-

terized by an impulse response. The observed data is modeledas being generated from a
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convolution between the object and impulse response corrupted by noise. For this research,

the object primarily consists of recorded amplitudes and range location of the target under

interrogation by the 3D FLASH LADAR. In order to retrieve theobject, the effects of the

convolution and noise must be reversed. In other words, one must deconvolve the object

from the impulse response while minimizing noise effects. As such, a review of standard

deconvolution theory is warranted. The chosen model in thisresearch is in units of detected

photons per second while the image intensity has only been defined thus far. IfID denotes

the intensity at the detector (watts/m2), then the following conversion results in detected

photons per second, or mean photon flux: [30]

Φ =
AID
hf

(2.37)

whereA is the cross-sectional area of the incident light,h is Planck’s constant (6.626 ×
10−34 Joules ⋅ sec), andf is the light’s frequency. Substituting Equation (2.25) into Equa-

tion (2.37) gives the photons per second at(u, v) in the detector plane as

Φ (u, v) =
A

hf
�

∞
∫

−∞

∞
∫

−∞

∣ℎ (u− �, v − �)∣2 Ig (�, �) d�d� (2.38)

where the units would be congruent to the mathematical modelfor the returned signal

presented in the future sections.

In physical measurements, noise mitigation and an unknown system impulse re-

sponse make the problem more difficult. The system impulse response may not be known

in most operational ranging or imaging applications. Thus,the process of object retrieval

is termed blind deconvolution due to the unknown system impulse response. In this case,

estimates of the impulse response need to be calculated along with the object estimates.

2.2.1 Inverse Filtering. If there is no noise term and the system impulse response

is known, the deconvolution can be performed easily in the spatial frequency domain. Note

that the previous convention concerning image and object planes changes from(u, v) and
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(�, �) to (x, y) and(m,n) respectively. Taking the 2D Fourier transform of noiselessob-

servations from a 3D FLASH LADAR,dk (x, y) in the (x, y) spatial dimensions (k is the

time dimension) results in

Dk(fx, fy) = Ok(fx, fy)H(fx, fy) (2.39)

whereOk(fx, fy) andH(fx, fy) are the Fourier Transform of the object and the system

impulse response respectively. The object can be retrievedby setting the filter,G, as the

inverse of the Fourier Transform of the point spread function

ok(m,n) = F−1 {Dk (fx, fy)G (fx, fy)}

= F−1

{

Dk(fx, fy)

H(fx, fy)

}

= F−1

{

Ok (fx, fy)H (fx, fy)

H (fx, fy)

}

= F−1 {Ok (fx, fy)} . (2.40)

Conversely, the following highlights the severe limitation of inverse filtering when random

noise effects are introduced:

ôk(m,n) = F−1

{

Dk(fx, fy)

H(fx, fy)

}

= F−1

{

Ok(fx, fy)H(fx, fy) +Nk(fx, fy)

H(fx, fy)

}

= F−1

{

Ok(fx, fy) +
Nk(fx, fy)

H(fx, fy)

}

. (2.41)

(2.42)

The inverse filter solution will be skewed to the degree that the impulse response amplifies

the noise term which can be significant. This noise amplification is a primary driver towards

other solutions based on minimizing the effects of noise.
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According to [37], the Wiener filter minimizes the mean squared error betweenthe

real object and the estimated object,E[(o− ô)2], resulting in the following functional form

G(fx, fy) =
H∗(fx, fy)

∣H(fx, fy)∣2 + Snn(fx, fy)/Sii(fx, fy)
(2.43)

where∗ is the conjugate operator andSnn andSii are the power spectra of the noise and

signal respectively. The resulting estimate for the objectis

ôk(m,n) = F
−1

{

Dk (fx, fy)H
∗ (fx, fy)

∣H (fx, fy)∣2 + Snn (fx, fy)/Sii (fx, fy)

}

= F
−1

{

[Ok (fx, fy)H (fx, fy) +Nk (fx, fy)]H
∗ (fx, fy)

∣H (fx, fy)∣2 + Snn (fx, fy)/Sii (fx, fy)

}

= F−1

{

[

Ok (fx, fy) ∣H (fx, fy)∣2 +Nk (fx, fy)H
∗ (fx, fy)

]

∣H (fx, fy)∣2 + Snn (fx, fy)/Sii (fx, fy)

}

(2.44)

Examining this final form is enlightening to how the filter handles certain noise situations.

When the noise spectrum is zero or dominated by signal, the filter simplifies to the inverse

filter. When the noise power is severe or the signal level is low at some frequencies, the

filter approaches zero attenuating these frequencies with high noise power.

2.2.2 Iterative Algorithms. Iterative deconvolution techniques also exist to in-

clude the Richardson-Lucy and error minimization algorithms which are useful when data

models are complex or non-linear. From [62], the Richardson-Lucy algorithm was de-

veloped to be an approximate deconvolution to recover the object W from the degraded

noiseless imageH = W ⊗ S with ⊗ as the convolution operator andS as the point spread

function. Temporarily adopting notation from [62], the problem is constructed based on

Bayes theorem given by [60]

P (Wj ∣Hq) =
P (Hq∣Wj)P (Wj)

∑

i

P (Hq∣Wi)P (Wi)
(2.45)
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whereP (W ∣H) is the conditional probability ofW given H (also called thea posteriori

density),P (H∣W ) is the conditional probability ofH givenW, P (W ) is the marginal prob-

ability of W (also called thea priori density), andP (H) is the marginal probability ofH.

The subscriptsj andq correspond to pixel locations withW =
∑

j

Wj andH =
∑

q

Hq

equalling the value for the entire object and degraded imagearrays respectively. The prior

probability can be defined by [60]

P (Wj) =
∑

z

P (Wj ∣Hz)P (Hz) (2.46)

and by combining Equations (2.45) and (2.46) results in the following equation [62]

P (Wj) =
∑

z

P (Hz∣Wj)P (Wj)P (Hz)
∑

i

P (Hz∣Wi)P (Wi)
. (2.47)

Noting that the desired solution,P (Wj), is also on the right-hand-side of the equation and

is not a function of the summation, a common practice is to make an initial guess and set

up the iterative updates as

Pr+1 (Wj) = Pr (Wj)
∑

z

P (Hz∣Wj)P (Hz)
∑

i

P (Hz∣Wi)P (Wi)
. (2.48)

Reduction of Equation (2.48) is still necessary due to being in terms of probability. This

equation is changed so that it uses actual variable values rather than probability. Using the

laws of probability and the conservation of energy, the probabilities can be reformed into

P (Wj) = Wj/W,

P (Hq) = Hq/H = Hq/W,

and P (Hq∣Wj) = P (Sj,q) = Sj,q/S. (2.49)
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Consequently, Equation (2.48) can be reduced to

Wj,r+1 = Wj,r

∑

z

Sj,zHz
∑

i

Si,zWi,r
(2.50)

which represents the final form of the Richardson-Lucy object recovery algorithm. One

weakness of this algorithm is its lack of proven convergence. In practice, however, the

iterations provide the perfect solution in the noiseless case and an improved solution with

noisy data.

From [8], the last reviewed method of deconvolution involves usinga cost function

and minimizing it with respect to the data and the true image.The cost function is defined

by

C =

M
∑

x=1

N
∑

y=1

(d (x, y)− i (x, y))2 (2.51)

where the data equalsd (x, y) = i (x, y)+n (x, y) wheren (x, y) is the signal independent,

additive noise and the true image is defined as

i (x, y) =

M
∑

m=1

N
∑

n=1

o (m,n) ℎ (x−m, y − n) (2.52)

with o (m,n) as the object andℎ (m,n) as the point spread function. In order to minimize

the cost with respect to the unknown, the derivative of the cost function is taken with respect

to the object with the result set to zero. The solution is obtained by solving this equation for

the object. Thus, the derivative of Equation (2.51) is taken with respect to a single object

pixel (mo, no) and set to zero

∂C

∂o (mo, no)
= −2

M
∑

x=1

N
∑

y=1

(d (x, y)− i (x, y))
∂i (x, y)

∂o (mo, no)
= 0. (2.53)
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The partial derivative of the image is

∂i (x, y)

∂o (mo, no)
=

∂

∂o (mo, no)
[o (mo, no)ℎ (x−mo, y − no)]

= ℎ (x−mo, y − no) (2.54)

giving the resulting expression and reduction

M
∑

x=1

N
∑

y=1

(d (x, y)− i (x, y))ℎ (x−mo, y − no) = 0

M
∑

x=1

N
∑

y=1

d (x, y)ℎ (x−mo, y − no)

M
∑

x=1

N
∑

y=1

i (x, y)ℎ (x−mo, y − no)

= 1. (2.55)

Using reasoning similar to [62], the object is then multiplied on both sides of Equa-

tion (2.55) giving the final form of the object recovery as

onew (mo, no) = oold (mo, no)

M
∑

x=1

N
∑

y=1

d (x, y)ℎ (x−mo, y − no)

M
∑

x=1

N
∑

y=1

iold (x, y)ℎ (x−mo, y − no)

(2.56)

with iold (x, y) =
M
∑

m=1

N
∑

n=1

oold (m,n)ℎ (x−m, y − n). An acceptable stopping point can

be (1) minimal change from the previous iteration or (2) the appropriate amount of image

noise in the estimated image based on prior knowledge of the noise source.

2.3 Maximum Likelihood

Maximum Likelihood (ML) estimation can be used for a data model that includes no

blurring function because the model then implicitly assumes no coupling between pixels.

The ML method can then operate on one pixel at a time. Another means of estimating

parameters (e.g. object, received amplitude, range to target) is to employ ML estimation

using the observation statistics to form a likelihood expression. From [84], the ML solution
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is the outcome of a ML analysis where the estimate,â, maximizes the likelihood function,

L(A), or

â = argmax
A

L(A) (2.57)

where the parameterA can either be a single or vector variable. Considerations ofmax-

imum likelihood estimation include the uncertainty that a unique ML solution exists and

local maximums in the likelihood function.

One way to view the ML solution is as a special case of Maximum aPosterior (MAP)

estimation with the prior distribution being a uniform distribution. MAP estimation is

Bayesian based and starts with Bayes Theorem. Recall that Bayes Theorem relates the

conditional and marginal probabilities of eventsA andB with B having a non-zero proba-

bility. The equation for Bayes Theorem is defined again as [60]

Pa∣b(A∣B) =
Pb∣a(B∣A)Pa(A)

Pb(B)
(2.58)

whereP (A∣B) is the conditional probability ofA givenB (also called thea posterioriden-

sity),P (B∣A) is the conditional probability ofB givenA, P (A) is the marginal probability

of A (also called thea priori density), andP (B) is the marginal probability ofB. Bayes

theorem calculates the probability of eventA occurring given observingB. Maximizing

Equation (2.58) is mathematically equivalent to maximizing the natural log resulting in

ln[pa∣b(A∣B)] = ln pb∣a(B∣A) + ln pa(A)− ln pB(B). (2.59)

The MAP estimate is found by taking the derivative of Equation (2.59), setting it equal to

zero, solving forA given by

∂ln(p(A∣B))

∂A
=

∂ln(p(B∣A))
∂A

+
∂ln(p(A))

∂A
− ∂ln(p(B))

∂A
= 0 (2.60)

30



where ∂ln(p(B))
∂A

= 0 due to no dependence onA. The final form of the MAP estimator is

then

âmap = argmax
A

(

ln pb∣a (B∣A) + ln pa (A)
)

. (2.61)

When the prior probabilitypa(A) is unavailable or not postulated, it can be assumed that

the prior probability can be described as a uniform RV. Thus,pa(A) has no dependence on

A either and
∂ln(p(A))

∂A
= 0 (2.62)

resulting in the ML solution of

âmap = argmax
A

(ln p (B∣A)) . (2.63)

A maximum likelihood technique is used for single pixel range estimation in Section4.2.

2.4 Generalized Expectation Maximization

Traditional linear maximum likelihood efforts do not suffice to estimate target range

given the unknowns (amplitude, target range, PSF, and pixelbias) in the statistical model

from Equation (2.69). More powerful object estimation methods like the Generalized Ex-

pectation Maximization (GEM) algorithm must be employed due to the coupled unknowns

which will be covered in the next section. While the final goalis to estimate range, a dif-

ferent tactic is employed due to the difficulty in having the target range term residing in

the exponential. Consequently, the unknowns in the estimation process are the target am-

plitude, targetpulse shape(or object), and PSF. With the pulse shape now as an unknown,

it is much simpler to use the GEM to find maximum likelihood solutions. Once the max-

imum likelihood solution for the object or pulse shape is found, a correlation operation

between the estimated pulse shape and a reference pulse shape determines the estimated

target range. A full description of the algorithm will be given in the subsequent paragraphs.

First, the GEM solutions for the unknown parameters must be found. However, a closed

form solution for the EM algorithm’s maximization step is intractable. Consequently, the
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GEM algorithm goal is to modify the EM structure such that thelikelihood is incremen-

tally increased rather than globally maximized as in the EM algorithm. This incremental

increase in the likelihood simplifies the maximization stepallowing unknown, non-random

parameter estimation.

In the case of blind deconvolution, the EM algorithm can be implemented to esti-

mate the object, point spread function, range, and/or amplitude. This algorithm is a another

method to perform maximum likelihood estimation whereby the solution is found by us-

ing unobserved data (complete) rather than the observed data (incomplete). Although, the

maximum likelihood solution is not always guaranteed as a result from the EM algorithm.

Pertaining to the unobserved data, it may be necessary because the regular maximum like-

lihood solution may be analytically prohibitive. The EM algorithm uses the reduced com-

plexity of the complete data problem to perform maximum likelihood estimation.

According to [54], the EM algorithm is composed of two steps. The first step (E-

Step) is to findQ: the expected value of the desired variable given the latestparameter

values or

Q
(

Ψ;Ψ(k)
)

= E
Ψ(k) {lnLCD (Ψ) ∣ y} (2.64)

whereΨ is the vector of unknown parameters,k is the iteration,LCD(Ψ) is the complete

data likelihood, and the expectation conditioned on the incomplete datay. Complete data

can be viewed as the unobserved variables (fabricated or not) used to simplify the problem.

Incomplete data is usually the observed data. The second step (M-Step) is to maximize this

expected value with respect to the unknown parameters,Ψ, by choosingΨk+1 to maximize

Q
(

Ψ;Ψ(k)
)

or

Q
(

Ψ
(k+1);Ψ(k)

)

≥ Q
(

Ψ;Ψ(k)
)

. (2.65)

for all unknown parameters inΨ. The EM algorithm is advantageous due to the guarantee

of increasing the likelihood with each iteration and, in most cases, eventually converging on

the maximum likelihood solution. As proven by [16], the incomplete-data log-likelihood

32



function increases with each iteration

L
(

Ψ
(k+1)

)

≥ L
(

Ψ
(k)
)

(2.66)

and the EM algorithm converges to local or global maximum.

As is the case in this research where the maximization over all unknown parameters

is difficult or doesn’t exist in a closed form, an incrementalEM algorithm is used called

the generalized expectation maximization (GEM) where the goal is to simply increase the

likelihood at each iteration without finding the maximum parameter value. A GEM requires

that the likelihood be improved and not maximized such that

Q
(

Ψ
(k+1);Ψ(k)

)

≥ Q
(

Ψ
(k);Ψ(k)

)

. (2.67)

If Equation (2.67) holds for every iteration, it has been shown that the likelihood is in-

creased with every iteration or [54]

L
(

Ψ
(k+1)

)

≥ L
(

Ψ
(k)
)

(2.68)

and, if bounded, the GEM sequence converges to a local maximum due to the monotonicity

of the algorithm. The GEM algorithm will be implemented on simulated and experimental

data in ChapterV to show that object recovery improves range estimation.

2.5 3D FLASH LADAR Data Model

This section describes the physical 3D FLASH LADAR model. Toincrease read-

ability, the model is defined in this chapter due to parts of ChapterIV and all of ChapterV

using this particular model. (Other sections in ChapterIV and all of ChapterVI use a

different, simplified observation model to allow for relatively uncomplicated mathemati-

cal expressions and for concept investigation. The changesin model definition are clearly

identified.)
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(a)

(b)

Figure 2.3: (a) 3D view of LADAR system model in Cartesian coordinates with each
data cube having dimensions of30× 30× 20 corresponding to pixel× pixel
× time sample. The variabled(tk) corresponds to thektℎ receiver detected
range slice image withk ∈ [1, ..., N ] andN = 20.
(b) Another view of the 3D FLASH LADAR operation. TheN number
of samples are meant to depict the available target information that the 2D
range images (slices) would collect. The assumed time separation between
the range images is 2 nanoseconds closely corresponding to the 3D LADAR
system used for experimental collects.
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Figure 2.4: For a given range slice, this diagram shows the propagation of the object
through optical system to the observation. Definitions:o is the object,ℎ is
the PSF,B is the pixel bias,n is the noise, andd is the observation. The
simple signal model is used in previous 3D FLASH LADAR research such
as [9], [39], and [55]. The high fidelity model is used in ChaptersV andVI .

Figure2.3 shows the sensor operation resulting in a data cube of spatial and range

information. In simple terms, the LADAR laser transmits a pulse and the LADAR detector

array receives an attenuated, time-delayed version of the transmitted pulse. Each detec-

tor receives a version of the waveform shape sampled according to the range gate. Thus,

models can take advantage of this fact and perform range estimation on a per pixel basis.

Referring to Figure2.4, previous research has assumed the simple model [9], [39] where

the spatial impulse response was a Dirac delta function. This definition meant there were

no interactions between adjacent pixels. However, the research in this dissertation adopts

the high fidelity model since it is more accurate concerning pixel spatial interactions. The

limitation of the simplistic model and adaptation of the higher fidelity model is the catalyst

of the material in ChaptersV andVI .

In order to simplify the geometry and the mathematics, assumptions are made about

the model to include: (i) target is perpendicular to the transmitter, (ii) target is in the far-field

of the receiver, (iii) target is Lambertian, (iv) circular optics are in-focus, (v) monostatic

RADAR operation, (vi) the waveform is a symmetric Gaussian pulse, (vii) each pixel from

the detector array has an individual waveform associated with it, and (viii) the range slices

of the data cube are registered. Other pulse shape models areavailable include an asym-

metric Gaussian, a truncated negative parabolic, or some hybrid of a Gaussian and negative
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parabolic. A symmetric Gaussian is chosen for notation purposes, but an asymmetric ver-

sion is easily defined with different pulse-widths for the leading and trailing edges.

Considering a 3D FLASH LADAR sensor with statistically independent samples

dominated by shot-noise [9], [39], the PMF of the observed photons,djk (x, y), incor-

porating all cubes(j ∈ [1, ..., J ]), range samples(k ∈ [1, ..., K]), and detector pixels

(x ∈ [1, ..., X ] , y ∈ [1, ..., Y ]) is

P [Djk (x, y) = djk (x, y) ; ∀j, k, x, y] =
∏

j,k,x,y

[ijk (x, y) +B (x, y)]djk(x,y) exp {− [ijk (x, y) +B (x, y)]}
djk (x, y)!

(2.69)

where the mean signal isijk (x, y)+B (x, y) whereB (x, y) is the pixel bias and the blurry,

non-noisy signalijk (x, y) is defined by

ijk (x, y) =

M
∑

m=1

N
∑

n=1

ok (m,n) ℎj (x−m, y − n) (2.70)

where the objectok (m,n) is defined at the object plane with coordinates(m ∈ [1, ...,M ]

andn ∈ [1, ..., N ]). The(x, y) andk variables correspond to a pixel in the detector array

and to the returned signal time of arrival respectively. Thetime of arrival is computed based

on the time from laser pulse transmission to photon detection. This assumption may require

cube registration due to the possibility of moving targets,moving sensor platform, or inter-

cube timing errors. Incorporating contributions from light propagation, optical abberations,

and atmospheric blurring, the intensity point spread function (PSF)ℎj (x, y) is constant

within a single cube while changing across cubes. In this research, the PSF is considered

constant within a single cube since collection times spans under forty nanoseconds and

any time-dependent effects would be essentially frozen. Inaddition, the pixel biasB (x, y)

is constant between cubes as well as within a single cube due to the pixel’s unchanging

physical material and response to incident light (ambient radiation is assumed negligible).

Every pixel in the detector array records a time-delayed andattenuated version of the

transmitted pulse. The physical outgoing pulse shape of a 3DFLASH LADAR is either
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Gaussian, negative parabolic, or some hybrid of the two. Theobject can be defined by an

amplitude term and a pulse shape or

ok (m,n) = A (m,n) pk (m,n) . (2.71)

Assuming a Gaussian transmitted pulse, the object is

ok (m,n) =
A (m,n)√

2��w

exp

{

− (tk − 2R (m,n)/c)2

2�2
w

}

(2.72)

whereA (m,n) is the object amplitude,�w is the waveform standard deviation,tk is the

time variable,c is the speed of light, andR (m,n) is the range to the target. If a negative

parabolic waveform model is desired, the object is defined by

ok (m,n) = A (m,n)

[

1− (2R (m,n)− tkc)
2

(cpw)2

]

rect

(

2R (m,n)− tkc

2cpw

)

(2.73)

where2pw is the pulse width and rect is the rectangle function defined by

rect (x) =

⎧











⎨











⎩

0, if ∣x∣ > 1/2

1/2, if ∣x∣ = 1/2

1, if ∣x∣ < 1/2.

(2.74)

Although, for simplicity and ease of differentiation, thisresearch adopts the Gaussian

model. For military targeting or navigation, range to target (located in the object term)

is the desired unknown variable. In attempting to perform range estimation, a range term

is not explicitly in the model, but it is buried within the object, ok (m,n), term given by

Equation (2.72) or (2.73). If the object were exactly known, the target range could bethen

extracted from the object by peak detection methods. This statement presents the ideal sit-

uation that ChapterV attempts to create with an object degraded by spatial blurring and

noise sources.
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Given the LADAR’s 3D nature, it is important to discern the formation of range slice

images shown in Figure2.3 versus the pixel waveform definition from (2.72). The range

slice images are formed at a particular time by a spatial convolution between the original

scene and the system’s impulse response. The original scene’s amplitude is variable at each

time instant due to target roughness and Gaussian shaped transmitted pulse. Therefore,

the returned amplitude changes for each range image formation operation. Considering

atmospheric turbulence, the system’s impulse response is assumed constant for each[1, N ]

range image due to the short duration of the data cube collection (forty nanoseconds) [24].

Conversely, the pixel waveform definitions from Equation (2.72) define each pixel’s un-

blurred and non-noisy received signal where the model assumes only one target per pixel.

The range estimation process estimates the target’s range for every pixel. The following is

a concise explanation of the difference between data generation and range estimation: the

simulation forms 3D LADAR data cubes in the spatial domain while the range estimator

operates in the range (time) domain. Also, as will be discussed later, image deblurring

operates spatially like the image formation process.

Following [25], a transfer function describes the LADAR’s effect on the target return

assuming the system is linear and spatially invariant. The transfer function in optics is called

an optical transfer function (OTF). If only considering theeffects of the optical components,

the OTF is diffraction-limited because the only way to increase performance would be to

build better optical components. Otherwise, optical diffraction theory bounds the system

performance.

While not the main focus of this research, it is important to understand that 3D

FLASH LADAR operational use may encounter periods of considerable atmospheric tur-

bulence that would modify the system OTF. As long as the imaging scenario stays within

the isoplanatic angle, the PSF can still be considered spatially invariant which is a prereq-

uisite to this deblurring technique [51]. Given this condition holds true, the OTF is then a

function of the diffraction-limited OTF and the average OTFresulting from the atmosphere.

Considering a substantial target distance, there could be atmospheric distortion and would

manifest itself by modifying the diffraction-limited OTF to form an overall OTF [24]. Ne-
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Figure 2.5: An example of a diffraction limited OTF. This OTFwas generated using the
parameters from this research.

glecting pixel integration effects, the form of the overallOTF,H(fx, fy), could be

H(fx, fy) = Ho(fx, fy)H̄A(fx, fy) (2.75)

where(fx, fy) are spatial frequency variables,Ho(fx, fy) is the diffraction-limited OTF, and

H̄A(fx, fy) is the short-exposure average OTF due to atmospheric turbulence. The form of

H̄A is [24] [67]

H̄A(�) = exp

{

−3.44

(

�̄f�

ro

)5/3
[

1−
(

�̄f�

D

)1/3
]}

(2.76)

with � =
√

f 2
x + f 2

y , �̄ the mean wavelength,f the optic’s focal length,ro as the atmo-

spheric coherence diameter or Fried’s seeing parameter, and D is the aperture diameter.

With the OTF defined as the inverse Fourier Transform of the PSF, Figure2.5shows a two-

dimensional representation of the simulation’s diffraction-limited OTF. Using centered 1D

cutouts, Figure2.6shows the effect of the atmosphere on the OTF whereby the atmosphere
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degrades the overall OTF by narrowing the amount of spatial frequencies the system can

pass. This truncation of spatial frequencies causes high frequency details in the range slice

image (i.e. sharp corners, fine lines, etc.) to be lost. The narrowing of the OTF in the spa-

tial frequency domain leads to a widening of the PSF in the spatial domain. This widening

causes increased pixel mixing due the the convolution nature of the system. The result-

ing received waveform is further deviated from the idealized received waveform in (2.72).

Blind deconvolution methods in ChapterV would effectively estimate any additional at-

mospheric blurring as long as the mode of operation remainedin the isoplanatic angle (i.e.

spatially invariant) [25].
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Figure 2.7: Organizational chart for the literature review. The review is broken down
into the following sections: 3D FLASH LADAR Hardware and Applica-
tions - Section2.6.1. 3D FLASH LADAR Post-Processing - Section2.6.2.
Blind Deconvolution - Section2.6.3. CRB and Parameter Optimization -
Section2.6.4.

2.6 Previous Research

This section contains the literature review of publications relating to hardware devel-

opment and post-processing of 3D FLASH LADAR data. The background review provides

a treatment of several important topics: 3D FLASH LADAR hardware development and

applications, 3D LADAR post-processing algorithms, LADARrange estimation, general

blind deconvolution theory and applications, lucky imaging, and 3-D image registration.

Seminal papers are reviewed as well as appropriate recent publications. For easy reference,

Figure2.7shows the literature review organization.

LADAR theoretical development in the past 10–20 years has concentrated on 3D

scanning LADAR systems almost exclusively because it was the only 3D LADAR avail-

able. 3D FLASH LADARs are a relatively new development, explaining the lack of publi-

cations compared to more mature technologies. The current 3D FLASH LADAR literature

spans from hardware development to applications to post-processing. The post-processing

papers consider important algorithms enabling improved range estimation, feature extrac-

tion, foliage penetration, world modeling, mapping, and navigational aiding.

The papers that do take advantage of the unique properties ofa 3D FLASH system

use a simplified data model. The spatial convolution nature between the object plane in-

tensity and the detector plane intensity is not accounted for, leading to errors in parameter
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estimation. There is a gap in the literature considering thespatial effects of a 3D LADAR

system because the scanning systems simply don’t see the effects of the spatial impulse

response. Scanning LADARs don’t operate fast enough spatially or have a wide enough

field-of-view (FOV) to observe the blurring effects of the spatial impulse response like the

FLASH systems do.

2.6.1 3D FLASH LADAR.

2.6.1.1 Hardware Developments. Although new advances LADAR hard-

ware development is not the focus of this research, it is prudent to know about not only the

hardware used in this research, but also other state-of-the-art 3D LADARs. Understand-

ing where the technology stands and some of the details will lend an appreciation for the

uniqueness and potential of the 3D FLASH LADARs. The advances made in the LADAR

hardware have increased capability, but have created additional issues that need mitigation.

Based on work from [64], [65], and [66], the enabling technology allowing 3D

FLASH LADAR to be realized culminated in 2004 with the development of a focal plane

array (FPA) capable of collecting a series of two dimensional (2D) images of a remote

scene at varying depths from a single laser pulse [81]. The modelling in this research is

based on this hardware. Additionally, this particular 3D FLASH LADAR system will be

used for experimental data collection in the future. The novel hardware design using de-

tector material made of either InGaAs PIN or Avalanche Photodiodes (APD), along with

the data acquisition board called the Readout Integrated Circuit (ROIC), allows for rapid

data collection in the range dimension with each pixel able to digitally sample the returned

waveform. The ROIC permits this rapid range sampling with a bank of capacitors behind

each pixel capable of operating on the nanosecond scale. Of note, a similar LADAR de-

veloped with the same goals is summarized in [29]. The only noticeable difference in this

LADAR was that it uses HgCdTe APD detector technology exclusively.

The FLASH LADAR is considered an improvement over scanning LADARs when

considering all the scene’s information is collected in oneshot and that there is no need for
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pixel registration. Additionally, the 3D FLASH LADAR is “eye-safe” because it operates

in the short wave infrared (SWIR) regime (beyond 1.4 microns). It has been shown that the

selected detector materials perform well at this wavelength with respect to both quantum

efficiency and electrical bandwidth. Also, there are substantial cost and weight savings

given that a mechanical steering mechanism is not needed like in the scanning systems.

While there are obvious benefits, there are several drawbacks to the system that need

addressing in future hardware upgrades. There are a limitednumber of range samples

available for each transmitted signal. Essentially, thereis a limit to the time the “shutter”

can be open. In one operating mode, this limits the operator to know where the target isa

priori to within several meters. This limitation is not an issue in the laboratory, but will need

to be addressed for operational use either in hardware upgrades that solve the problem or

by CONOPS (Concept of Operations). For example, another sensor could roughly locate

the target and pass that rough location to the 3D FLASH LADAR to fine tune the range

measurements. Another issue mitigated in [73] is pixel coupling occurring throughout the

detector array caused by a time-dependent gain variation. Finally, as mentioned before,

spatial impulse response effects are now evident in the dataand are the primary focus of

this prospectus.

Advances in technology like the AFRL 3D FLASH LADAR are an example of hard-

ware improvements opening up fields of research not otherwise considered. Evolving tech-

nology from scanning to FLASH LADARs will vastly increase operational capabilities and

pave the way for future applications.

Other efforts to produce 3D FLASH LADAR hardware have succeeded as well.

In [31], advances in detector, electric circuitry, and laser transmitter technology are dis-

cussed with the capability to capture an entire 3D scene in one transmitted pulse. The ad-

vances are similar to [81] with some minor differences: (1) using the APD in Geiger-mode

due to laser compatibility and size and power requirements and (2) the capture circuitry

is CMOS-based resulting in a 0.5 nanosecond timing resolution. This timing resolution

corresponds to range information (i.e. taking a picture) every 15 cm (30 cm for the AFRL
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3D FLASH LADAR). A key point in the paper is the huge benefit of employing a photon-

counting 3D LADAR with APD detectors versus a CCD camera LADAR. The difference

being the APD detectors are photon-counting devices enabling measurements to be made at

very low signal levels (0.4 photo-electrons per pixel) as compared to the CCD camera (1.7

photo-electrons per pixel). The paper also highlights foliage penetration as another bene-

fit of 3D LADAR with APD detectors. Tests are run where the LADAR can see through

semi-transparent material (i.e. camouflage netting).

Referring to [77], a LADAR capability is presented that can provide target informa-

tion on sea-skimming anti-ship missiles. Target information includes range and velocity

data. Range data is captured by the time-of-flight principle. In RADAR, the target’s ve-

locity information is captured from the frequency changes between the transmitted and re-

ceived pulses. Typical coherent LADAR architectures require mixing at light wavelengths

to capture the differences which is very difficult. This paper shows an interesting work-

around combining the preciseness of laser light operation and the mature radio frequency

mixing technology. The LADAR collects velocity information by using a linear frequency

modulated (LFM) radio frequency to amplitude modulate the laser pulse. The receiver col-

lects and coherently mixes in the RF domain rather than at laser light wavelengths thereby

reducing complexity.

A gated 3D LADAR is described where the detector is an intensified CCD camera

with a Nd:YAG passively Q-switched 32.KHz pulsed green laser at 532 nm [6]. This wave-

length provides substantial underwater transmission. However, the system is not covert or

eye-safe at 532 nm like the SWIR 3D FLASH LADAR.

In order to perform data registration and extraction, a scanning LADAR is teamed

with a 2D digital camera [85]. This paper illustrates an example of using an active and

passive system to increase capabilities. One of the challenges with using two sensors is

fusing the data sets to represent the information in a consistent coordinate system.

A time-of-flight (TOF) “real-time” 3D video capability using a 3D FLASH LADAR

is described in [14]. This paper describes the architecture required which is very similar
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to [81] with a focal plane array (FPA) and high-speed ROIC to capture the range data. Con-

sidering GPS-denied, GPS-degraded regions or geolocationimprovement goals, a method

is described where Global Positioning System (GPS) and Inertial Measurement Unit (IMU)

data are fused with 3D FLASH LADAR data by Kalman filtering to enable autonomous ve-

hicle control (relative navigation) for space vehicle docking or in-flight jet refueling.

2.6.1.2 Applications. Applications of the 3D FLASH LADAR technol-

ogy include target identification, rendezvous operations,foliage penetration, mapping, and

guidance and navigation. Given the infancy of the capability and the interest in active EO

sensing, this list will expand with a substantial increase in performance in each of the areas.

A comprehensive overview of the LADAR topic area is given in [78]. The paper de-

scribes utilizing LADAR data to build synthetic environments, developing LADAR system

models, and using training sets for algorithms to aid in target recognition and weapon ap-

plications (weapon guidance, aim point selection). At the time, the authors used synthetic

data to simulate 3D FLASH LADAR data, but will have the hardware available in the fu-

ture for collects. The fusion of LADAR data with other sensors yielding impressive results.

Among the many benefits, one of the most important benefits is more precise targeting

thereby reducing collateral damage.

Using an innovative scannerless Multiple-Slit Streak TubeImaging LiDAR (MS-

STIL), [22] reports on LiDAR tests that demonstrate target imaging through foliage and

other obscurants. Another test demonstrates capability toimage surf zones to identify anti-

landing mines and other obstacles.

A variety of 3D scanning LADAR applications are discussed in[17] relating to the

use of APDs in the receiver design. The performance of APDs isreported using different

materials and at different wavelengths. Applications include: sensor-fused weapons, eye-

safe range-finding, and fire-and-forget missiles.

Similar to [14], a very useful application for 3D FLASH LADAR is for aerial vehicle

navigation in GPS-denied situations [86]. Teamed with IMU data, the 3D FLASH LADAR

is capable of providing autonomous space vehicle navigation or landing systems on the

46



moon or other planets. IMU measurements drift over time due to the errors encountered

in integrating many sensor measurements. GPS is one mitigation technique to combat this

drift. In GPS-denied or degraded regions, 3D FLASH LADAR data can replace GPS data

to recalibrate the IMU measurements.

Another example of applying 3D FLASH LADAR data for autonomous vehicle nav-

igation focuses on spaceborne rendezvous and capture [40]. The LADAR data benefits this

application area by providing an independent range to the docking platform regardless of

the existence of other docking sensors. Additionally, the LADAR could provide an image

of the docking platform used to verify its integrity.

2.6.2 3D FLASH LADAR Post-Processing.The post-processing of 3D LADAR

data (scanning and FLASH systems) includes range estimation, object retrieval, data reg-

istration, edge detection, feature extraction, planar feature detection, multi-sensor assisted

navigation and target identification, multiple return detection, surface imaging, noise reduc-

tion, detector response deconvolution, illumination pattern renormalization, jitter removal,

super-resolution, and image enhancement. With the fields ofimage processing and RADAR

being very mature, the application of theory to 3D LADARs from both these fields is, in

many cases, novel. While the processing methods by themselves are not new, the applica-

tion of these methods to the 3D LADAR data set may have never been done.

2.6.2.1 Range Estimation. In [9], the waveform parameters (target range,

target amplitude, and pixel bias) of a 3D FLASH LADAR are estimated via a maximum

likelihood derivation. A Cramer-Rao Lower Bound (CRLB) on range estimation is also

derived. The unknown target parameters are estimated by using maximum likelihood anal-

ysis on an idealized waveform model (no pixel coupling). Results show that centimeter

level range accuracy is attainable. Closed form solutions for the CRLB are provided in

the follow-up work in [39]. Several different scenarios are investigated includingmultiple

returns and distorted return pulses due to slanted surfaces.
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Referring to [83], an unusual approach to range estimation in a 3D scanning LADAR

is employed called the Viterbi algorithm which is a maximum likelihood sequence esti-

mator (MLSE). It is an intelligent search algorithm that picks the most likely sequence at

each stage resulting in the Viterbi path. The Viterbi path results in an estimated object from

3D LADAR scans. Without modifying the algorithm, computational complexity for a real-

world array (e.g. 128× 128) make this algorithm prohibitive. Results from a modified VA

algorithm are compared to a peak detector and Wiener filter method showing that VA out-

performs the other methods in terms of range error. The modification reduces the required

computations.

3D surfaces are able to be characterized by a LADAR system capable of handling

multiple returns in a single received signal [32]. The LADAR can measure range and obtain

information about 3D structures at ranges from a few meters to several kilometers. The

authors employ a Bayesian statistical approach based on reverse jump Markov chain Monte

Carlo (RJMCMC) techniques to estimate the number, positions and amplitude of received

signals. Two types of receivers are considered for ranging and depth measurement. The

types are Time-Correlated Single Photon Counting (TCSPC) and Burst Illumination Laser

(BIL) (e.g. range gating or repeated BIL). The analysis assumes a simplified case whereby

each pixel is independent from other pixels. A Bayesian approach is employed because it

accounts for uncertainties in the model and parameter values and it can incorporate prior

knowledge if applicable. A modified version of RJMCMC incorporates a delayed rejection

step permitting the Markov chain to mix better through different proposal distributions.

Based on their previous work [32], the authors modify an assumptions by changing

the single independent pixel model to one that includes pixel spatial interdependencies [33].

The inter-pixel dependencies are asserted to arise naturally in imaging real world objects.

Again, the number, positions and amplitudes of the receivedsignals are estimated using

RJMCMC incorporating either spatial mode jumping (change position of peak) or spatial

birth/death process (creating a new peak, or removing a peak).
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Two-dimensional range images are used to estimate the target location and range [36].

These estimates are attained by utilizing a three-dimensional distortion tolerant filter on a

three-dimensional binary representation of the 2D range image. The distortion tolerant

filter is derived by neglecting out-of-family correlationsand minimizing the output energy

of the input scene due to additive noise. The filter is considered distortion tolerant by

using a reference target training data set to recognize the targets from various perspectives.

In [35], the 3D distortion tolerant filter work is extended to include the effects of disjoint

background noise.

In [58], the authors describe a 3D FLASH LADAR sensor architecturedevelopment

with theoretical development centered around range processing and polarization discrimi-

nation with associated experimental results attaining range resolutions of 1 inch range res-

olution for occluded targets and 0.3 inches for non-occluded targets. The ranging algorithm

is called “bin-balancing matched filter” or BBMFTM which uses the known pulse shape to

find the range at which there is max correlation with the received pulse. A weakness of

this algorithm is assuming the transmitted and received pulse shapes are matched. Sloped

targets and range clipping makes this assumption less valid.

The authors in this paper use coherent detection LADAR data with the expectation-

maximization algorithm to develop a method to fit a multi-resolution (wavelet) basis to

LADAR range data in a maximum likelihood sense [26]. The Haar-wavelet basis is used

resulting in a computationally efficient and robust algorithm. The wavelet basis is used for

range anomaly suppression to decrease range error.

Referring to [4], a laser scanning LADAR and several ranging methods are described.

These methods include: thresholding, bump-hunting, maximum likelihood (ML), and Re-

versible Jump Markov Chain Monte Carlo Processing (RJMCMC). Bump-hunting and ML

was found to be able to discern multiple targets from an apparent single return. During low

light levels, RJMCMC was shown to be the best performer in terms of range accuracy.

2.6.2.2 Other Processing Methods. Integration methods are described

where 3D FLASH LADAR technology is integrated with inertialmeasurements to deter-
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mine position and attitude of UAVs whether GPS is available or not [27]. The LADAR data

is used to extract planar, line, or point features corresponding to walls or corners. These

features are combined with IMU measurements to change platform attitude or velocity.

In [80], a 3D scanning LADAR is used to show the capability of 3D FLASH LADAR’s

penetration through camouflage and foliage. (The authors did not have access to a 3D

FLASH LADAR at the time.) Waveform analysis is performed to show the multiple re-

turn detection capability important in FOPEN (FOliage PENetration). The Expectation-

Maximization algorithm is used to detect the number of peaksin a given returned signal.

With the returned signal assumed to be a sum of Gaussians, themean (target location)

and standard deviation were estimated. By using waveform processing, algorithms are de-

scribed that exploit the multiple returns when the LADAR illuminates vegetation or cam-

ouflage. By deconvolution, hidden targets under obscuration are capable of being detected.

Estimation of target location and waveform width is performed assuming a Gaussian pulse

in a noiseless system, but no detail was provided as to the estimation method. The ability to

see inside a dark van and buildings through Venetian blinds is shown. Vegetation removal

to aid in FOPEN is considered a research priority for future work.

Using the AFRL 3D FLASH LADAR, an object retrieval algorithmis developed for a

3D FLASH LADAR system illuminating a bar target using a microscanning technique [1].

Microscanning is required in this system due undersamplingin the spatial domain. The

microscanning method forces the eventual data output to meet Nyquist sampling require-

ments by developing a super lattice of points similar to super-resolution techniques. The

object retrieval algorithm was derived by maximizing the log-likelihood function with re-

spect to a particular point in the remote scene (object) withthe final result similar to the

Richardson-Lucy algorithm. Cube registration (CR) is performed by computing the trans-

lational shifts between the data cubes in all three dimensions. Because the data cubes are

sampled properly in the range dimension, cubes are shifted in the range dimension so that

each cube represents a common range to the target. The average range to the target in the

data cubes are calculated and then compared to produce a range so that each image frame

within the data cube corresponds to the same distance. In thespatial domain, transverse
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shifts between cubes are accomplished by the vector projection method by calculating the

global shifts between corresponding frames in each data cube and then averaging the shifts

across all frames in the cube. This averaged global shift is assumed the only shift for the

cube considering the fast acquisition time of the sensor.

In [72], a scanning laser and passive electro-optical (EO) cameraare used to create

data sets enabling sophisticated data-processing methodsto use for building 3D environ-

ments, data classification, bare earth extraction, 3D-reconstruction of buildings, and identi-

fication of single trees and estimation of their position, height, canopy size and species.

Processing methods are presented that convert raw 3D FLASH LADAR data to cleaned

3D data cubes enabling information to be generated, displayed, and analyzed in real time [12].

The processing methods include: “noise reduction, ground plane identification, detector re-

sponse deconvolution and illumination pattern re-normalization.” Of most interest in this

paper is the development of the APD response deconvolution.Ideally, each voxel would

represent a single area of the remote scene. However, the APDdetectors are not ideal and

the voxel experience coupling between each other. Since thetrue APD detector response

is tough to measure, the effects of the multiple-pixel coupling are mitigated by identifying

the range tails within the array and moving the tail’s energycloser to the voxel of interest.

In [10], 3D FLASH LADAR data is used to collect lacunarity metrics which are used

to measure and characterize forest canopy gaps. The goal is to establish the availability

of sub-canopy collections and to characterize the imaging performance of different canopy

and forest types.

Using a range-gated 3D LADAR, [79] describes the ability to to process the data and

characterize different targets such as forests, snow, human faces, and the ability to penetrate

vegetation.

A Bayesian estimator is derived to perform deconvolution for object retrieval improv-

ing 3D FLASH LADAR system range resolution and probability of detection [7]. From the

deconvolution, the system improves its ability to identifysurfaces where the return pulse re-

51



flected thereby removing the range estimate ambiguity caused by the waveform pulsewidth.

Of note, no form of the object is specified (i.e. transmitted pulse shape).

In [53], target detection is performed on 3D LADAR data by using a novel 3D vol-

ume correlation filter. The filter operates by finding the parameter value that maximizes

the volume correlation between the data and either a 3D modelor known 3D reference.

Methods of perspective correction are also described such that objects are represented by

their true relative size.

The limits of theoretical resolution in 3D LADAR systems arederived in [41]. While

previous work focused on coherent detection LADARs, this paper extends their work to

derive fundamental resolution limits in direct detection 3D scanning and FLASH LADARs.

The “volume of resolution” is a constant metric allowing theLADAR designers to balance

spatial and range resolution consistent with system goals.

Multiple post-processing methods for a 3D FLASH system are described in [35]

including matched filtering, coordinate mapping, jitter removal, and registration. Although,

no object retrieval methods are employed to improve results.

A super-resolution method is developed for 3D FLASH LADAR in[68]. Perfor-

mance of the method using synthetic and real targets is shownto be better than upsampling

and interpolating methods by using the Canny edge detectionalgorithm [11].

In [15], this paper develops an image deconvolution technique using regularized in-

version followed by a denoising filter. Inversion refers to the ill-posed problem of removing

the blur from the the imaging model. The inversion process can produce poor results in the

presence of noise due to its uniform amplification across frequencies. Regularized inver-

sion (such as Wiener filtering) can alleviate such problems.Also, assuming there are similar

patches within a natural image, the de-noising filter is based on a block-matching and 3D

(BM3D) filtering method. This work extends the regularized inversion, regularized wiener

inversion, and BM3D work to handle colored noise. Of note, a regularization parameter

that is determined empirically is used in the inversion process.
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2.6.3 Blind Deconvolution. As part of the research effort, blind deconvolution

techniques will eventually be employed given a laboratory or field test with a 3D FLASH

LADAR remote sensing scenario. A review of the pertinent blind deconvolution literature

is appropriate given this realistic situation. 2D passive electro-optical papers usually have

one object and many different blurring functions due to relatively slow image acquisition

times with corresponding atmospheric turbulence. Whereas, the 3D FLASH LADAR blind

deconvolution scenario has many different objects with oneblurring function regardless of

atmospheric turbulence strength. Each data cube of 3D FLASHLADAR is considered to be

blurred by one point spread function due to the rapid acquisition time for the range images.

Overall, there wereno papers found that attempted to restore the object by perform-

ing blind deconvolution on any type of 3D LADAR system. The optical astronomy field

dominates the image blind deconvolution publications. Themain difference between this

research versus the typical blind deconvolution is that this research endeavors to estimate

the waveform parameters located within the object and a single point spread function while

the typical 2D image blind deconvolution problem estimatesthe phase within the point

spread function and a single object. In other words, rather than parameterize the point

spread function, the object has been parameterized in this research.

Generally regarded as one of the founding blind deconvolution papers, [59] performs

signal recovery for multiplied and convolved signals by using homomorphic filtering uti-

lizing the complex cepstrum of the signals. Results of the filtering technique applied to

deconvolution problems are shown in speech processing and echo removal.

The other founding paper concerning blind deconvolution recovers the original music

from old-time vinyl records by homomorphic filtering or power spectrum estimation tech-

niques [82]. The assumed mathematical model is audible music resulting from the original

music convolved with a record players impulse response. They subsequently extend the

theory to a simple imaging example whereby they look to remove the effects of image blur

caused by camera motion, inaccurately focused lenses, and atmospheric turbulence.
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In [42], general blind deconvolution methods are reviewed and classified into 2 classes

which are (1) PSF estimation separate from the true image estimation and (2) simultaneous

estimation of the PSF and true image. The first class uses a simple technique calledA Priori

Blur Identification methods. The second class incorporatesseveral techniques including

Zero Sheets Separation, Autoregressive Moving average (ARMA) Parameter Estimation,

Nonparametric Deterministic Image Constraints Restoration, and Nonparametric Methods

based on High order Statistics. In the follow-up paper [43], the authors discuss other blind

image deconvolution methods that were omitted from their previous article which were

projection-based blind deconvolution and maximum likelihood restoration.

Given the mathematical model in this research, the most germane article is from [71].

This paper develops a maximum-likelihood based blind deconvolution technique on images

corrupted by photon noise without the need for a nearby reference point source which can

converge to the solution faster (e.g. less required frames)than techniques that do require

a point source. The blind deconvolution technique is calledthe Generalized Expectation

Maximization (GEM) algorithm based on the seminal work by Dempster,et al. [16]. The

GEM algorithm is advantageous due to its ability to reduce the maximization complexity

and to uncouple the object and blurring function.

In [46], the blind deconvolution is performed by error minimization via conjugate

gradient minimization where the error is a composite of deviations from image and Fourier

space constraints. Also, blind deconvolution techniques are used with phase estimation

methods for object retrieval on raw speckle images.

Using Kolmogorov statistics to model the turbulent atmosphere, blind deconvolution

is performed on astronomical speckle images approximatingthe shot noise by a weighted

Gaussian noise model [47]. The weighted Gaussian model is used because the author as-

serts that many imaging situations don’t fit the usual Poisson or Gaussian noise statistics.

In [21], an iterative blind deconvolution algorithm based on the Richardson-Lucy al-

gorithm is developed and compared with a Wiener filter blind deconvolution algorithm [50], [62].

The authors choose to develop a new algorithm based on the Richardson-Lucy algorithm
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due to its proven robustness in the presence of high noise levels. They also perform a

“semiblind” deconvolution by attempting improve the algorithm by addinga priori infor-

mation by assuming a functional form of the PSF. By “parameterizing” the PSF, the num-

ber of unknowns of the PSF reduces drastically. Conclusionsfrom this paper are that the

Richardson-Lucy algorithm is more stable than other blind deconvolution algorithms and

has a better noise tolerance than the Ayers-Dainty and Wiener filter algorithms. From [2],

the Ayers-Dainty algorithm generalizes the Feinup phase retrieval algorithm by implement-

ing an iterative technique based on Fourier transforms along with energy conservation, an

image non-negativity constraint and Fourier domain constraints to estimate the object and

PSF.

Another attempt to retrieve the object and PSF is accomplished by a maximum a

posteriori (MAP) estimator on a 2D LADAR imaging system [52]. Although, in this case,

it is the optical transfer function (OTF) that is estimated by parameterizing the OTF based

on Fried’s seeing parameter. This paper also develops a MAP estimator for the speckle

parameter in a negative binomial probability distributionmodelling partially coherent light.

Considering the field of fluorescence microscopy, blind deconvolution is performed

using an iterative expectation-maximization approach with some prior knowledge of the

PSF characteristics and assuming Poisson noise statistics[34]. The characteristics include

circular symmetry (general symmetry is also presented) anda band-limited nature. The

symmetry argument is appropriate due to the symmetrical nature of most apertures. The

band-limit constraint, which rules out the trivial solution, also is appropriate due to the

low-pass filtering effect of optical systems. The trivial solution is the solution where an im-

pulse is convolved with the degraded image. Using these constraints, the algorithm suitably

reconstructs the original images.

In [87], image recovery is performed from noisy and blurred observations by imple-

menting an adaptive finite impulse response filter. Coefficients of this filter are updated

using a two-dimensional Constant-Modulus (CM) cost function similar to one-dimensional

blind adaptive equalization found in the communications field.
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Focusing on astronomical applications, this paper builds on the iterative blind decon-

volution result from Ayers and Dainty [2] by utilizing methods that reduce edge effects,

account for different convergence rates of the object and impulse response, shorten conver-

gence time, and perform noise dampening [3]. The methods are valid when only constrain-

ing the data to be positive. A method of initializing the spatial impulse response is attained

by using autocorrelations of the observed image.

Referring to [18], image reconstruction of a blurred and noisy optical system is per-

formed using phase diversity, deconvolution (Richardson-Lucy based), and iterative blind

deconvolution. All three methods satisfactorily reconstruct the image with similar accu-

racy, but deconvolution is fastest. Their work handles extended scenes or scenes in which

the object either encompasses the FOV entirely or is larger than the FOV. Consequently, the

edge effects cannot be ignored and must be accounted for in the algorithms.

In [61], blind object reconstruction is accomplished by reducingthe 3D problem

into a set of 2D problems. Along with imposing positivity andbandlimit constraints, new

estimates of the 2D image and PSF are obtained by Wiener filtering the Fourier transform

of the image or PSF respectively with the current estimate. There is an important result

concerning 3D vs. 2D sampling requirements. As opposed to the 2D image scenario, 3D

blind deconvolution has a unique solution even if the data isnot Nyquist sampled.

2.6.4 CRB and Parameter Optimization. Compared to the convolution model

contained in the present paper, previous work on bounding range performance in the LADAR

topic area focused on single pixel (i.e. single target in a pixel) analysis. In [9], a CRB on

range estimation is derived for a single pixel of a 3D FLASH LADAR. In support of the

bound, the unknown waveform parameters (target range, target amplitude, and pixel bias)

are estimated via a maximum likelihood estimation algorithm. Theoretical and simulation

results show that centimeter level range accuracy is attainable. Closed form solutions for

the CRB are provided in the follow-up work in [39].

Another paper developed a signal-to-noise (SNR) based method to determine range

and spatial resolution limits of scanning and direct detection LADAR [41]. While account-
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ing for the proper LADAR noise sources and operating parameters, the SNR-based method

does not consider the performance of the algorithms required to estimate the resolution in

the presence of noise.

Other literature has utilized the Gaussian function to describe the object. In [28],

the object profile is defined by a Gaussian in one dimension corrupted by additive Gaussian

noise. The CRB on a one target profile estimation is performed. In another paper, the object

is a two-dimensional (2D) Gaussian describing the incidentintensity on a charge-coupled

device (CCD) array [89]. This 2D Gaussian is used to develop a two-dimensional CRB

for any unbiased position estimator as well as a maximum-likelihood (ML) position optical

estimator (position only, no range information or estimate).

The use of the CRB in parameter optimization or performance characterization has

been done previously in fields such as heterodyne Light Detection and Ranging (LiDAR),

RADAR, and positron emisson tomography (PET) [20], [44], [48], [49], and [69]. In all the

papers, the method was to pick the optimum condition based onCRB minimization either

through physically-based analytic expressions or bound comparisons over different parame-

ter choices. In [69], comparisons are made using the CRB concerning Doppler estimation in

heterodyne and direct detection LiDAR given several different operating parameters. Also,

methods are discussed that enable heterodyne Doppler estimation performance to approach

that of the CRB. Concerning synthetic aperture RADAR (SAR) design in [49], the CRB

developed in this paper showed that performance is enhancedby implementing a multi-

dimensional aperture over a one-dimensional aperture. In [48], the CRB is used to validate

the use of range compression in multi-input multi-output (MIMO) RADAR. Also, wave-

form optimization in MIMO RADAR is accomplished via severalminimization techniques

on the CRB matrix to include minimizing the trace, determinant and largest eigenvalue.

Another paper uses the CRB to select an optimal RADAR beamspace transformation oper-

ator [20]. The optimality condition metric is physically-based using the analytical form for

the beamspace transformation that minimizes the CRB function itself. Finally, the design

parameters of avalanche photo diodes (APD) used in small animal PET are optimized by

selecting those parameters from the search space that the minimize the CRB [44].
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III. Laboratory Data Collection

I n order to verify theory and simulation range estimation results, laboratory measure-

ments were collected using an Advanced Scientific Concepts (ASC) Inc. three dimen-

sional FLASH LAser Detection And Ranging (3D FLASH LADAR) that illuminated a

target corresponding to one used in simulation. The detailsbehind the collection are the

topic of this chapter.

Using the three bar target template, a laboratory experiment was conducted using 3D

FLASH LADAR hardware consistent with parameters in Table3.1. Experimental results

presented in a later chapter show range estimation improvement after applying the object

recovery techniques. However, modifications to the camera and raw data were necessary to

enable a proper experiment and ensure that the data matches the model from Section2.5.

The system point-spread-function (PSF) is also determinedexperimentally using a step

target which is done such that the PSF can be used in the objectdecoloration algorithm

(Wiener filter) detailed in Section5.1.1. Finally, the ability to use object recovery algo-

rithms is contingent on using the incoherent light model described in Section2.1. Thus,

the speckle parameter of the partially coherent light distribution is estimated and compared

against the incoherent model. While some speckle noise is evident in the data, the estima-

tion results indicate that the incoherent model is a valid approximation.

The chapter is organized as follows: Section3.1provides details on the 3D FLASH

LADAR hardware, Section3.2 discusses the laboratory collection set-up used for experi-

mental data processing in Section5.3, Section3.3identifies the default hardware configura-

tion as spatial aliased and describes the correction, Section3.4provides the steps required to

pre-process the experimental data including gain variation equalization and photon scaling,

Section3.5 specifies how the system PSF was attained from a step target, and Section3.6

derives a speckle parameter estimator and performs the estimation on the experimental data.

3.1 3D FLASH LADAR Hardware Description

A 3D FLASH LADAR is an active, pulsed system that is both an imaging and rang-

ing sensor. It produces a time sequence of two-dimensional (2D) images due to a fast range
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Table 3.1: 3D FLASH LADAR parameters
Parameter Value

Detector Array 128× 128
Aperture Diameter (D) 2 mm

Mean Wavelength 1.55 �m
Focal Length 0.30 m
Target Range 5.21 m

Transmit Energy 10 mJ
Pulse Standard Deviation (�w) 3 ns

Beam Divergence 0.009 radians
Detector Spacing 100 �m

Detector Array Fill Factor 100%
Detector Bandwidth 0.5 �m
Target Reflectivity 10%
Solar Irradiance 10 Watts/m2/�m

D/ro Seeing Condition 1.43
Frame Rate 30 Hz

Time Samples 20
Sample Period 1.876 ns

gate resulting in a 3D data cube of spatial and range scene data with excellent range reso-

lution [19], [81]. FLASH technology principally differs from scanning LADAR by being

able to form a 3D representation of a remote scene in one laserpulse rather than rastering

a 3D scene together using many pulses. This capability results in faster scene collection

times with lighter weight, lower power, and reduced mechanical complexity as compared

to the scanning systems. Operating in the eye-safe short-wave infrared region (SWIR) of

the electromagnetic spectrum at 1570 nm, a representative system shown in Figure3.1 is

built by ASC, Inc. and has receiver electronics consisting of a 128× 128 detector array and

associated circuity capable of producing twenty (20) 2D range slice images [66]. Detector

pixel separation is 100 micrometers with nearly 100% fill factor due to a focusing micro-

lens array in front of the detector pixel array. An extremelyfast range sampling interval

of 1.876 ns makes it nearly impervious to platform motion distortion for a single cube col-

lection. Depending on the LADAR operating mode, each pixel could either have a distinct

starting range dependent on received photon levels (“hit mode”) or have the same starting

range (“sular mode”). Capable of “real-time” 3D movies, it produces a cube of spatial and
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Figure 3.1: A picture of the Applied Scientific Concepts (ASC) Inc. 3D FLASH LADAR
system including the laser, receiver optics and electronics, and laptop. ASC
provides a laptop to operate the LADAR and view and process the received
signals.

range scene data where each 2D range slice image contains thedetected counts proportional

to the incident photo-electrons upon each pixel in the detector array. Four dimensions of

data are available to include the two spatial coordinates, range, and intensity.

As previously described, a 3D FLASH LADAR operates in one of two modes. The

first mode is called “hit mode” where each pixel element (pixel) is independently triggered

when its intensity reaches a preset threshold. This mode is advantageous when searching for

a target where the range is not already known. However, truncated waveforms can occur

leading to range estimation errors. The second mode is called “sular mode” where the

pixels are triggered to start recording data together basedon a preset range. Benefits of this

mode include being able to successively capture fine detailsof the target and background.

Drawbacks are that the target range must be known a priori andwaveforms are truncated

for targets near the end of the collect. An potential CONceptof OPerations (CONOP) is for

“hit mode” to operate like a search RADAR and, once the targetis acquired, “sular mode”

would track and identify the target.
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The breakthrough technology in the ASC 3D FLASH LADAR is the Laser RADAR

Processor (LRP) which allowed for the fast range sampling and independent pixel con-

trol [63]. Due to advances in semiconductor technology, the LRP was originally a 32 x

32 detector array with 400�m pixel separation which improved to a 128 x 128 array with

100�m pixel separation using Indium Gallium Arsenide (InGaAs) avalanche photo-diodes

(APD) as the detector material. APD detectors generate manyelectrons for a single inci-

dent photon and are useful in low-light situations. The fastrange sampling is achieved by

analog and digital circuitry independently located behindeach of the pixels.

3.2 Data Collection Details

Located at Wright-Patterson AFB, OH, the Air Force ResearchLaboratory (AFRL)

Sensors Directorate contains facilities acceptable for operation of the 3D FLASH LADAR.

Ideally, the intent would be to operate the LADAR from the topfloor of the building across

a considerable distance (kilometers) right after dusk to experience atmospheric turbulence.

However, due to the constraints of the aperture size (discussed in Section3.3), the target

range is shortened to meters to allow for a sufficient signal-to-noise ratio (SNR). The range

to the first surface is 5.21 m and is set up to be 1.7 m into the range collections. Range

to the second surface is 1.22 m from the first surface to give roughly four range samples

between surfaces.

Receiver optics required some modifications from the default configuration [66], [9].

The optics are focused on the first surface which means that the successive range collects

are slightly de-focused. The resulting data shows little effect from the lack of focus. Con-

sidering the short range distance, a one degree diffuser is put on the laser transmission

optics to enable the entire target to be illuminated by the beam without lowering the SNR

prohibitively. The focal length is set at 300 mm. Due to sampling issues covered in a later

section, the aperture diameter is changed to 2 mm by using brown cardboard with a circu-

lar hole cut in the center placed in front of the supplied aperture (10 cm). Using similar

triangles, each detector pixel field of view (FOV)xp corresponds to 1.7 mm at the target
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Figure 3.2: True ranges of the three-bar target with first surface at 5.21 m and second
surface at 6.43 m with 1.22 m of separation in between surfaces.

location determined by the following calculation:

xp

xt
=

xd

fl
xp

5.21 m
=

100 �m

300 mm

xp = 1.7 mm (3.1)

wherext is the target range,xd is the pixel separation, andfl is the focal length.

Referring to target template depicted in Figure3.2, the first surface targets are con-

structed from white, flat cardboard with the bars cut out of one board (first surface) and the

other board is left untouched (second surface). There are two slimmer rectangle targets and

one larger rectangle target. The slimmer targets are 0.5 cm width by 5 cm length and the

larger target is 1 cm width by 5 cm length. All three targets are individually separated by

1.5 cm (edge to edge).

3.3 Spatial Aliasing

Due to limits in current detector technology requiring a large footprint for the elec-

tronics behind each pixel, the receiver optics are spatially under-sampled which needs to be

mitigated in order for the received data to be unaliased. Thealiasing would cause uncer-

tainty in the received data and violate the data model. The default configuration is aliased
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because of the Nyquist sampling theory in which the samplingrate must be at least twice

the highest frequency content in the signal. The optics are anatural low-pass filter with

the highest frequency called the cut-off frequency. For incoherent imaging, the cut-off

frequency is [25]

fo =
D

�zi
(3.2)

whereD is the aperture (exit pupil) diameter,� is the light wavelength, andzi is the image

distance. Therefore, the focal plane must sample at twice this spatial frequency or2D/�zi.

The typical apertures for this camera are in the centimeters. For example, an aperture of 10

cm would equate to a spatial frequency sampling requirementat 4.3x105 cycles per meter.

At 100 �m spacing, the detector array does not meet this requirement. If the aperture

is reduced to 2 mm, then the spatial frequency sampling requirement is now at8.6x103

cycles per meter which the detector array can meet. However,the aperture reduction comes

at the expense of reduced light gathering and shortened range in which the LADAR can

be operated. Thus, the target range is placed at 5.21 meters (near the minimum ranging

distance of the sensor) to obtain high enough signal to noiseratio (SNR) in the collected

data.

3.4 Data Pre-processing

The data observations from the 3D FLASH LADAR hardware need pre-processing

steps to be suitable for insertion into the Wiener filter and GEM algorithms. In simu-

lation, the noisy and blurry data are well-controlled and therefore, well-behaved. While

the experimental 3D FLASH LADAR data exhibits expected pixel waveform shapes (i.e.

Gaussian-like) and spatial blur, the data is ill-behaved toa degree due to inherent features

of the hardware performance.

Referring to [38] and [73], the experimental hardware experiences a gain phenomenon

whereby a pixel’s gain drops when laser energy is incident upon a large area of another part

of the detector array. With the three bar target, the laser energy is incident on the front

surface first which causes second surface pixels to experience a gain drop. Figure3.3(b)
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Figure 3.3: (a) Gain profile correction resulting from executing Equation (3.7). By look-
ing at background pixels, the hardware gain dip is clearly evident at the first
surface (near range sample five) and the second surface (nearrange sam-
ple nine). The first surface gain drop is larger than the second surface gain
drop due to the larger number of pixels illuminated (i.e. larger surface area).
Amount of gain drop is proportional to received intensity level and quantity
of pixels illuminated.
(b) Investigating Pixel(19,32) from experimental three bar target, the pixel
waveform benefits from the gain variation correction by removing the gain
drop near range sample four. After correction, the pixel waveform looks
more like the intended pulse model, but with unwanted noise artifacts.
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shows the gain drop for a second surface pixel. The method forcorrecting the gain is to

calculate an average gain profile by looking at background pixels (i.e. returned laser energy

not incident on these pixels).

Assuming the system noise follows the Poisson distributionand the gain is constant

between pixels, the data model for an arbitrary pixel is

d (t) = G (t) [IS (t) + IB (t)] (3.3)

whereG (t) is the unitless, time-varying gain,IS (t) is the laser signal in units of photons,

andIB (t) is the background signal. A new variablêd (t) is determined by

d̂ (t) =
d (t)

īB (t)
(3.4)

whereīB (t) = G (t) ĪB (t) is a known average background signal with gain andĪB (t) is

the mean background signal without gain. The variableīB (t) is separately calculated in

the laboratory by averaging the detected background signalfor selected voxels across many

data cubes. Looking at the background pixels only,d̂ (t) is

d̂ (t) =
G (t) IB (t)

īB (t)
=

G (t) IB (t)

G (t) ĪB (t)
=

IB (t)

ĪB (t)
. (3.5)

Taking the statistical variance results in

var
(

d̂ (t)
)

= E

[

(

IB (t)

ĪB (t)
− ĪB (t)

ĪB (t)

)2
]

=
1

Ī2B (t)
E
[

(

IB (t)− ĪB (t)
)2
]

=
1

Ī2B (t)
var (IB (t)) =

ĪB (t)

Ī2B (t)
=

1

ĪB (t)
. (3.6)

Applying this result and using a sample variance ofd̂ in place of the statistical variance

(s2 → var
(

d̂ (t)
)

), the gain is determined by

G (t) =
īB (t)

ĪB (t)
= īB (t) s2. (3.7)
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and can be seen in Figure3.3(a). This gain profile is used on each of the pixel’s waveforms

to correct for the hardware deficiencies and to more closely match the model. For example,

Figure3.3(b) shows the benefits of the gain correction for one second surface pixel. Also

observed in the previous work, a side benefit of gain correction in both first and surface

pixels is the waveform becomes more symmetrical. The emitted laser pulse shape is a

hybrid of a Gaussian or negative parabolic shape with some asymmetry. Gain correction

takes out some of the asymmetry.

The 3D FLASH LADAR is also not a photon-counting device whereone digital count

equals one photon. The receiver optics use Avalanche Photo Diodes (APD) where one

photon equals many detected counts. Consequently, intensity scaling must be performed

to condition the data to be consistent with the Poisson distribution. The conditioning is

performed by using the statistics of the light and the detected mean and variance of the

data. The detected mean of the data isqK̄ whereq is a scaling factor with units of detected

counts per photon and̄K is the true mean in units of photons. Since incoherent imaging is

assumed, the detected variance becomes

q2�2 = q2K̄ (3.8)

noting that the mean and variance of the Poisson distribution are the same. The data is

scaled by solving forq and then converting the detected counts to photons by

dpℎ =
ddc
q

(3.9)

wheredpℎ is the data in units of photons andddc is the data in units of detected counts.

3.5 Experimental PSF

The Wiener filter is used to provide a comparison to the GEM algorithm [55]. In order

to implement the Wiener filter, the PSF must be known. Since the derivative of a system step

response is the system impulse response, the PSF is determined by taking the derivative of a
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experimental step target. Figure3.4(a) shows a range image of the step target collected with

the same hardware as the bar target data. Although, the entire range image does not meet

the requirements of being a step target due to the non-uniform intensity on the left-hand-

side (LHS). Therefore, a symmetric impulse response was assumed and the right-hand-side

(RHS) of the impulse response was copied and flipped over to use as the LHS. Figure3.4(b)

exhibits the resulting profile with an outer product operation producing the two-dimensional

PSF. Phase retrieval is then performed via the Gerchberg-Saxton algorithm to arrive at the

PSF used by the Wiener filter [23]. This requirement to know the PSF is a shortcoming

of the Wiener filter algorithm. Figures3.4(c)-(d) show the optical transfer function (OTF)

where the optics exhibit a nearly diffraction-limited performance.

3.6 Speckle Parameter Estimation – Incoherent Imaging

Both the negative binomial and Poisson distributions can beused to capture the non-

negative, discrete nature of the laser light. The negative binomial distribution would be

the most optimal in describing the illuminating partially coherent laser light, but blind de-

convolution methods are cumbersome [24]. Whereas, blind deconvolution methods with

the Poisson distribution (incoherent imaging) are more tractable and, thus, utilized in this

research. Even if the speckle is severe, the benefit of modeling the speckle does not out-

weigh the cost of implementing a partially coherent blind deconvolution model for the

3D FLASH LADAR system. Previous research using the incoherent data model for a 3D

FLASH LADAR has also experienced success [9], [39].

To gain more insight into this assumption, a simple approachis to estimate the

amount of coherence contained within the 3D FLASH LADAR databy estimating the

speckle parameter of the negative binomial distribution directly from the data [24]. Captur-

ing both temporal and spatial coherence, if the speckle parameter estimate is high enough,

the negative binomial distribution will look Poisson-likeallowing the data observations

to be modeled as arising from an intensity convolution (incoherent imaging). Including

speckle and photon noise effects, the negative binomial probability mass function (PMF)

describes the photon distribution of a partially coherent imaging system for a single pixel
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Figure 3.4: (a) One range image of the step target data cube. Although the board edge
is clearly visible, the variable intensity across it causesan issue with the
impulse response calculation. The step response definitionrequires a con-
stant amplitude at all spatial positions. The target board portion of the step
response does not meet this requirement, but the non-targetarea (right-hand-
side) does exhibit a constant amplitude. The portion of the step response
function where it turns off is this non-target area. Performing the step re-
sponse derivative only on this non-target area solves the problem of variable
target board amplitude.
(b) 1D cut-out of the resulting PSF. Assuming circular symmetry, an outer
product operation is used to find the corresponding 2D PSF.
(c) Optical transfer function (OTF). The OTF is found by taking the Fourier
Transform of the experimental PSF [25].
(d) 1D cut-out (zero spatial frequency) of the OTF. The profile shows nearly
diffraction-limited optics with a cut-off frequency at 4050 cycles per meter.
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or [24]

P (K) =
Γ (K +ℳ)

Γ (K + 1) Γ (ℳ)

[

1 +
ℳ
K̄

]−K[

1 +
K̄

ℳ

]−ℳ
(3.10)

whereℳ is the speckle parameter and̄K is the pixel’s average photon count. Changing the

distribution for a 3D FLASH LADAR, the illuminating laser light statistics for a particular

volume element (voxel) (x, y, k remain constant) across many data cubes is

P (Djk (x, y) = djk (x, y) ∀j ∈ (1, 2, ..., J)) =
J
∏

j=1

Γ (djk (x, y) +ℳ)

Γ (djk (x, y) + 1) Γ (ℳ)

[

1 +
ℳ
K̄

]−djk(x,y)
[

1 +
K̄

ℳ

]−ℳ
(3.11)

wherej represents the data cubes,k is the range image (i.e. time variable) within a data

cube,(x, y) are the coordinates in the image plane, anddjk (x, y) is the data observation.

The voxels are assumed statistically independent from eachother because of the discrete

nature of photons and the detected photons do not affect future detected photons. The

maximum likelihood solution for the average voxel intensity is determined by

K̄ =
1

J

J
∑

j=1

djk (x, y). (3.12)

Taking the natural log of Equation (3.11) yields

ln [P (Djk (x, y) = djk (x, y) ∀j ∈ (1, 2, ..., J))] =
J
∑

j=1

ln

[

Γ (djk (x, y) +ℳ)

Γ (djk (x, y) + 1) Γ (ℳ)

]

−djk (x, y) ln

[

1 +
ℳ
K̄

]

−ℳ ln

[

1 +
K̄

ℳ

]

(3.13)

where graphical methods are employed to find the speckle parameter that maximizes this

log-likelihood. Using the same experimental data as in the range estimation efforts, a col-

lection of voxels with the strongest laser light is chosen toestimate the speckle parameter.

Figure3.5 shows the similarities between the negative binomial and Poisson distribution

using an average of the estimated speckle parameter.
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Figure 3.5: This plot shows the negative binomial (NB) usingan estimated average
speckle parameter (M = 414) versus the Poisson distribution with the same
mean (̄K = 3447). While not identical, the negative binomial distribution
compares well enough to the Poisson distribution to assume incoherent imag-
ing.

Even without considering speckle parameter estimation results, the argument can be

made for incoherent imaging due to the Poisson distribution’s ability to model the non-

negativity and discrete nature of light [9], [39]. This argument is solidified by the speckle

parameter estimation results indicating that the speckle noise appears low enough for the

incoherent imaging model to be used with confidence.
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IV. Range Estimation

R ange estimation in three dimensional FLASH LAser DetectionAnd Ranging (3D

FLASH LADAR) has been limited thus far to statistical methods that operated on

data models that did not incorporate the blurring effect of the spatial impulse response. In

other words, there was a one-to-one mapping between the object plane and image plane

points. Considering a the 3D FLASH LADAR system as a linear, space-invariant process,

the relationship between the object and image plane is fullydescribed by a convolution

between the object plane intensity and the intensity point spread function (spatial impulse

response). Consequently, the simple models ignore the pixel-to-pixel coupling that could

significantly degrade range estimation results. Referringto ChapterII , whether using a

simplified model or a higher fidelity model, the method of ranging is exactly the same in

that each pixel in the detector array is ranged independently.

This chapter details several pixel-based ranging algorithms include: Section4.1 –

peak detection, Section4.2 – maximum likelihood [55], Section4.3 – normalized cross-

correlation [56], Section4.4 – two point target estimator, and Section4.5 – two surface

estimator. The two-point target estimator is a novel contribution that is able to spatially and

temporally estimate two point targets in a scene.

4.1 Peak Detection

A very simple ranging algorithm is peak detection. This algorithm selects the range

sampleD (x, y) based on where the peak sample count occurs or

D (x, y) = argmax
k

dk (x, y) . (4.1)

wheredk (x, y) is the received waveform,k is the range sample variable, and(x, y) are

the pixel dimensions. Theoretically, if the received waveform was sampled continuously,

one could perform peak detection and not encounter any interpolation or quantization error.

However, real systems have a sampling period which creates some ambiguity when peak

detection is used. Therefore, more capable methods are sought that enable estimation to

be sub-sample. Some of the errors though could be mitigated by interpolation. The effects
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of spatial coupling and shot noise would further degrade thewaveform of a sub-sample

target in addition to the deformation already encountered by its sub-sample range position.

These effects would make obtaining accurate estimates fromstandard peak detection very

difficult.

4.2 Maximum Likelihood

Based on [55], this section reviews the development of a maximum likelihood method

to estimate range to the target at a single pixel given a transmitted Gaussian pulse with ad-

ditive Gaussian noise. Maximum likelihood is chosen because of its relation to the Gener-

alized Expectation Maximization (GEM) algorithm used in a subsequent chapter where an

iterative technique possibly leads to the maximum likelihood solution. From [84], the max-

imum likelihood estimator is the parameter estimate where the maximum of thea posteriori

density occurs. Using Gaussian statistics to describe the incoming noise, thisa posteriori

density for an arbitrary pixel(x, y) and range samplek is

P [Dk(x, y) = dk(x, y)] =
1√
2��

e
−(dk(x,y)−ik(x,y))

2

2�2 (4.2)

where� is the Gaussian noise standard deviation. The remaining derivation assumes de-

pendence on(x, y) and drops the notation. Since there areN time samples and assuming

the time samples are statistically independent of each other, the total distribution across all

time samples is the product of the individual distributions:

P [Dk = dk; ∀k ∈ [1, ..., K]] =
K
∏

k=1

1√
2��

e
−(dk−ik)2

2�2 . (4.3)

Given that maximizing the natural log of a function is the same as maximizing the function

itself, taking the natural log of Equation (4.3),L = ln(P (d(tk)), results in the advantageous
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form

L =
K
∑

k=1

[−(dk − ik)
2

2�2
+ ln

(

1√
2��

)]

=

K
∑

k=1

[−(dk − Apk (R)− B)2

2�2
+ ln

(

1√
2��

)]

(4.4)

Because the range and amplitude are both unknown parameters, the estimation process

must estimate the amplitude first and is found by [84]

âml(R) = argmax L
A

. (4.5)

Taking the derivative with respect toA in Equation (4.4) and setting it equal to zero results

in
K
∑

k=1

[

2(dk − Apk(R)− B)

2�2

]

pk(R) = 0 (4.6)

where the term that doesn’t depend onA has been dropped. Grouping terms and canceling

�2 gives
K
∑

k=1

(

[dk − B]pk(R)− Ap2k(R)
)

= 0 (4.7)

Solving for the amplitude of the received waveform,A, results in

âml(R) =

K
∑

k=1

[dk −B]pk(R))

N
∑

k=1

p2k(R)

. (4.8)

One important observation of the Equation (4.8) is its dependence on range. For each

pixel, the amplitude estimation process consists of selecting a candidate rangeR in pk and

stepping through each time sample to determine the maximum likelihood solution forA.

Using this amplitude estimate, the only other unknown for a given pixel is the target range.

Finding a similar closed form solution for a range estimate is troublesome due to the range

term residing in the exponential. Hence, finding the maximumof the distribution with
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respect to range by

r̂ml = argmax L
R

(4.9)

is mathematically equivalent to using the amplitude estimate to calculate the values forL

in Equation (4.4) for each candidate range and selecting the range that corresponds to the

largestL value. This range serves as the estimated range for that pixel. The algorithm for

estimating the range in each pixel is thus:

1) Select pixel location(x, y)

2) Select candidate range

3) Estimate waveform amplitude,A

4) Using the candidate range and amplitude estimate, calculateL

5) Repeat Steps 2-4 until all candidate ranges have been tested

6) Select the range that corresponds to the maximumL value

7) Go back to Step 1 for all pixels in detector array.

4.3 Normalized Cross-Correlation

In order to mitigate inter-sample targets, scaling, and waveform truncation issues,

sub-sample ranging is performed on a pixel’s pulse-shapepk (m,n) (e.g. Equation (2.72)

or (2.73)) by using a normalized cross-correlation (NCC) method based on the Pearson

product-moment correlation coefficient. Using this coefficient forces each pixel’s waveform

to be zero mean and unit standard deviation. A symmetrical waveform is assumed for

notation simplicity . However, an asymmetrical waveform method could be implemented.

The correlation matrix would then be increased by one dimension due to breaking up the

pulse-width standard deviation into two variables: leading and trailing.

Analogous to a cross-correlation range estimator in [63], the normalized cross-correlation

method is constructed as follows: The range vector of samples within a cube is represented

by

R (k) = zmin+zinc (k) (4.10)
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wherek ∈ [0, ..., K − 1], K is total number of samples (sameK as defined in the data

model in Section2.5), zmin is the range of the first sample, andzinc is the range increment

per sample. Another range vector,Kr is constructed with the same maximum and mini-

mum extents asR, but with a smaller range increment per sample defined by the following

equation:

Kr (q) = zmin+zf (q) (4.11)

whereq ∈ [0, K ′ − 1], K ′ is the number of samples inKr, andzf is the range increment.

Since the extents ofKr matchR, the following inequalities hold:K ′ > K andzf < zinc. A

2D reference Gaussian waveform matrix is used with theKr vector as the reference target

location or

rk (q) = exp

{

−(tk − 2Kr (q) /c)
2

2�2
w

}

(4.12)

wheretk = 2R (k) /c and is the time vector,R (k) is the range vector from Equation (4.10),

c is the speed of light in vacuum, and�w is the transmitted pulse standard deviation. The

zero mean and unit variance version ofrk for all k ∈ [1, ..., K] andq ∈ [1, ..., K ′] is

S2 (k, q) =
rk (q)− r̄k (q)

�2
r (q)

(4.13)

where�2
r and r̄k are the variance and average ofrk in the time dimension. Considering

the range estimate for the(m,n)tℎ pixel, the zero mean and unit variance version of the

pulse-shape of interestpk (m,n) for all k ∈ [1, ..., K] is

S1 (k) =
pk (m,n)−

K∑

k=1

pk(m,n)

K

�2
p (m,n)

(4.14)

where�2
p is the variance ofpk (m,n) in the time dimension respectively. WithS1 andS2

determined, the normalized cross correlation denoted by★ is performed by

CKr
=

S2 ★ S1

K ′ . (4.15)
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The cross correlation★ operation is carried out using a matrix multiply given by

S2 ★ S1 = (S2)
T × S1 (4.16)

whereS2 andS1 have dimensions[K,K ′] and [K] respectively,“T” is the transpose op-

erator, and× is a matrix multiply. The result of the matrix multiply is a vector of values

CKr
with dimension[K ′] that correspond to the strength of the similarity between the ref-

erence waveformS2 at different target ranges and the data waveformS1. Finding the range

estimate is accomplished by peak detection (i.e. selectingthe target range with the highest

value from the matrix multiply) onCKr
or

R̂ (m,n) = argmax
zmin+zf(q)

CKr
(q) . (4.17)

The NCC method is used exclusively in ChapterV.

4.4 Two Point Target Range and Spatial Separation Estimator

With FOliage PENetration (FOPEN) applications, this section develops a range sep-

aration estimator by using a least squares approach adaptedfrom previous work that only

considered two targets within a single pixel in a non-blurryenvironment [5]. While no

noise source is specified in the subsequent development, estimator results in a shot-noise

limited environment are given in Section6.2.

4.4.1 Two Point Target Data Model. The mean of the observations in units of

photons of a two point target scene interrogated by a 3D FLASHLADAR are defined by

a convolution between the object and the system point-spread-function (PSF) added to a

pixel bias or [25], [37]

ik (x, y) =

M
∑

m=1

N
∑

n=1

ok (m,n) ℎ ((x−m, y − n) +B (x, y) (4.18)
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where(x, y) are the pixel plane coordinates withx ∈ [1, X ] andy ∈ [1, Y ], k is the range

dimension coordinate, and(m,n) are the object plane coordinates withm ∈ [1,M ] and

n ∈ [1, N ]. The integer range dimension variablek ∈ [0,K − 1] corresponds to a range

distancerk in units of meters according to

rk = Ks +

(

k ⋅ ts ⋅ c
2

)

(4.19)

with Ks being the initial/starting range of the data cube,ts as the range sampling interval

in seconds, andc being the speed of light in meters per second.
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Figure 4.1: (a) For illustrative purposes, this figure is a range image of the truth data
where the reference target is in the center of the array at 1000 meters with
the unknown target placed atΔm = 2 pixels andΔk = 1.7 meters.
(b) Defined by Equation (4.22), this shows the ideal waveforms of the un-
knownp (rk −Kt) and reference targetp (rk −Kr) from Figure4.1(a) with
a pulse-width standard deviation�pt = 0.88 ns.

Considering both range and spatial dimensions, the two point target scene consists

of one target at a known position and one target at an unknown position. The targets are

constructed this way since the paper’s focus is on range separation between the targets and

not absolute range. This assumption keeps the parameter of interest (range separation) in-

tact while simplifying the data model by preventing an additional unknown parameter. The

targets are considered point targets spatially, but do provide a returned waveform. Consid-

ering the two point target scene illustrated by Figures4.1(a) and (b) , the objectok (x, y) is
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defined by

ok (m,n) = Atp (rk − (Kr −Δk)) � (m−Δm, n) + Arp (rk −Kr) � (m,n) . (4.20)

whereAt andAr are the point target amplitudes,p (rk − (Kr −Δk)) andp (rk −Kr) are

the received pulse shapes withKr as the known reference target andΔk as the range sep-

aration between the known and unknown target (Kt) or Δk = Kr −Kt. While the range

sampling capabilityrk of the LADAR is fixed by the receiver electronics, the unknown

targetKt could occur anywhere within the range gate to include rangesbetween samples.

Also, the spatial point targets are defined by Kronecker delta functions� (m−Δm, n) and

� (m,n) andℎ (x, y) is the known system PSF. The final term is the pixel biasB (x, y)

and is intended to account for any ambient light, dark current, electron noise, and pixel-to-

pixel impulse response variations. This bias is assumed known and to be governed by the

Poisson distribution due to the discrete, random nature of these noise sources. Concerning

the validity of the assuming a known pixel bias, it is target independent and can be sepa-

rately determined during LADAR operation by a calibration step where the data is collected

without activating the laser.

Performing the convolution in Equation (4.18) results in the simplified form

ik (x, y) = Atp (rk − (Kr −Δk))ℎ (x−Δm, y) + Arp (rk −Kr)ℎ (x, y) +B (x, y)

(4.21)

where the received pulse shapes are assumed symmetric Gaussian and defined by

p (rk) =
1√

2��pd

exp

{

−(rk)
2

2�2
pd

}

(4.22)

with �pd as the pulse-width standard deviation in units of meters anddefined as�pd =

c�pt/2 where�pt is the pulse-width standard deviation in units of seconds. Gaussian-

shaped pulses are a valid approximation for the pulse shapestransmitted from 3D FLASH

LADAR hardware [39]. After analysis on experimental data, it was also found that the

received pulse-shapes display an inherent asymmetry. In other words, the pulse-shape
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definition is changed such that there are two pulse-shape standard deviations concerning

Equation (4.22): one for the leading edge (pre-target) and another for the trailing edge

(post-target). Although the effects of asymmetrical pulses on the CRB and range sepa-

ration estimation is a source of additional research, the symmetry or lack thereof in the

received pulses does not change the conclusion that an optimal pulse exists given the range

resolution metric. Symmetrical pulse-shapes are assumed for simplicity and are simply a

subset of asymmetrical pulse-shapes.

Furthermore, a spatially, invariant 2D Gaussian PSF is chosen because its differenti-

ation is straight-forward while still providing a functionto sufficiently blur a target scene.

This type of impulse response has been used previously to describe blurring due to atmo-

spheric turbulence [37]. The PSF is defined as

ℎ (x, y) =
1

2��2
ℎ

exp

{−(x2 + y2)

2�2
ℎ

}

(4.23)

where�ℎ > 0 is the PSF standard deviation (measured in units of pixels) and is affected by

light diffraction effects, receiver optic’s quality, and atmospheric turbulence.

4.4.2 Estimator Derivation. Given the variable definitions from Equations (4.18)-

(4.23), the sum squared error term is the sum of the square of the difference between the

observed data and the estimate or

E (Δk) =
∑

k

∑

x

∑

y

(dk (x, y)− ik (x, y))
2

(4.24)

where the dependence onΔk will subsequently be dropped for conciseness. There are

four unknowns including the two amplitudes, range separation, and spatial separation. The

procedure to find the range and spatial separation estimatesis to iteratively step through

each possible combination of range and spatial separation values (these values are known

a priori) and then determine the amplitudes that minimize the error. After an exhaustive

search of combinations of range and spatial separations, the combination that results in the

least sum square error is chosen as the estimates.
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For a particular amplitudeAi, the approach is to take the derivative of the error (Equa-

tion (4.24)) with respect to that amplitude, set the result equal to zero, ∂E/∂Ai = 0, and

solve for the amplitude term. This method gives the amplitude value that minimizes the

error term due to the positivity of the second derivative. Since there are two amplitudes, a

well-posed system of equations is set up by performing∂E/∂At = 0 and∂E/∂Ar = 0 and

solving forAt andAr respectively resulting in two equations and two unknowns shown by

C11At + C12Ar = D1

C21At + C22Ar = D2 (4.25)

where

C11 =
∑

k

∑

x

∑

y

− [p (k − (Kr −Δk)) ℎ (x−Δm, y)]
2

C12 = C21 =
∑

k

∑

x

∑

y

−p (k − (Kr −Δk)) ℎ (x−Δm, y) p (k −Kr) ℎ (x, y)

C22 =
∑

k

∑

x

∑

y

− [p (k −Kr)ℎ (x, y)]
2

D1 =
∑

k

∑

x

∑

y

(B (x, y)− dk (x, y))p (k − (Kr −Δk))ℎ (x−Δm, y)

D2 =
∑

k

∑

x

∑

y

(B (x, y)− dk (x, y))p (k −Kr) ℎ (x, y) . (4.26)

The amplitudes are then determined by solving the system of equations.

The following provides the estimation steps:

1. Select a range separation,Δk

2. Select a spatial separation,Δm

3. Determine the estimates for amplitudes,At andAr, via the system of equations

in (4.25)

4. Calculate error term using Equation (4.24)

5. Repeat steps 1-4 until all range and spatial separations have been selected
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6. Select range and spatial separation corresponding to thesmallest error

4.5 Pixel-Dependent Two Surface Range Separation Estimator

The purpose of this estimator is to be able to estimate the range to two surfaces within

a single pixel. Similar to [5], this scenario differs in that the first surface in range is known

while the second surface, further in range, is unknown. Further, unlike the previous section

where the data model includes all pixels and range samples, this estimator operates on one

pixel at a time. Section6.3.2uses this estimator against a complex, two surface target to

find the optimal pulse-width with respect to range resolution.

The data model for an arbitrary pixel is

dk = ik + nk (4.27)

wheredk is the observed data,ik is the blurry, non-noisy data, andnk is the noise. Since

a pixel can follow more than one data model, hypothesis testing is performed to decide

whether there is one or two surfaces in the pixel. In a two surface target scene, a par-

ticular pixel might contain one or two surfaces. Therefore,the blurry, non-noisy data is

hypothesized to be either a “two surface pixel” by

ik = Atp (k −Kt) + Arp (k −Kr) +B (4.28)

or “one surface pixel” by

ik = Agp (k −Kg) +B. (4.29)

whereAt andAr are the received target amplitudes (includes convolution effects), p (k)

is the received pulse withKt as the unknown, second-surface target range andKr as the

known, first-surface target range, andB as the pixel bias term. Note, either the first OR

second surface can represented by the “one surface pixel” (Equation (4.29)) case whereAg

andKg are generic variables representing either surfaces particular amplitude and range

respectively. The unknown target rangeKt can also be defined by a range separationΔk

81



from the known targetKr by Kt = Kr − Δk. The terms that must be estimated (i.e. the

unknowns) areAt, Ar (if “two surface pixel”), andΔk.

Regardless of the number of surfaces in the pixel, the sum squared error metric is the

same (E1 (Δk) andE2 (Δk) for a “one surface pixel” or a “two surface pixel” respectively)

and is defined as

E (Δk) =
∑

k

(dk − ik)
2 (4.30)

which is similar to the previous previous section with the exception that the pixel detector

dimensions are dropped. The procedure to estimate the unknown parameter of interest,

range separationΔk, is to estimate the range separation using both “one surfacepixel” and

“two surface pixel” data models and choose the “one surface pixel” case and corresponding

range separation estimate if
Emin

1

Emin
2

< 
 (4.31)

where
 is a threshold,Emin
1 = argmaxE1 (Δk)

Δk

, andEmin
2 = argmaxE2 (Δk)

Δk

. If the

inequality in Equation (4.31) is not true, then choose the “two surface pixel” case and its

range separation estimate.

The amplitude and range estimate on the “one surface” data model are attained by

selecting a candidate range separation and then taking∂E1/∂At = 0 and then solving for

At given by

At =

K
∑

k=1

{dkp (k −Kt)− Bp (k −Kt)}
K
∑

k=1

p (k −Kt)
2

. (4.32)

The “two surface” amplitude estimates are determined in thesame manner as the

previous sections using Equations (4.25) and (4.26) and dropping the pixel dimension (x

andy) summations.

The steps of the estimator are:

1. Select a range separation,Δk
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2. Determine the amplitude estimates for the “two surface pixel” case via Equations (4.25)

and (4.26)

3. Determine the amplitude estimate for the “one surface pixel” case via Equation (4.32).

4. Calculate error termsE1 andE2 using Equation (4.30)

5. Repeat steps 1-4 until all range separations have been selected

6. Using the hypothesis test from Equation (4.31), select the range separation corre-

sponding to the smallest error. The range separation for thepixel may be zero if the

“one surface pixel” case is chosen and if the pixel is a “first surface pixel” as well

with a known range ofKr.
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V. Improving 3D FLASH LADAR Range Estimation via Object

Recovery

T he motivation in this chapter is to provide a means of improving range estimation by

object recovery (i.e. spatially deblurring data) from three dimensional FLASH LAser

Detection And Ranging (3D FLASH LADAR) observations. Referring to Figure5.1(a),

the idea is to process the data in the spatial dimensions (x, y) while improving ranging

performance in the time dimension (k). Taken exclusively from [56], this chapter covers

novel material including amplitude, pulse-shape, system impulse response, and pixel bias

estimation. Original efforts also include object, system impulse response, and pixel bias

estimation.

Building on material presented in ChaptersII and III , a method to model the 3D

FLASH LADAR data operating in “sular mode” is that the 2D range images are formed

via a convolution between the object at a particular time andthe spatial impulse response.

In Figure5.1(a), a range imaged(tk) is one of the 2D slices of the data cube. Considering

the laser illuminating a target, one collect from a 3D FLASH LADAR sensor results in a

data cube consisting of a series of range images (N from Figure5.1) representing detected

photons. (NOTE: Figure5.1is shown again for convenience.)

Attempts at 3D FLASH LADAR range estimation of a remote scenecan result in

errors due to several factors including the optical spatialimpulse response, detector blur-

ring, photon noise, timing jitter, and readout noise. Thesefactors either cause the scene’s

intensity to spread across pixels or add unwanted and disruptive noise effects. The intensity

spreading and noise corrupt the correct pixel intensities by mixing intensities with neigh-

boring pixels thereby providing false intensity values andtherefore incorrect photon counts

to the range estimator. Without blur and noise compensation, the range estimates would be

inaccurate to a degree depending on the blur and noise severity.

The theoretical development of the range estimator algorithm is covered first and

then verified using simulation and experimental results. The algorithm is a variation on the

Expectation Maximization (EM) algorithm called Generalized Expectation Maximization

(GEM) and is desirable due to its iterative likelihood maximization, convergence proper-
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(a)

(b)

Figure 5.1: (a) 3D view of LADAR system model in Cartesian coordinates with each
data cube having dimensions of pixel× pixel × time sample. The variable
d(tk) corresponds to thektℎ receiver detected range image withk ∈ [1, N ] .
(b) Another view of the 3D FLASH LADAR operation. Each range image’s
full field of view (FOV) is 128× 128 pixels with a range gate near 2 nanosec-
onds corresponding to the 3D FLASH LADAR system used for experimental
collects.
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ties, and ability to decouple terms [54]. The GEM algorithm is powerful in that it can

perform blind deconvolution in situations with severe defocus or other aberrations includ-

ing atmospheric turbulence. To account for different scenarios, two versions of the GEM

algorithm are derived that either recover thepulse-shapeor theobject. The primary differ-

ence between the two involves data required and accuracy.Pulse-shapeestimation requires

less data, but is less accurate thanobjectestimation. Additional details of the differences

are presented in Sections5.1.2and5.1.3. Both pulse-shape and object GEM algorithms are

novel contributions to the research area.

In addition to the GEM algorithms, a Wiener filter method is used to attempt range es-

timation improvement via object recovery from 3D FLASH LADAR observations [37], [55].

Requiring spatial impulse response knowledge a priori, this method can only perform de-

convolution unlike the blind deconvolution ability of the GEM. The purpose for adding

this other method is to show that the GEM outperforms a competing algorithm that already

knows part of the answer (spatial impulse response).

This chapter is organized as follows: Section5.1 describes the Wiener filter theory

and derives the pulse and object iterative estimators via the GEM algorithm, Section5.2

presents results from simulated data showing improvement in range estimation after object

recovery, Section5.3 details the results from an experimental collection and processing

also showing an improvement in range estimation after object recovery, and Section5.4

provides conclusions based on observed results.

5.1 Theoretical Development

This section details the object recovery methods used on simulated and experimen-

tal data. Even though the laser light is partially coherent,the argument is made that the

detected light is able to be modeled as fully incoherent. Theincoherent light model still

captures the discrete, non-negative nature of the receivedphotons that the partially coher-

ent model exhibits. In addition, experimental data processing from Section3.6showed that

the speckle parameter estimation results tend towards the incoherent model. Consequently,

this incoherent light model assumption allows for the returns to be a result of a linear,
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spatially invariant (LSI) system involving an intensity convolution (instead of amplitude

convolution) between the intensity point spread function and the remote scene. Linearity is

a consequence of electromagnetic wave propagation theory,and spatial invariance results

from remaining with the isoplanatic angle [25]. Utilizing this LSI convolution model, two

GEM blind deconvolution algorithms are derived that enableimproved range estimation.

All references to the scenario or data model refer to material presented in Section2.5.

The unknown parameters in this scenario are the object (target amplitude and target

range) PSF, and bias. The variable of interest in this paper is the range term residing in

Equation (2.72) or (2.73). Direct estimation of the range term is problematic because of

its location either in an exponential or in a squared term. Therefore, the approach to range

estimation is to retrieve the range from the estimated pulse-shape or object. This method-

ology relies on the knowledge that the target produces the waveform peak in the detected

returns. Concerning the PSF, blind deconvolution techniques must be employed since the

PSF is unknown. Blind deconvolution has a rich heritage in astronomical imaging provid-

ing a bevy of literature attempting blind deconvolution. Although, blind deconvolution in

astronomical cases consists of trying to recover one objectand one PSF (or many PSFs if

using multiple frames). In trying to recover the target range from one 3D FLASH LADAR

data collect, this problem consists of many objects with onePSF. There are many objects

due to the transmitted waveform causing each range slice to contain different intensities

corresponding to where the waveform is incident on the object. Therefore, these incident

points become distinct objects in the blind deconvolution framework. If multiple cubes

are necessary, the atmosphere is changing with each cube resulting in multiple PSFs that

must be estimated resulting in a “multi-frame” or “multi-cube” scenario. If no atmospheric

turbulence exists or is non-volatile, the PSF is consistentthroughout the cubes and thej

subscript can be dropped.

5.1.1 Object Deconvolution. As noted previously, the goal of this research effort

is to improve range estimation of a target illuminated by a 3DFLASH LADAR. Deconvo-

lution is necessary due to the imaging nature of the 3D LADAR producing blurred return
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pulses. A solution is to use image restoration techniques toattempt to restore the original

range slice images thereby improving the range estimation.The image restoration algo-

rithm applies a 2-D filter to the a pixel detector array at eachtime sample (i.e. range slice

image, etc.) resulting in a “de-blurred” data cube. The “de-blurred” data cube’s pixels now

more closely mimic the unblurred return pulse from Equation(2.72) and result in improved

range estimation.

A standard linear filter that can perform the image restoration is the pseudo-inverse

Wiener filter. From [37], the definition of the pseudo-inverse Wiener filter,GW (fx, fy), is

GW (fx, fy) =
H∗(fx, fy)

∣H(fx, fy)∣2 + 1
SNR

(5.1)

whereH(fx, fy) is the overall optical transfer function (OTF), * is the conjugate operator,

andSNR is the signal-to-noise ratio in the image. One image processing definition of the

SNR is to set it equal to the image mean divided by the image standard deviation [70].

Given that the signal is dominated by shot noise, theSNR is defined at particular range

samplek to be the mean of the detected range image�d divided by the detected range image

standard deviation
√
�d or

SNR =
√
�d. (5.2)

Using the pseudo-inverse Wiener filter, the deblurred imageat a particular range samplek

is

Îk(x, y) = F−1 {GW (fx, fy)Dk (fx, fy)} (5.3)

with F−1 as the inverse Fourier transform andDk (fx, fy) is the Fourier transform of the

detected range imagedk(x, y). After the cube has been filtered, the normalized cross-

correlation (NCC) range estimator method uses the filtered data to determine the range

estimate using Equation (4.17). The waveform variablepk (m,n) in Equation (4.14) is

replaced bŷIk(x, y) during the NCC implementation.

5.1.2 Pulse-ShapeBlind Deconvolution via the GEM Algorithm. The previous

section assumed a known PSF. This section covers the blind deconvolution case where the

88



PSF is unknown. Blind object recovery is accomplished usingtwo approaches concerning

the pulse-shape and object variables from Equation (2.72). The pulse-shape estimation is

very powerful in that the estimator only needsonedata cube (one-shot, one-kill). However,

if the best accuracy is required and the 3D data cubes are properly registered, the multi-cube

object estimation provides lower error.

Referring to the GEM theory from Section2.4and the data model from Section2.5,

the model is reformed to consider pulse-shaperecovery with one cube required for process-

ing (with j = 1). Consistent with the GEM algorithm, the original datadk(x, y) is called

the incomplete data and is defined by [54]

dk (x, y) =

M
∑

m=1

N
∑

n=1

d̃k (x, y∣m,n) + q̃k (x, y) (5.4)

where two new variables,̃dk(x, y∣m,n) andq̃k (x, y), are called complete data. This formu-

lation provides two sets of complete data that account for the photon noise/image formation

and pixel bias respectively. The formation of the complete data highlights the powerful na-

ture of the GEM algorithm. In this application, complete data can also be called unobserved

data and carries no explicit physical meaning. It is used to directly benefit the EM algo-

rithm. Consistent with [71], careful definition of the complete data allows decouplingof

unknown variables while preserving physical meaning in theexpected value of the incom-

plete data.

The expected value of the complete data sets is given by

E
[

d̃k (x, y∣m,n)
]

= A (m,n) pk (m,n) ℎ (x−m, y − n) . (5.5)

and

E [q̃k (x, y)] = B (x, y) (5.6)

whereB (x, y) is the constant pixel bias. The expected value of the incomplete data is thus

E [dk (x, y)] = ik (x, y) +B (x, y) (5.7)
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which is consistent with the data observations depicted in the high fidelity model (i.e. con-

volution model) of Figure2.4. Adding the pixel bias to the model covers non-modeled

noise effects and pixel-to-pixel impulse response variations. The pixel bias is assumed to

be governed by the Poisson distribution due to the discrete random nature of dark current

and electron noise. Physically, the pixel bias is added to the photons incident upon the

detector and is part of the detected photon counts. The PMF for the photon noise is

P
(

d̃k (x, y∣m,n)
)

=

[A (m,n) pk (m,n)ℎ (x−m, y − n)]d̃k(x,y) e−[A(m,n)pk(m,n)ℎ(x−m,y−n)]

d̃k (x, y)!
(5.8)

while the PMF for the pixel bias is

P (q̃k (x, y)) =
B(x, y)q̃k(x,y)e−B(x,y)

q̃k (x, y)!
. (5.9)

Assuming statistical independence between all the pixels and between the photon noise and

pixel bias noise, the complete data log-likelihood function considering all random variables

is

LCD (pk, A, ℎ, B) = ln

[

∏

k,x,y,m,n

P
(

d̃k (x, y∣m,n)
)

P (q̃k (x, y))

]

(5.10)

or (NOTE: summations wrap around unless otherwise stated)

LCD (pk, A, ℎ, B) =
∑

k,x,y,m,n

d̃k (x, y∣m,n) ln [A (m,n) pk (m,n)ℎ (x−m, y − n)]

− [A (m,n) pk (m,n)ℎ (x−m, y − n)] + q̃k (x, y) ln [B (x, y)]−B (x, y) . (5.11)

Referring to Equation (2.64), theQ function then becomes

Q (pk, A, ℎ, B) = E
[

LCD (pk, A, ℎ, B) ∣dk (x, y) , poldk , Aold, ℎold, Bold
]

(5.12)
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where the estimates for the amplitude, pulse-shape, PSF, and bias are considered maximum-

likelihood estimates. Taking the conditional expectationof Equation (5.12) results in

Q (pk, A, ℎ, B) =
∑

k,x,y,m,n

�old
d̃k

(

x, y,m, n;Aold, poldk , ℎold
)

ln [A (m,n) pk (m,n) ℎ (x−m, y − n)]

− [A (m,n) pk (m,n)ℎ (x−m, y − n)] + �old
q̃

(

x, y;Bold
)

ln [B (x, y)]

−B (x, y) (5.13)

where

�old
d̃k

(

x, y,m, n; poldk , Aold, ℎold
)

= E
[

d̃k (x, y∣m,n) ∣dk (x, y) , poldk , Aold, ℎold
]

(5.14)

and

�old
q̃k

(

x, y;Bold
)

= E
[

q̃k (x, y) ∣dk (x, y) , Bold
]

. (5.15)

Equations (5.14) and (5.15) represent the expected value of one set of complete data given

the incomplete data. For Poisson random variables, these expectations turn out to be ratios

of the data times one expected value of the complete data divided by the all sets of expected

values of the complete data [75]. For the first set of complete data,d̃k (x, y), the conditional

expectation is

�old
d̃k

(

x, y,m, n; poldk , Aold, ℎold
)

=
dk (x, y)A

old (m,n) poldk (m,n) ℎold (x−m, y − n)

ioldk (x, y) +Bold (x, y)
,

(5.16)

while the second set of complete data concerning the pixel biasq̃k (x, y), has a conditional

expectation equal to

�old
q̃k

(

x, y;Bold
)

=
dk (x, y)B

old (x, y)

ioldk (x, y) +Bold (x, y)
. (5.17)

The maximization of theQ function for all parameter unknowns (target amplitude, target

pulse shape, PSF, and pixel bias) is theoretically intractable due to coupling. It is required
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to break apart theQ function into separate components such that

Q = Qp +Qℎ +QA +QB (5.18)

where each component of theQ function can be maximized independently. Thus, the GEM

algorithm becomes

Qp

(

pnewk ∣poldk , Aold, ℎold
)

≥ Qp

(

poldk ∣poldk , Aold, ℎold
)

QA

(

Anew∣poldk , Aold, ℎold
)

≥ QA

(

Aold∣poldk , Aold, ℎold
)

Qℎ

(

ℎnew∣poldk , Aold, ℎold
)

≥ Qℎ

(

ℎold∣poldk , Aold, ℎold
)

QB

(

Bnew∣Bold
)

≥ QB

(

Bold∣Bold
)

(5.19)

which, if these conditions are met, ensures that the likelihood is increased with each itera-

tion [54]

L (pnewk , Anew, ℎnew, Bnew) ≥ L
(

poldk , Aold, ℎold, Bold
)

(5.20)

resulting in a GEM sequence converging to a local maximum.

Beginning the estimation process of the separateQ functions starts with the target

pulse shape,Qp which is

Qp =
∑

k,x,y,m,n

�old
d̃k

(

x, y,m, n; poldk , Aold, ℎold
)

ln [pk (m,n)]−� (m,n)

[

K
∑

k=1

pk (m,n)− 1

]

(5.21)

where a pixel-dependent Lagrange multiplier,� (m,n), is introduced to force the pulse

shape to add to one for each pixel. This constraint is necessary to decouple the pulse

shape from the target amplitude and PSF. Taking the derivative of Equation (5.21) with

respect to a particular object plane point and range sample,setting the result equal to zero,
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∂Qp/∂pko (mo, no) = 0, and solving for the pulse shape, results in

pnewko (mo, no) = poldko (mo, no)

(

Aold (mo, no)

� (mo, no)

) X
∑

x=1

Y
∑

y=1

dko (x, y)ℎ
old (x−mo, y − no)

ioldko
(x, y) +Bold (x, y)

(5.22)

where

� (mo, no) = Aold (mo, no)
K
∑

k=1

poldk (mo, no)
X
∑

x=1

Y
∑

y=1

dk (x, y) ℎ
old (x−mo, y − no)

ioldk (x, y) +Bold (x, y)

(5.23)

and

ioldko (x, y) =
M
∑

m=1

N
∑

n=1

Aold (m,n) poldko (m,n)ℎold (x−m, y − n). (5.24)

Equation (5.22) is the iterative solution for the pulse shape per range sample. Next, theQ

function is partitioned into its target amplitude components

QA =
∑

k,x,y,m,n

{

�old
d̃k

(

x, y,m, n; poldk , Aold, ℎold
)

ln [A (m,n)]
}

−
M
∑

m=1

N
∑

n=1

A (m,n) (5.25)

where

X
∑

x=1

Y
∑

y=1

ℎ (x, y) = 1 (5.26)

K
∑

k=1

pk (m,n) = 1 (5.27)

have been utilized to decouple the pulse shape and PSF terms from the target amplitude.

Maximizing Equation (5.25) by ∂QA/∂A (mo, no) = 0 and solving for the amplitude term

results in the iterative solution for the target amplitude term

Anew (mo, no) = Aold (mo, no)

K
∑

k=1

poldk (mo, no)

X
∑

x=1

Y
∑

y=1

dk (x, y)ℎ
old (x−mo, y − no)

ioldk (x, y) +Bold (x, y)
.

(5.28)
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The PSF is the final unknown parameter that uses the first set ofcomplete data,̃dk (x, y).

TheQ function for the PSF is

Qℎ =
∑

k,x,y,m,n

�old
d̃k

(

x, y,m, n; poldk , Aold, ℎold
)

ln [ℎ (x−m, y − n)]

− [A (m,n) pk (m,n)ℎ (x−m, y − n)] , (5.29)

which still has the target amplitude and pulse shape terms. Similar to [71], a change of

variables is required to remove the dependence on the pulse shape and to allow for easier

differentiation. Utilizing
∑K

k=1 pk (m,n) = 1 and settingm′ = x−m andn′ = y − n, Qℎ

then becomes

Qℎ =
∑

k,x,y,m′,n′

{

�old
d̃k

(

x, y, x−m′, y − n′; poldk , Aold, ℎold
)

ln [ℎ (m′, n′)]
}

−
∑

x,y,m′,n′

A (x−m′, y − n′)ℎ (m′, n′). (5.30)

Setting∂Qℎ/∂ℎ (m
′
o, n

′
o) = 0 and solving for the PSF produces the iterative solution

ℎnew (m′
o, n

′
o) = ℎold (m′

o, n
′
o)
∑

k,x,y

dk (x, y)A
old (x−m′

o, y − n′
o) p

old
k (x−m′

o, y − n′
o)

(

ioldk (x, y) +Bold (x, y)
)

X
∑

x=1

Y
∑

y=1

Anew (x−m′
o, y − n′

o)

.

(5.31)

Usually, the target amplitude term in the denominator wouldbe an issue because it is con-

sidered the new estimate. However, Equation (5.28) is the new estimate and can replace

the target amplitude in the denominator resulting in a consistent solution for the PSF. Fi-

nally, the pixel bias must be estimated. In order to estimatethe pixel bias, the second set of

complete data,̃qk (x, y), is utilized. TheQ function for the pixel bias is

QB =

K
∑

k=1

X
∑

x=1

Y
∑

y=1

dk (x, y)B
old (x, y)

ioldk (x, y) +Bold (x, y)
ln (B (x, y))−B (x, y). (5.32)
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Setting∂QB/∂B (xo, yo) = 0 and solving for the pixel bias results in an iterative solution

Bnew (xo, yo) = Bold (xo, yo)
K
∑

k=1

dk (xo, yo)
(

ioldk (xo, yo) +Bold (xo, yo)
) (5.33)

corresponding to the pixel bias iteration.

After a pre-determined number of iterations on Equations (5.22), (5.28), (5.31), and

(5.33), range estimate updates for each pixel are generated by using the NCC method be-

tween a reference waveform at sub-sample ranges and the the GEM estimate for the pulse

shape,pnewk . The range-dependent reference waveform that results in the highest correla-

tion is chosen and the corresponding range is the new range estimate for that pixel. The

new range estimate is fed back into the pulse-shape to generate a newpoldk followed by

another set of GEM iterations. The process (GEM iterations followed by range updates)

repeats with the new range estimates used in calculatingpoldk using Equation (5.22) and

ceases when the mean square error (MSE) between the data and non-noisy range images

reaches the stopping criteria. All previous amplitude, PSF, and pixel bias estimates carry

over from one range update to the next. More specifically, iterations cease when the MSE

is lower than the average data variance or

K
∑

k=1

X
∑

x=1

Y
∑

y=1

(

djk (x, y)− Iestk (x, y)−Bnew (x, y)
)2

<

K
∑

k=1

X
∑

x=1

Y
∑

y=1

Vk (x, y) (5.34)

with

Iestk (x, y) =
M
∑

m=1

N
∑

n=1

Anew (m,n) pnewk (m,n)ℎnew (x−m, y − n) (5.35)

and

Vk (x, y) =
J

∑

j=1

⎛

⎜

⎜

⎜

⎝

djk (x, y)−

J
∑

j2=1

dj2k (x, y)

J

⎞

⎟

⎟

⎟

⎠

2

(5.36)
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whereVk is the variance for the volume elements (voxels). In the experimental data, a spe-

cific distribution for the variance is not chosen in order to account for all noise sources. For

the simulation data, the primary noise source is defined explicitly by the Poisson distribu-

tion. Therefore, data varianceVk is defined by the variance of the Poisson distribution (i.e.

mean of the data).

In summary, the pulse-shape estimation algorithm steps are:

1. Initialize PSF, amplitude, and pixel bias

2. Determine initial ranges and define pulse-shape

3. Perform GEM iterations using Equations (5.22), (5.28), (5.31), and (5.33)

4. Use NCC to find new range estimates with Equation (4.17)

5. Generate new pulse-shapes based on new ranges

6. Determine MSE and compare to stopping criteria

7. Repeat Steps 3 through 6 until stopping criteria violated

8. Range estimates taken from last execution of Step 4

In step one, the PSF is initialized by the diffraction-limited PSF of the system with some

defocus to allow the iterations the freedom to modify the estimate. The amplitudes and the

pixel bias are initialized by a matrix of ones.

5.1.3 ObjectBlind Deconvolution via the GEM Algorithm. When multiple cubes

are available and properly registered spatially and temporally, another method to perform

range estimation is to relax the constraint on the pulse-shape and assume just an object

in the data model. This change mitigates the issue in the hardware data where the pulse-

shape is vaguely known. Therefore, estimation is performedon ok rather than onpk from

Equation (2.71). The problem setup is similar to the pulse-shape estimation (now with more

than one cube) by calling the original data,djk(x, y), the incomplete data and specifying

djk (x, y) =

M
∑

m=1

N
∑

n=1

d̃jk (x, y∣m,n) + q̃jk (x, y) (5.37)
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where two new variables,̃djk(x, y∣m,n) and q̃jk (x, y), are defined and called complete

data. This formulation provides two sets of complete data that account for the image for-

mation and pixel bias respectively. The same PSF can be assumed for adjacent collections

due to a typical data collection scenario where environments shouldn’t be changing rapidly

(ignorej). Thus, the expected values of the complete data sets are given by

E
[

d̃jk (x, y∣m,n)
]

= ok (m,n)ℎ (x−m, y − n) (5.38)

and

E [q̃jk (x, y)] = B (x, y) (5.39)

whereB (x, y) is the constant pixel bias. The expected value of the incomplete data is thus

E [djk (x, y)] = ik (x, y) +B (x, y) . (5.40)

The PMF for the photon noise is

P
(

d̃k (x, y∣m,n)
)

=

[ok (m,n) ℎ (x−m, y − n)]d̃jk(x,y∣m,n) exp {−ok (m,n)ℎ (x−m, y − n)}
d̃jk (x, y∣m,n)!

(5.41)

while the pixel bias PMF is

P (q̃jk (x, y)) =
B(x, y)q̃jk(x,y)e−B(x,y)

q̃jk (x, y)!
. (5.42)

Assuming statistical independence between all the pixels and between the photon noise and

pixel bias noise, the complete data log-likelihood is then

LCD (ok, ℎ, B) = ln

[

∏

j,k,x,y,m,n

P
(

d̃jk (x, y∣m,n)
)

P (q̃jk (x, y))

]

(5.43)
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or

LCD (ok, ℎ, B) =
∑

j,k,x,y,m,n

d̃jk (x, y∣m,n) ln [ok (m,n)ℎ (x−m, y − n)]

− [ok (m,n) ℎ (x−m, y − n)] + q̃jk (x, y) ln [B (x, y)]−B (x, y) . (5.44)

Referring to [54], the Q function becomes the expected value of the complete data log-

likelihood function with respect to the incomplete data andold parameter estimates

Q (ok, ℎ, B) = E
[

LCD (ok, ℎ, B) ∣djk (x, y) , ooldk , ℎold, Bold
]

. (5.45)

Taking the conditional expectation from Equation (5.45) results in

Q (ok, ℎ, B) =
∑

j,k,x,y,m,n

�old
d̃jk

(

x, y,m, n; ooldk , ℎold
)

ln [ok (m,n)ℎ (x−m, y − n)]

− [ok (m,n) ℎ (x−m, y − n)] + �old
q̃

(

x, y;Bold
)

ln [B (x, y)]− B (x, y) (5.46)

where

�old
d̃jk

(

x, y,m, n; ooldk , ℎold
)

= E
[

d̃jk (x, y∣m,n) ∣djk (x, y) , ooldk , ℎold
]

=
djk (x, y) o

old
k (m,n) ℎold (x−m, y − n)

ioldk (x, y) +Bold (x, y)
(5.47)

and

�old
q̃jk

(

x, y;Bold
)

= E
[

q̃jk (x, y) ∣djk (x, y) , Bold
]

=
djk (x, y)B

old (x, y)

ioldk (x, y) +Bold (x, y)
. (5.48)

Similar to the pulse-shape estimation, the maximization oftheQ function for all parameter

unknowns (object, PSF, and pixel bias) is theoretically intractable due to coupling. It is

98



required to break apart theQ function into separate components such that

Q = Qo + Qℎ +QB (5.49)

where each component of theQ function can be maximized independently. Thus, the GEM

algorithm becomes

Qo

(

onewk ∣ooldk , ℎold
)

≥ Qo

(

ooldk ∣ooldk , ℎold
)

Qℎ

(

ℎnew∣ooldk , ℎold
)

≥ Qℎ

(

ℎold∣ooldk , ℎold
)

QB

(

Bnew∣Bold
)

≥ QB

(

Bold∣Bold
)

(5.50)

ensuring that the likelihood is increased with each iteration [54]

L (onewk , ℎnew, Bnew) ≥ L
(

ooldk , ℎold, Bold
)

(5.51)

resulting in a GEM sequence converging to a local minimum. The procedure to find the

maxima of theQ functions is the same as in pulse-shape estimation. First, the object solu-

tion is found by specifying

Qo =
∑

j,k,x,y,m,n

�old
d̃jk

(

x, y,m, n; ooldk , ℎold
)

ln [ok (m,n)]− ok (m,n) ℎ (x−m, y − n) .

(5.52)

In order to maximizeQo, the derivative of Equation (5.52) with respect to a particular object

plane point and range sample is set equal to zero,∂Qp/∂oko (mo, no) = 0. Solving for the

object results in

onewko (mo, no) =
ooldko

(mo, no)

J

J
∑

j=1

X
∑

x=1

Y
∑

y=1

djko (x, y) ℎ
old (x−mo, y − no)

ioldko
(x, y) +Bold (x, y)

(5.53)
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with J as the number of cubes and utilizing

X
∑

x=1

Y
∑

y=1

ℎ (x, y) = 1 (5.54)

and where

ioldk (x, y) =

M
∑

m=1

N
∑

n=1

ooldk (m,n)ℎold (x−m, y − n). (5.55)

Equation (5.53) is the iterative solution for the object per range sample. The PSF is the

other unknown parameter that uses the first set of complete data, d̃jk (x, y). TheQ function

for the PSF is

Qℎ =
∑

j,k,x,y,m,n

�old
d̃jk

(

x, y,m, n; ooldk , ℎold
)

ln [ℎ (x−m, y − n)]−ok (m,n)ℎ (x−m, y − n).

(5.56)

Similar to [71], a change of variables is required to remove the dependenceon the pulse

shape and to allow for easier differentiation. Settingm′ = x−m andn′ = y − n, Qℎ then

becomes

Qℎ =
∑

j,k,x,y,m′,n′

{

�old
d̃jk

(

x, y, x−m′, y − n′; ooldk , ℎold
)

ln [ℎ (m′, n′)]
}

−ok (x−m′, y − n′) ℎ (m′, n′) . (5.57)

Setting∂Qℎ/∂ℎ (m
′
o, n

′
o) = 0 and solving for the PSF produces the solution

ℎnew (m′
o, n

′
o) =

ℎold (m′
o, n

′
o)

J

[

∑

k,x,y

onewk (x−m′
o, y − n′

o)

]

∑

j,k,x,y

djk (x, y) o
old
k (x−m′

o, y − n′
o)

ioldk (x, y) +Bold (x, y)

(5.58)

The object term in the denominator is the new estimate from Equation (5.53). Since, there

are phase abberations across the aperture and the PSF needs to be constrained, phase re-

trieval is performed on Equation (5.58) by the Gerchberg-Saxton algorithm [23]. In the
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pulse-shape estimation, it was the object (i.e. pulse-shape) that was constrained making the

phase retrieval unnecessary. Constraints on the estimatesare required to avoid the trivial

solution where the object is the data itself and the PSF is a delta function. Finally, the pixel

bias must be estimated. In order to estimate the pixel bias, the second set of complete data,

q̃k (x, y), is utilized. TheQ function for the pixel bias is

QB =
K
∑

k=1

X
∑

x=1

Y
∑

y=1

djk (x, y)B
old (x, y)

ioldk (x, y) +Bold (x, y)
ln (B (x, y))−B (x, y). (5.59)

Setting∂QB/∂B (xo, yo) = 0 and solving for the pixel bias results in

Bnew (xo, yo) =
Bold (xo, yo)

JK

J
∑

j=1

K
∑

k=1

(

djk (xo, yo)

ioldk (xo, yo) +Bold (xo, yo)

)

. (5.60)

GEM iterations continue and cease when the mean-square error (MSE) violates the stopping

criteria. Once the stopping criteria is reached, range estimates are determined by using the

NCC method on the object estimate.

The object estimation steps are:

1. Initialize object, PSF, and pixel bias

2. Perform one GEM iteration using Equations (5.53), (5.58), and (5.60)

3. Determine MSE and compare to stopping criteria

4. Repeat Steps 2 and 3 until stopping criteria reached

5. Use NCC to find new range estimates with Equation (4.17)

The initial estimates in step one are the same asGEMp with the exception that the object is

initialized by a matrix of ones.

5.2 Simulation

In order to verify the theory, a simulation scenario was developed whereby targets are

interrogated by a 3D FLASH LADAR defined by the parameters from Table5.1. The goal
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Table 5.1: 3D FLASH LADAR parameters
Parameter Value

Detector Array 128× 128
Aperture Diameter (D) 2 mm

Mean Wavelength 1.55 �m
Focal Length 0.30 m
Target Range 5.21 m

Transmit Energy 10 mJ
Pulse Standard Deviation (�w) 3 ns

Beam Divergence 0.009 radians
Detector Spacing 100 �m

Detector Array Fill Factor 100%
Detector Bandwidth 0.5 �m
Target Reflectivity 10%
Solar Irradiance 10 Watts/m2/�m

D/ro Seeing Condition 1.43
Frame Rate 30 Hz

Time Samples 20
Sample Period 1.876 ns

is to improve range estimation given the noisy, blurry data observations. Results show range

estimation improvement by performing object recovery either via a Wiener filter method or

GEM algorithms as outlined in Sections5.1.2and5.1.3. Previous research has taken the

approach to use a Wiener filter on each individual range sliceand then use a pixel-based

ranging method on the resulting “deblurred” data cube [55]. The PSF for the Wiener filter

is set as the diffraction-limited PSF of the system. Performance will illustrate that the GEM

algorithms provide increased error performance over the Wiener filter while, at the same

time, being more robust. Again, the GEM algorithms are more robust in that they do not

need to know the point spread function, unlike the Wiener filter technique.

Using a Gaussian transmitted pulse, a 3D FLASH LADAR imagingscenario is devel-

oped in simulation using various geometrical shapes as targets shown in Figure5.2(a)-(f).

One important clarification on the receiver optics is that the detector array has an effective

fill factor of 100% by placing a micro-lens array in front of the pixels to focus the light onto

the pixel. Also, the data includes effects from an average atmospheric turbulence to enable

blind deconvolution. Range estimates are also determined without processing to enable
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Figure 5.2: True ranges for simulation targets: (a) three bars, (b) Many bars, (c) Various
blocks, (d) Cylinder, (e) Slanted boards, and (f) Connectedblocks. The target
names in this caption correspond to the targets in Table5.2. The three bar tar-
get is also the experimental data target. Other targets illustrate the robustness
of the estimation algorithms.
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further comparison between no processing and object recovery attempts. Results for all the

targets and methods with error metrics are summarized in Table 5.2. The numbers in bold

indicate the best performer for the data set.
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Figure 5.3: Estimated ranges for simulation targets: (a) Noprocessing - three bars, (b)
GEMo processing - three bars, (c) No processing - Many bars, and (d) GEMo

processing - Many bars. Utilizing theGEMo algorithm, simulation results
show the image quality improvement and improved range estimation (RMSE
improves 75% for 3 bar target).
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Table5.2 clarifications: “RMSE” is root mean square error (RMSE) in meters be-

tween the true ranges and estimated ranges of a target and is calculated by

RMSE =

√

√

√

√

⎷

M
∑

m=1

N
∑

n=1

(

R (m,n)− R̂ (m,n)
)2

MN
(5.61)

whereR (m,n) are the true ranges and̂R (m,n) (Equation (4.17)) are the estimated ranges.

“Corr” is an image quality metric referring to the correlation coefficient between the true

range image and estimated range image signifying linear relationship strength (not to be

confused with the NCC method) and mathematically give by

Corr =

M
∑

m=1

N
∑

n=1

{

(R (m,n)− �R)
(

R̂ (m,n)− �R̂

)}

�R�R̂

(5.62)

where�R and�R are the mean and standard deviation of the true range image respectively

and�R̂ and�R̂ are the mean and standard deviation of the estimate range image respec-

tively. “OD” refers to the original data (OD) with no deblurring and ranges estimated by

the NCC method, “WF” relates to range estimation using a Wiener Filter technique with

NCC [55], “GEMp” is the pulse-shape estimation GEM algorithm, and “GEMo” is the

object estimation GEM algorithm.

The targets of primary interest are the three bar target and the multiple bar target be-

cause the three bar target is also the experimental target and the multiple bar target is most

sensitive to spatial blurring of all the targets. The bar targets are constructed in simulation

consisting of two flat, perpendicular optically rough surfaces at different ranges. Referring

to Figures5.2(a) and (b), the first surface in range has rectangular cut-out shapes while the

second surface contains no cutouts. This type of target was chosen to highlight not only the

coupling/blurring effects of the pixels along the edges of the rectangles, but also the decou-

pling and ranging capability of the GEM algorithm. The othertargets are built in similar

manner. Bar target shapes were used because the distances and shape dimensions can be

physically measured in a laboratory environment to show range estimation improvement.
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Figure 5.4: (a) Using the data from Figure5.3(c)-(d), investigating pixel (8,23) shows
the estimated waveform (object plus pixel bias) closely matching the true
waveform while the detected waveform does not. The estimated range is 6.6
m while the true range is 6.7 m. The algorithm also implicitlyestimates the
pixel bias term accurately.
(b) Again, using the data from Figure5.3(c)-(d), investigating pixel (17,14)
shows the estimated waveform improving upon the detected waveform, but
not able to match the true waveform as well as the previous pixel. The esti-
mated range is 5.7 m while the true range is 6.7 m. Incorrect range estimation
after theGEMo algorithm relates to blurring severity (edges of cut-outs in
first surface) and/or a particularly noisy realization fromthe Poisson distri-
bution.
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Table 5.2: Range estimation results for simulation data
Data set Metric OD WF GEMp GEMo

Three bars RMSE (m) 0.402 0.346 0.1630.100
Corr 0.767 0.830 0.963 0.984

Many bars RMSE (m) 0.596 0.5610.346 0.365
Corr 0.687 0.664 0.786 0.794

Slanted boards RMSE (m) 0.225 0.171 0.1610.131
Corr 0.945 0.971 0.967 0.983

Cylinder RMSE (m) 0.184 0.153 0.160 0.153
Corr 0.877 0.925 0.945 0.962

Various blocks RMSE (m) 0.473 0.209 0.3440.175
Corr 0.595 0.931 0.725 0.955

Connected blocks RMSE (m) 0.208 0.133 0.1580.112
Corr 0.853 0.955 0.918 0.970

Table5.2and the range images from Figures5.2and5.3show the negative effects of

the blurring on range estimation juxtaposed with the positive effects from attempting to re-

cover the original object through Wiener filtering or the GEMalgorithms. Figure5.4(a)

shows pixel waveforms successfully recovered while Figure5.4(b) exhibits a situation

where the recovery was not as successful. Implicit in the results is the ability to accurately

estimate the pixel bias. Without it, the object model falls apart and range error becomes

extremely large.

An additional concern is assessing the computational timesfor the object retrieval

methods (WF,GEMp, andGEMo). Although, it should be noted again that the WF method

requires the PSF to be known a priori. The computational times were analyzed using opera-

tions counting. For example, this counting means that an addition, divide, or multiplication

count as one operation each. Also, the Fast Fourier Transform (FFT) is utilized to accom-

plish convolution and correlation and counts asNlog2 (N) operations whereN is the number

of points [13]. The number of operations required in the WF method (Section 5.1.1) are

6 × 105. Implementing steps 2-7 from Section5.1.2until the stopping criteria is reached,

theGEMp algorithm uses1.8× 107 operations per iteration. Finally, theGEMo algorithm

has a computation burden of1.9 × 106 operations per iteration while performing Step 2-4

(until stopping criteria violation) from Section5.1.3. The numbers computed for all the
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methods correspond to a pixel area of40 × 40 with 18 range samples. One cube was used

for the WF andGEMp methods while two cubes was used forGEMo. The additional bur-

den onGEMp is from the inner iterations which include 100 GEM iterations followed by

an update on the pulse-shape and a repeat of the process. While the increase in computation

time is substantial compared to the WF method, theGEMp andGEMo algorithms represent

a significant increase in capability with respect to range accuracy and to required a priori

information.

Through simulation, the model and object recovery attemptshave been verified. The

final step is to use experimental data to validate simulationresults.

5.3 Experimental Results

Using the pre-processed experimental data described in Chapter III , Table5.3 and

Figure5.5 illustrate the range estimation benefits of object retrieval. The bold numbers in

the table indicate the best performing method for the data set. The pulse-shape and object

estimation give an RMSE improvement of 25% and 34% respectively over the original data.

Additionally, the pulse-shape and object estimation give an RMSE improvement of 7% and

18% respectively over the Wiener filter algorithm. Figure5.5(c) shows the image quality

improvement over the original data range image in Figure5.5(b). Pixel waveforms provide

additional information on the object recovery abilities. Figure 5.5(d) demonstrates this

ability on a second surface pixel, (32,18), where the raw waveform results in an incorrect

range determination. In contrast, the object recovery algorithm (GEMo) yields an improved

range estimate by sufficiently estimating the true waveform. Additionally, attempts were

also made to use asymmetrical pulses in the NCC method. However, range estimation

error did not significantly change. This result is partly dueto the gain correction where the

waveform becomes more symmetrical after correction. Sincethe exact pulse emitted by

the laser is unknown, the pulse-shape estimation used the best approximation based on the

observed data.
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Figure 5.5: Experimental target : (a) True ranges with first surface at 5.21 m and second
surface at 6.43 m with 1.22 m of separation in between surfaces,
(b) Ranges using NCC without using object recovery
(c) Estimated ranges usingGEMo algorithm followed by NCC
(d) Considering pixel (32,18), its estimated waveform (object plus pixel bias)
shows similar results from the simulated data. The estimated waveform more
closely resembles the true waveform with the range close to range sample 9.
Also, the algorithm correctly estimates the pixel bias confirming that the bias
must arise from a noise source following the Poisson distribution (i.e. dark
current).

Table 5.3: Range estimation results for experimental data
Data set Metric OD WF GEMp GEMo

3 bars RMSE (m) 0.301 0.243 0.226 0.198
Corr 0.818 0.883 0.900 0.924
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5.4 Conclusions

Utilizing waveform sampling capability, the positive effects of object recovery in 3D

FLASH LADAR range estimation is clearly evident. The innovative 3D FLASH LADAR

sensor provides both an imaging and ranging ability enabling established theory to be ap-

plied to a novel manner. Given simulation and experimental results, it is clear the chosen

model and noise sources are an appropriate choice for 3D FLASH LADAR data operating

under certain conditions (“sular mode” meeting spatial sampling requirements). The raw

data coming off the sensor does not fit the model, but straight-forward pre-processing steps

convert the data to an acceptable form for the algorithms.

In mild spatial blurring conditions, simulation results predict that the GEM algo-

rithms increase range estimation performance substantially over no-processing and the

Wiener filter method. Again, the Wiener filter even has an unfair advantage because it

is provided with the exact (or estimated) PSF function used in generating the data while the

GEM algorithms have to estimate the PSF. Considering the experimental data, its perfor-

mance is nearly diffraction-limited as evidenced by the experimental PSF and OTF. How-

ever, the GEM algorithms still increase range estimation performance over the Wiener fil-

ter. Supported by simulation results, it is appropriate to say that the GEM algorithm would

show even better range estimation performance versus the Wiener filter in severe isoplanatic

atmospheric blurring conditions or with sub-optimal optics.

A trade-off exists for Wiener filter and object recovery algorithms between compu-

tation cost and range accuracy. The Wiener filter is the leastcomputationally taxing object

recovery algorithm, but is the least accurate and requires apriori knowledge of the PSF. The

GEM algorithms are computationally expensive, but providethe best range performance

and can perform blind deconvolution. Considering the GEM algorithms, the pulse-shape

estimator is extremely valuable in that it can perform rangeestimation on a single cube

thereby removing potential for any registration or timing errors. If multiple cubes are avail-

able and properly registered, object estimation is undoubtedly the best algorithm to use.

Although, experimentally, none of the algorithms were ableto match the success found
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in simulation. Any residual error in the experimental results can be attributed to system

noise, the detected light containing residual laser speckle, residual gain error, and detector

blurring.

There are prospective avenues for continued investigationand improvement. The

pulse-shape estimation is very dependent on the selected waveform model. Improvements

in the range estimation would be realized if a true waveform model for the transmitted

laser pulse was derived or calculated experimentally. Errors in the experimental data re-

sult from assuming a generalized shape that is corrupted by distorting effects (spatial blur,

pixel blur, and noise). In addition, the variable of interest (range term) would ideally be

directly estimated. The maximum likelihood solution for the range term could be achieved

if another model was discovered. The algorithm in this paperextracts the range from the

maximum likelihood solution for the pulse-shape. Also, even after the pre-processing steps,

the experimental data exhibits noisy behavior. A more thorough characterization of the 3D

FLASH LADAR noise sources would augment or verify the chosennoise sources. Finally,

isoplanatic imaging is valid for the experimental set-up inthe laboratory. However, object

recovery from 3D FLASH LADAR observations subject to heavy anisoplanatic turbulence

would provide an ability to improve range estimation in a variety of field or operational

situations.
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VI. Range Separation Performance and Optimal Pulse-Width

Prediction of a 3D FLASH LADAR using the Cramer-Rao Bound

T he purpose of this chapter is to use established estimator variance theory applied to

a three dimensional FLASH LAser Detection And Ranging (3D FLASH LADAR)

sensor in order to bound estimator performance and enable prediction of optimal resolu-

tion performance. The theory in this chapter supports “hit mode” and “sular mode” of 3D

FLASH LADAR operation. Additionally, pixel spatial and temporal integration is a com-

mon concern for photo-detectors. For this paper, the pixel spatial response is assumed to

be ideal while the temporal integration is assumed to be lessthan half of the range interval.

Supplemental simulations were completed that investigated integration effects. The results

show that these effects have a negligible effect on the blurring severity and received pulses.

The entire chapter contains novel and original efforts: CRBderivation on range and spatial

separation as well as target amplitudes, optimal pulse-width determination given simple

and complex targets, and optimal pulse-width determination given a normalized pulse def-

inition.

The Cramer-Rao Bound (CRB) is an important theoretical result in estimation theory

that can be applied to numerous fields in science and engineering [84]. Pertaining to a two

point target scene illuminated by a 3D FLASH LADAR (Section4.4.1), the CRB is utilized

to bound the range separation estimation variance. The simple scene is adopted to allow

for closed-form results and to allow conclusions to be drawnabout the effects of range

separation on the bound. Once the range separation CRB is derived, an unbiased range

separation estimator is developed to enable comparisons tothe CRB. The expected results

are shown in an example comparing the estimator variance andthe bound across possible

range separations.

Additionally, the CRB is used to predict system performancewhich could aid in

the LADAR development process. Per conventional RADAR theory, range resolution im-

proves (i.e. becomes smaller) as the effective pulse-widthis shortened [76]. Although, the

RADAR engineer must be concerned about other factors as wellto include the high peak

power requirements of a narrow pulse. In the case of 3D FLASH LADAR, there is the abil-
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ity to produce ultra-short laser pulses in the femtoseconds(10−15) compared to the laser

pulse in the nanoseconds(10−9) used in this research [66], [88]. Along with benefits to

target ranging and identification, one would expect that theincrease in the range resolution

would be improved by several orders of magnitude with an ultra-short laser pulse. How-

ever, similar to the RADAR engineer concerns about high peakpower for short pulses, the

LADAR engineer has to be concerned that the receiver electronics can sufficiently sample

the returned pulse. With the laser pulse-width lasting in the tens of nanoseconds, the current

receiver technology can only generate a finite amount of samples due to the complicated

design that is required to sample the pulse every couple of nanoseconds [19]. Recognizing

the design issues, CRB theory is employed to analyze the trade-off between laser pulse-

width and range sampling interval. CRB theory and subsequent simulation determine that

there is an optimal pulse-width that produces an optimal range resolution for a particular

range sampling capability.

The chapter is organized as follows: Section6.1derives the range separation CRB for

a two point target scene, Section6.2discusses the results of the unbiased range separation

estimator and compares it to the CRB, and Section6.3 uses CRB and simulation to find

an optimal pulse-width for several different range sampling scenarios for the two target

case. This section also finds an optimal pulse-width considering more complex targets.

Additionally, an optimal pulse-width for the two-target scene if found using a normalized

pulse that is independent of range sampling. Finally, Section 6.4draws conclusions based

on the observed results.

6.1 CRB on Range Separation Estimation

In this section, the CRB for range separationΔk is derived using the two-point target

data model from Section4.4.1. Other bounds are determined as well including spatial

separation and the target amplitudes. For a particular imaging scenario, the range separation

CRB is shown in a figure across the possible range separations.

For multiple unknowns, the CRB is defined by the diagonals of the Fisher Information

Matrix (FIM) inverse and provide a lower bound on the variance of any unbiased estimator
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which is shown for a general, multiple unknown parameter case by [84]

var
[

�̂i (D)− �i

]

≥
[

J−1
]

ii
(6.1)

where “var” is the variance,̂�i (D) is the estimate of a particular unknown, non-random

variable�i, D is the observation space, andJ is the FIM. The elements of the FIM are

the negative expected value of the double derivative log-likelihood function and provides a

measure of the amount of information of an unknown parametercontained in the random

process. Mathematically, the FIM is defined by [84]

Jij = −E

[

∂2 lnP (dk (x, y) = Dk (x, y) ∀k, x, y)
∂�i∂�j

]

(6.2)

whereE is the expected value operation, “ln” is the natural log, andP is the probability

mass function (PMF) for all 3D FLASH LADAR observations withdk (x, y) as the real-

izations of the observations. Assuming statistical independence of each volume element

(voxel), the PMF for the data model is defined by

P [dk (x, y) = Dk (x, y)∀k, x, y] =
K
∏

k=1

X
∏

x=1

Y
∏

y=1

ik(x, y)
dk(x,y) exp {−ik (x, y)}

dk (x, y)!
(6.3)

where the assumed dominant noise source is photon (shot) noise described by the Poisson

distribution. While lasers exhibit partial coherence meaning the negative binomial distri-

bution should be used for the light statistics, this photon noise assumption is valid when

the operating environment produces a large enough speckle parameter so that the nega-

tive binomial distribution approaches the Poisson distribution [24]. Previous 3D FLASH

LADAR work has shown the speckle parameter to be adequate to assume the Poisson dis-

tribution [9]. Additionally, the Poisson distribution CRB provides a lower bound to the

negative binomial CRB considering the higher negative binomial variance [60]. This fact

creates a true lower bound (most pessimistic) with the Poisson distribution CRB regardless

of the imaging conditions.
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After performing the required operations, the general solution for the FIM elements

is determined to be [9], [39]

Jij =
K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)

∂ik (x, y)

∂�i

∂ik (x, y)

∂�j
. (6.4)

Particular to this work, there are four non-random unknown variables in the data model,

� = [Δm,Δk, At, Ar], resulting in a 4x4 FIM with its elements determined to be

J11 =

K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)

[

Atp (rk − (Kr −Δk))
∂

∂Δm
ℎ (x−Δm, y)

]2

J22 =
K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)

[

Atℎ (x−Δm, y)
∂

∂Δk

p (rk − (Kr −Δk))

]2

J33 =

K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
[p (rk − (Kr −Δk)) ℎ (x−Δm, y)]

2

J44 =
K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
[p (rk −Kr)ℎ (x, y)]

2

J12 =

K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
(At)

2p (rk − (Kr −Δk)) ℎ (x−Δm, y)
∂

∂Δk
p (rk − (Kr −Δk)) ...

× ∂

∂Δm
ℎ (x−Δm, y)

J13 =
K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
At[p (rk − (Kr −Δk))]

2ℎ (x−Δm, y)
∂

∂Δm

ℎ (x−Δm, y)

J14 =

K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
Atp (rk −Kr) p (rk − (Kr −Δk)) ℎ (x, y)

∂

∂Δm
ℎ (x−Δm, y)

J23 =
K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
Atp (rk − (Kr −Δk)) [ℎ (x−Δm, y)]

2 ∂

∂Δk

p (rk − (Kr −Δk))

J24 =

K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
Atp (rk −Kr) ℎ (x, y)ℎ (x−Δm, y)

∂

∂Δk
p (rk − (Kr −Δk))

J34 =

K
∑

k=1

X
∑

x=1

Y
∑

y=1

1

ik (x, y)
p (rk −Kr) p (rk − (Kr −Δk))ℎ (x, y) ℎ (x−Δm, y) (6.5)
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where

∂ik (x, y)

∂Δm
= Atp (rk − (Kr −Δk))

∂

∂Δm
ℎ (x−Δm, y)

∂ik (x, y)

∂Δk

= Atℎ (x−Δm, y)
∂

∂Δk

p (rk − (Kr −Δk))

∂ik (x, y)

∂At
= p (rk − (Kr −Δk)) ℎ (x−Δm, y)

∂ik (x, y)

∂Ar
= p (rk −Kr)ℎ (x, y)

∂

∂Δm

ℎ (x−Δm, y) =
(x−Δm)

2��4
ℎ

exp

{

−
(

(x−Δm)
2 + y2

)

2�2
ℎ

}

∂

∂Δk

p (rk − (Kr −Δk)) =
− (rk − (Kr −Δk))√

2��3
pd

exp

{

−(rk − (Kr −Δk))
2

2�2
pd

}

. (6.6)

NOTE: The “×” in J12 is a multiply operation. The FIM is inverted and the CRB for each

of the unknowns is on the diagonal of the inverted FIM matrix with the range separation

CRB at[J−1]22. The purpose behind supplying the FIM element expressions was to provide

enough information to enable the work to be reproduced. Although an example plot is given

later in the section, the range separation CRB expression itself is not shown due to its length

and complexity.

Besides the four non-random unknown parameters, the CRB also depends on non-

random known parameters to include�pt, �ℎ, andts. In order to view a useful plot, all

other unknown and known factors are held constant while theΔk is stepped from the be-

ginning to the end of the range extents. Following this procedure, Figure6.1 shows the

range separation bound for a specific scenario withΔm = 1 pixel, �ℎ = 3 pixels,�pt = 3

ns,At = 0.5 × 104 photons,Ar = 2 × 105 photons,B (x, y) ∼ N(750, 38) in units of

photons, and range samplingts = 1.876 ns. These values were chosen to represent a

scenario where the 3D FLASH LADAR interrogates adjacent targets with different reflec-

tivities while experiencing significant turbulence in the atmosphere. Furthermore, the bias

definition is consistent with estimation results from experimental data.
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Figure 6.1: This plot shows an example CRB withΔm = 1 pixel, �ℎ = 3 pixels,
�pt = 3 ns, At = 0.5 × 104 photons, andAr = 2 × 105 photons. The
bound behaves appropriately considering the variance goesup as the sepa-
ration becomes smaller corresponding to the notion that close-in targets are
tougher to resolve. The peak of the bound occurs when the range and spa-
tial coupling are at their maximum. Further, when the range separation near
zero, the range coupling is diminished, but the bound doesn’t go to exactly
zero because the spatial coupling is still present.
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The shape of the curve in Figure6.1 reflects the negative effects of the range and

spatial blurring as the targets become closer. Although, the effects of range blurring are

minimized when the targets are at nearly identical ranges and the bound primarily depends

on the spatial blurring. Additionally, the increase in the bound past±2 meters of range

separation is due to the truncation of the pulse at those ranges. An assumption in the bound

derivation is a fully contained pulse within the range extents. The impact is negligible

considering the eventual application of the CRB towards range resolution. Targets with

±2 meters of range separation would be easily resolved. Changes in these values affect

the bound in a predictive manner. For example, increasing�ℎ and�pt doesn’t affect the

general shape of the range separation CRB, but it does increase the bound’s magnitude due

to increased spatial and range blurring hampering range separation estimation.

More specifically, Figure6.2 shows several examples of how the range separation

CRB is affected by changing parameters in the model including target amplitude, blurring

severity, and spatial separation. Each individual figure holds all other parameters constant

and plots the CRB while changing one parameter. For example,Figure6.2(a) changes the

unknown target amplitudeAt while keeping all other parameters constant. Unless otherwise

noted, the standard values for the parameters are :�pt = 3 ns,�m = 1 pixel,�ℎ = 3 pixels,

ts = 1.876 ns,At = 0.5 × 104 photons, andAr = 2 × 105 photons. The next few para-

graphs detail how the changing parameters effect the range separation CRB. The parameter

changes affect only the bound values, but not the general shape of the bound.

Figure6.2(a) -At effects. As the unknown target’s amplitude is increased, the bound

decreases meaning that higher SNR values of the unknown target aids in range separation

estimation efforts. (Inversely proportional to bound)

Figure6.2(b) - Ar effects. Changing the known target’s amplitude has the opposite

effect of At. As theAr amplitude is increased, the bound also increases meaning that

range separation estimation becomes more difficult due to the increased blurring between

the targets. In other words, estimating the range separation becomes very difficult when
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Figure 6.2: Effects on CRB(Δk) when changing several parameters in the model includ-
ing target amplitude, blurring severity, and spatial separation.
(a)At - inversely proportional to bound
(b)Ar - proportional to bound
(c) �ℎ - proportional to bound
(d)Δm - inveresly proportional to bound
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considering a very bright known target next to a much dimmer unknown target and vice

versa. (Proportional to bound)

Figure6.2(c) -�ℎ effects. As the blurring severity increases, the bound alsoincreases

meaning that more blurring (i.e. more coupling between the targets) hinders range separa-

tion estimation performance. (Inversely proportional to bound)

Figure6.2(d) - Δm effects. Finally, as the spatial separation increases, there is a log-

ical corresponding range separation estimation performance improvement due to decrease

in coupling between the targets. (Inversely proportional to bound)

6.2 Range Separation Estimation Results

Using the model governed by Equation (6.3) and the standard parameter values from

the previous section, an unbiased range separation estimator from Section4.4.2is applied

to enable comparisons of the range separation estimator variance to the CRB. Other pixel-

based range estimators are available including peak detection, matched filtering, and nor-

malized cross-correlation. However, in this two-target scenario, these estimators are all

biased because they assume that there’s only one target per pixel. While one may try to

deblur the data, the operation will not be totally successful and some bias will still result.

The estimator used in the subsequent sections is different in that it is defined as having two

targets per pixel thus eliminating the bias.

Prior to comparison, the estimator must first be determined to be unbiased. An es-

timator of an unknown parameter is unbiased if the expected value of the estimator is the

unknown parameter itself (i.e., on average, one expects theestimator to choose the true

value of the parameter to be estimated) [84]. In terms of this simulation, the estimator is

considered to be unbiased if the bias squared contribution to the mean square error (MSE)

is small compared to the range variance contribution. This relationship results from the fact

that MSE equals the range variance plus bias squared. Analytical methods to determine the

bias are available, but graphical nature of the algorithm prohibits such undertakings requir-
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ing the generation of statistics based on many instantiations of the observed data through

simulation.

Therefore, a two point target simulation is constructed reflecting the observation

model defined in Equation (6.3). Shown in Figure6.3, the simulation results include

MSE, bias and range separation variance. As expected, Figure 6.3(c) shows the bias de-

crease as the iterations increase with a small bias left after the last iteration. Referring to

Figures6.3(a), (b), and (c), the range variance dominates the MSE and the two point target

estimator is determined to be unbiased.

With the estimator established as unbiased, the range separation variance is com-

pared to the CRB to observe how each is affected given changesin the range separation.

Figures6.1and6.3(b) show the CRB and range separation variance respectively. Although,

in order to gain more insight and show trends, Figure6.4 compares the CRB and range

variance in the same plot where the similar behavior is now evident. In fact, the estima-

tor range variance is such that it approaches equality with the bound. This equality would

make the estimator efficient [84]. The definition of an efficient estimator relates to the CRB.

CRB theory states that any unbiased estimator must a variance equal to or greater than the

bound. An efficient estimator is an unbiased estimator whosevariance equals that of the

bound. Although this estimator was shown to be unbiased, it is not theoretically guaranteed

to be efficient. In addition, toward the edges of the range separation± 1.5 m, the bound

should theoretically go to zero like the variance does, but it doesn’t because the Gaussian

pulse never goes to zero. This non-zero bound can be ignored since estimation is easily

performed at those range separations and can also be mitigated by using other pulse models

such as a negative parabolic that equals zero until the pulseis received [63].

6.3 Optimal Pulse-width Investigation

Referring to Equation (4.22), �pt controls the pulse-width of the received signal.

Pulse interactions with the target cannot be controlled, but the transmitted pulse-width can

be factored into the design of the LADAR system. Figure4.1(b) shows an example of a

pulse with�pt = 0.88 ns. Following standard RADAR theory, a smaller effective pulse-
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Figure 6.3: These plots show the range separation estimation results of a two point target
data model simulation.
(a) Mean square error (MSE) between the truth data and the estimate.
(b) Range separation estimate variance.
(c) Each curve is a bias calcuation for a differentΔk over many trials. At
each trial, the estimated range is an average of the previousestimated ranges
(i.e. a running average).
(d) Bias results taken from the last trial from (c). Comparing (a), (b), and (c),
it can be seen that estimator is unbiased due to the variance dominating the
MSE.
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Figure 6.4: Taking the results from Figures6.1and 6.3(b), this plot compares the CRB
and the simulated range variance showing agreement both in the Cramer-Rao
inequality and in the curve shapes.

width is desirable due to its ability to resolve targets closer together. However, given the

discrete nature of digital sampling employed by the electronic receivers (denoted byts from

Equation (4.19)), a smaller pulse-width may actually degrade performancedue to aliasing.

Therefore, the CRB is used to predict an optimal pulse-widthusing a range resolution

metric. Subsequently, a simulation is accomplished to validate the CRB results. Due to their

separate and distinct methods, agreement on the optimal pulse-widths between the CRB

and simulation lends confidence to the results. The range-resolution metric is defined by

comparing the square root of the CRB (or range separation variance in simulation) with the

actual range separation,Δk. Referring to Figure6.5, the location where the values equal is

defined as the range-resolution of the system. In other words, if the actual range separation

is within one standard deviation of the range separation estimate, then targets would not be

resolvable due to the estimation uncertainty. This definition implies that, on average, the

estimator would be able to resolve targets separated further while targets closer together

than that value are not resolvable. After searching over many pulse-widths, the pulse-width

that provides the best range resolution (i.e. lowest value)is selected as optimal.
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Figure 6.5: This figure shows an example plot of how the range resolution metric is de-
termined. The circled value is the range resolution and corresponds to the
location where the square root of the CRB is equal to the rangeseparation.
At smaller range separations, the square of the CRB is greater than the sepa-
ration and vice versa.

Table 6.1: Optimal pulse-width results - two point target
Range Sampling(ts) CRB,�pt (ns) Simulation,�pt (ns)

0.6tso (1.126 ns) 0.52 0.52
0.8tso (1.500 ns) 0.70 0.70
tso (1.876 ns) 0.88 0.88

1.2tso (2.251 ns) 1.06 1.04
1.4tso (2.626 ns) 1.22 1.16

6.3.1 Optimal Pulse for Two Point Target. Considering the two point target

scenario, Table6.1 summarizes the optimal pulse-width�pt CRB and simulation results

for several range sampling cases varying from faster (0.6tso) to slower (1.4tso) electronics.

Figure6.6shows the data points for each range sampling case. For a particular ts, changing

the pulse to be either narrower or wider than the optimal results in an increase in the bound

or variance and deterioration in the range resolution. The minimum value of each curve

corresponds to the reported optimal pulse-width.
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Figure 6.6: (a) For differing range sampling cases, the range resolution derived from the
CRB is plotted versus the pulse-width. As the range samplingts becomes
either faster (0.6tso and 0.8tso) or slower (1.2tso and 1.4tso), the optimal
pulse-width respectively becomes narrower or wider with a corresponding
improvement or degradation in the range resolution.
(b) The simulation range resolution determined from the range separation
variance is plotted versus the pulse-width. As expected, the resolution values
are larger than those predicted by CRB theory. Also, the optimal pulse-width
trends in a similar manner as the CRB results.
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Figure 6.7: Utilizing the optimal�pt values from Table6.1, this plot shows the near
exact percentage change of the CRB and simulation optimal pulse-widths
with respect to the percentage change in range sampling.

As can be seen in Figure6.7, the optimal pulse-width scales in a similar manner as

the range sampling. For example, if the range sampling was reduced by 80%, then the

optimal pulse-width also changed by approximately 80% for both the CRB and simulation

results.

6.3.2 Optimal Pulse for Complex Targets. The goal of this section is to show

through simulation that the optimal pulse-width theory holds for more complex, two surface

targets. The CRB theory in Section6.1 was developed for a simple, two point target and

doesn’t directly pertain to these new targets. However, since the bound and the ensuing

simulation both predict an optimal pulse-width for the simple two point target, intuition

dictates that an optimal pulse-width could also be found formore complex targets. Three

additional targets are selected (Section5.2): multi-bar, three-bar, and connected blocks.

The first surface of all these targets is a flat, optically reflective board with shapes cut out.

The second surface is also flat and optically reflective and isplaced behind the first board at

a specific range separation. This second surface has no cut-outs. Depending on the target
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Table 6.2: Optimal pulse-width results - complex targets
Target Simulation,�pt (ns)

Multi-bar 1.1
Three-bar 1.0

Connected blocks 1.0

geometry, blurring strength, and surface reflectivity, a given pixel might contain significant

contributions from either one surface or two surfaces. For conciseness, the multi-bar target

method and results are discussed in-depth while just the results are shown for the other two.

The method to determine the optimal pulse-width is the exactly the same as the pre-

vious section: vary the range separations and accumulate statistics at those separations

and choose the pulse-width that produces the minimum range resolution. Particular to this

scenario, the pixel-based two surface estimator from Section 4.5 is used to generate the

estimates using a threshold of
 = 0.97. This threshold favors the “one surface pixel”

model due to false peaks created by noisy realizations of theincident low-light levels. The

first surface (in range) is fixed and assumed known while the second surface is placed at

successively larger distances from the first surface. At each range separation, only the pix-

els classified as “two surface” are used in order to keep the model as close as possible to

the simple two-point target CRB of Section6.1. The estimation statistics collected include

variance, mean square error, and bias. Due to the complexityof the target and inherent

coupling between adjacent pixels, low light levels (15-30 received photons) where required

to increase the effect of the variance on the observed data.

A simulation is set up where the complex targets are interrogated by a 3D FLASH

LADAR. Results of the simulation are shown in Table6.2 and Figures6.8(b), 6.9(b),

and6.10(b) where the optimal pulse-width standard deviation of 1.0or 1.1 ns show moder-

ate agreement to the CRB results(�pt = 0.88 ns) from the simple, two point target. Again,

there is no claim that the results have to match, but that factthat they are close for several

different targets is encouraging.

From [5], it was shown that the two-surface estimator is unbiased given a simple

scene. However, in order to justifiably compare to the optimal pulse-width predicted by
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Figure 6.8: (a) True target scene.
(b) Optimal pulse results using against a complex target with ts = tso.
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Figure 6.9: (a) True target scene.
(b) This plot shows the optimal pulse results for a three-bartarget withts =
tso.
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Figure 6.10: (a) True target scene.
(b) The optimal pulse is shown for a connected blocks target with ts = tso.

the CRB in Section6.3.3, the estimator must be shown to be unbiased given the complex

scenes where the convolution effects introduce severe biasinto estimates. Thus, the light

levels had to be lowered to levels where the maximum peaks of the observed waveforms are

between 15 and 30 photons. This low light level allows for variance to have a significant

impact on observed photon counts.

Figures6.11(a)-(d) and6.12(a)-(d) show the statistics for different range separations

and pulse-widths respectively for the multi-bar target. The significant factor across the

plots is that there is a relatively low or non-dominating bias in the region of range separa-

tion where the range resolution is selected. This region forbest-performing pulse-widths

from Figure6.8(b) (�pt = 0.9, 1.0, 1.1, and 1.2 ns) shows low bias and therefore variance

dominance in the MSE near the selected range resolutions of 0.8 to 0.9 centimeters (re-

ferring to Figure6.12(a)-(d)). These results indicate that some regions of the search space

(range separation and pulse-width) are more biased than others. The areas that are of most

interest tend to be less biased and, thus, permit a conditional comparison to the CRB results.

Furthermore, the optimal pulse-width results for the three-bar and connect blocks targets

show that their estimation statistics act in a similar manner. With the variance dominating

in the areas of interest, the majority of the error lies within the variance allowing for the use

of the range resolution metric and subsequent comparison tothe CRB results.
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Figure 6.11: Statistics across pulse-widths for various range separations for the multi-bar
target. The statistics include mean square error, bias, andrange variance.
(a) Range separation 1.6 mm.
(b) Range separation 11.6 mm.
(c) Range separation 21.6 mm.
(d) Range separation 31.6 mm.
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Figure 6.12: Statistics across range separations for various pulse-widths for the multi-bar
target. The statistics include mean square error, bias, andrange variance.
(a)�pt = 0.9 ns.
(b) �pt = 1.0 ns.
(c) �pt = 1.1 ns.
(d) �pt = 1.2 ns.
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6.3.3 Optimal Pulse for a Two Point Target using Normalized Pulse Definition .

Another method to investigate the optimal pulse-width is tonormalize the pulse with respect

to the range sampling. Rather than define the width of the pulse by�pt in units of seconds,

the pulse is defined by�n in units of samples given by

p (n) =
1√
2��n

exp

{

− (n)2

2�2
n

}

(6.7)

wheren ∈ [1, N ] is an integer range sample and the standard deviation is

�n =
�pd

cts
=

c�pt

cts
=

�pt

ts
(6.8)

with �pd as the pulse standard deviation in units of meters,c is the speed of light in meters

per seconds,ts is the range sampling in seconds per sample, and�pt is the pulse standard

deviation in units of seconds. The benefit of this definition is the ability to determine an

optimal pulse-width independent of range sampling capability.

Pertaining to the range resolution metric, the optimal pulse standard deviation�n is

found by using the same investigation procedures as the previous section. Figure6.13(a)

shows the optimal pulse shape in terms of a standard deviation measured in samples. Using

Equation (6.8), the optimal standard deviation in seconds�pt can be found for a particular

ts as seen in Figure6.13(b). These values for�pt are consistent with the values from the

previous section.

Considering all the above optimal pulse-width studies, an important observation is

the number of significant samples across the pulse for the optimal pulse-widths from Ta-

bles6.1, Table6.2, and the normalized pulse section. In each case, the number of significant

samples across the optimal pulse is three. Referring to Figure 4.1(b), a significant sample

is defined as a non-zero, sizable contributor (≥ 2% of pulse peak value) to the waveform.

This consistent number of significant samples indicates that more samples (i.e. larger�pt )

than the optimal harms the range resolution capability while fewer samples fails to provide

the estimator with enough data and under-samples the received pulse causing the variance
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Figure 6.13: (a) Using the normalized pulse model, this graph shows the CRB optimal
pulse standard deviation referring to Equation (6.7).
(b) CRB optimal pulse versus range sampling. The optimal pulse width
changes proportionally as the sampling changes.
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to increase. Even for a complex target whose estimation variance is not described by the

CRB theory, the simulated optimal pulse-width still maintains the three significant samples.

6.4 Conclusions

The CRB is used to bound system performance by giving a measure of how well an

unbiased estimator can perform. In this paper, the CRB bounds the performance on the

ability to estimate the range separation of two spatial point targets. Using the point target

estimator, the unbiased estimator variance is shown to be bounded by the CRB with both

trending in a similar manner.

Additionally, the CRB can be used to not only predict performance, but to give a

LADAR engineer the capability to predict critical LADAR performance without regard

to the particulars of estimation. Considering the optimal pulse-width study, all the range

sampling cases produced an optimal pulse-width with a similar number of significant sam-

ples across the pulse. Three significant samples across the pulse provides the best range

resolution while not experiencing the ill-effects of under-sampling.

The overriding conclusion is that a shorter pulse-width in the femtoseconds does

not always provide improved range resolution performance.There is a range resolution

performance link between the electrical circuitry sampling capability and the width of the

transmitted pulse. In conjunction with other performance goals and design limitations, the

LADAR engineer concerned about range resolution should notjust focus on a shorter pulse-

width without making improvements in the receiver’s capability to sample the detected

return pulses.
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VII. Summary

T he contributions of this research increase the body of knowledge and the ultimate per-

formance of three dimensional FLASH LAser Detection And Ranging (3D FLASH

LADAR). By decreasing ranging error, characterizing estimation performance, or optimiz-

ing system parameters, sensor capability has been enhanced. This increase is aided by an

increase in the data model fidelity from previous contributions in the field which have all but

ignored the spatial blurring effect of the image formation process. By incorporating these

blurring effects, new problems and opportunities to exploit the data were formed. Solutions

were subsequently found that took advantage of the “extra” information available.

Given 3D FLASH LADAR’s future in imaging, computer vision, guidance, naviga-

tion, and targeting, this work builds a basis of understanding concerning data models and

data processing. The research has unique attributes that are rare considering other other sig-

nal processing research. The 3D FLASH LADAR is a powerful sensor combining RADAR

principles, laser transmission, waveform processing, andelectro-optical phenomena and

requires equally powerful algorithms to estimate and characterize parameters of interest.

The focus of this research centers around a particular parameter: target range. Although,

other areas of research may be possible given that it is shownthat a particular data model

appropriately characterizes data from a 3D FLASH LADAR sensor.

This chapter summarizes the previous chapters in the document, reviews the signifi-

cant research contributions, and outlines several avenuesfor future research.

7.1 Chapter Summary

ChapterII provided background theory related to imaging, coherence,deconvolu-

tion, maximum likelihood principles, and generalized expectation maximization. It also

presented the data model used prevalently in this dissertation. Finally, previous research

was summarized in the areas of 3D LADAR hardware and data processing, blind deconvo-

lution, performance bounding, and parameter optimization.

ChapterIII detailed the 3D FLASH LADAR hardware and laboratory settings used in

experimental collects. This chapter also describes the procedures used to condition the data
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for appropriate use for the selected mathematical model. Finally, it explains how the ex-

perimental point-spread-function is determined as well asthe speckle parameter estimation

which increases confidence with the chosen incoherent lightmodel.

ChapterIV contained the pertinent range estimation algorithms to include peak de-

tection, maximum likelihood, normalized cross-correlation (matched filtering), a two point

target range and spatial separation estimator, and a two surface range separation estima-

tor. The normalized cross-correlation is usually the method of choice due to its ability to

perform intersample ranging and handle truncated waveforms. Although, it may encounter

some bias depending on spatial blurring severity and/or theeffectiveness of deblurring (de-

convolution) algorithms.

ChapterV implemented object deconvolution and blind deconvolutionon blurry,

noisy data observations using simulation and experimentaldata showing that object re-

coveryimprovesrange estimation.

ChapterVI derived the CRB for range and spatial separation as well as amplitude

estimation considering a two-point target scene. Considering several range sampling cases,

the range separation CRB and estimator also predicted an optimal pulse-width that pro-

vides the best range resolution. Additionally, an optimal pulse-width is found using more

complex targets and for a normalized pulse-definition.

7.2 Summary of Contributions

7.2.1 Improving Range Estimation by Spatial Processing.The benefits of spatial

processing are evident when comparing range estimation before and after the object recov-

ery algorithms. Simulation shows substantial increase in the image quality and decrease

in the range estimation errors. The experimental data showsimprovement, but not as dra-

matic due primarily to the excess speckle noise evident in the data. A favorable result is that

the blind deconvolution methods outperformed deconvolution even when the deconvolution

was given the exact form of the blurring function. The ability to process three-dimensional

data in two dimensions and range in the third dimension was the innovative vision. This
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contribution proves that this vision can be theoretically proven and demonstrated through

simulation and experimentation.

7.2.2 Unbiased Two Point Target Temporal and Spatial Estimator. Using a two-

point target scene, an unbiased spatial-temporal estimator is derived that is able to accu-

rately estimate spatial and range separations and receivedamplitudes. Through simulation,

its range separation estimator variance compares favorably to that predicted by the CRB.

This estimator can even handle truncated waveforms which isnot predicted or suitable han-

dled by the bound. Without this unbiased estimator, the CRB results would have nothing

to compare to and there would be less confidence its conclusions. The agreement between

the CRB and simulation variance is exceptionally significant and vital since they arrive at

virtually the same answer by different methods.

7.2.3 Lower Bound on Range Separation Estimation.Through the use of a two-

point target scene, the CRB on range separation estimation is derived. The CRB on spatial

separation and amplitude estimation is derived as well. Pertaining to range separation, the

CRB shows that range separation does not severely affect estimation performance until the

targets are close. When the range separation is identicallyzero, the bound does not go to

zero due to the spatial blurring still present in the data (targets are still spatially separated).

Additionally, the shape of the bound is remains constant independent of several parameters

including spatial blurring strength, signal-to-noise ratio (SNR) of the reflectors, and spatial

separation. The dependence between the bound and the parameters is the absolute level of

the CRB. As the blurring strength increases, the bound also increases and vice versa. When

the SNR of the unknown target reflector is either increased ordecreased, the bound acts

oppositely and decreases or increases respectively. Theseresults should be intuitive where

increased blurring would make estimation more difficult (i.e. variance would increase) and

an increase in the unknown target SNR would enhance the estimation abilities (i.e. variance

would decrease).
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7.2.4 Optimal Pulse-Width based on Range Resolution.With this contribution,

it is shown that the CRB can perform system parameter optimization with respect to a very

important system characteristic and requirement – range resolution. Independent of estima-

tor choice, the bound shows that an optimal pulse-width exists whereby the expected range

resolution is minimized. After developing an unbiased estimator for the target scene, the

optimal pulse-widths predicted by the CRB are verified through simulation. The agreement

between CRB and simulation is very significant given that they arrive at range separation

variance either through Fisher information theory or through repeated trials using a simu-

lation.

Furthermore, the range sampling interval is both increased(slower electronics) and

decreased (faster electronics) which shows the resultant optimal pulse-shape becoming

wider and narrower respectively. In other words, faster electronics that sample the range di-

mension faster can incorporate a narrower pulse-width and achieve better range resolution.

To lend confidence to the results, optimal pulse-widths are also found for more complex

targets. Also, in terms of samples, an optimal pulse-width using the CRB is found using a

normalized pulse model. This definition means that the results are independent of the range

sampling interval. Finally, and perhaps most enlightening, all the optimal pulse-width re-

sults reflect that the received pulse needs to have three significant samples in the received

data. Fewer significant samples caused by a narrower transmitted pulse or target interac-

tions does not provide enough information to match the modelpulse-shape and could even

be entirely missed by the electronics. Following, while providing enough information,

more significant samples would certainly be less optimal by degrading range resolution

performance.

7.3 Future Research

There are numerous additional research avenues available with respect to 3D FLASH

LADAR and data processing including the following:
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7.3.1 Outlier Detection. To overcome speckle produced by coherent lasers and

increase signal-to-noise ratio (SNR) because of low returnsignal levels due to low trans-

mit energy, propagation distances, or target reflectance, 3D LADAR systems may need to

average many cubes of scene data. In practice, certain cubesmay be warped due to mis-

registration or atmospheric effects. Also, a particular pixel may be defective for a small

amount of time resulting in an out-of-family pixel that is “warped” in a cube of data. If

the warping is severe enough, the averaging process may be negatively affected by these

particular cubes or pixels. It would be advantageous to system performance (i.e. object

recovery, range estimation) to develop a means to intelligently remove these frames before

the averaging process.

7.3.2 FOliage PENetration (FOPEN) Capability Investigation. A key military

mission for any imaging or ranging sensor is the ability to recognize man-made targets un-

der foliage that can either be man-made itself (camouflage) or natural (trees). Successful,

experimental efforts have already been accomplished trying to ascertain the 3D FLASH

LADAR’s FOPEN capability. However, a rigorous theoreticalmodel has not been adopted

yet. This model and subsequent simulation and experimentalinvestigation would numeri-

cally characterize FOPEN potential in a myriad of environments including different cam-

ouflage configurations, look angles, weather conditions (e.g. wind velocity), and targets.

7.3.3 Pixel Impulse Response Deconvolution.As with any high-performance

military hardware, characterization under environmentaloperational conditions is a manda-

tory exercise. The operator must know the limits where one would expect nominal perfor-

mance. As part of the hardware characterization efforts, the pixel impulse response impact

on the reflected pulse is important when developing accuratepulse models. The pixel’s im-

pulse response is not ideal and does have some distortion effect on the returned waveforms.

Using simulated and experimental data, the research effortwould calculate the distortion

severity and dependence on system parameters.
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7.3.4 Object blind deconvolution using partially coherentlight model. Described

by the Poisson distribution, the incoherent light model used in this research is an approxi-

mation for the partially coherent model which is the most accurate portrayal of the detected

laser light. Detected partially coherent light is statistically described by the negative bino-

mial (NB) distribution. Blind deconvolution methods usingthe NB distribution are cum-

bersome and nearly intractable unless the point-spread-function can be parameterized. If an

object estimation method can be found to use the GeneralizedExpectation Maximization

(GEM) algorithm with the NB distribution, the resulting estimator would theoretically out-

perform the object estimator in this research due to the increase in noise model accuracy.

The key issue in the derivation comes when taking the conditional expectation of the log of

the complete data with respect to the incomplete data and theold estimates. A vital prop-

erty of the Poisson distribution is that a sum of Poisson random variables is still Poisson.

The same cannot be said for a sum of NB random variables. Consequently, a variation of

the GEM or data model is necessary to complete the derivation.

140



Bibliography

1. Armstrong, Ernest and Richard Richmond. “The Application of Inverse Filters to 3D

Microscanning of LADAR Imagery”.IEEE Aerospace Conference. 2006.

2. Ayers, G.R. and J.C. Dainty. “Iterative blind deconvolution method and its applica-

tions”. Journal of the Optical Society of America, 13(7), 1988.

3. Biggs, David and Mark Andrews. “Asymmetric iterative blind deconvolution of mul-

tiframe images”.SPIE Conference on Advanced Signal Processing Algorithms,Archi-

tectures, and Implementations VIII, volume 3461, 328–338. 1998.

4. Buller, G.S. and A.M. Wallace. “Ranging and Three-Dimensional Imaging Using

Time-correlated Single-Photon Counting and Point-by-Point Acquisition”. IEEE Jour-

nal of Selected Topics in Quantum Electronics, 13(4), 2007.

5. Burris, Charles R.An Estimation Theory Approach to Detection and Ranging of Ob-

scured Targets in 3-D LADAR Data. Master’s thesis, Air Force Institute of Technology,

2006. http://handle.dtic.mil/100.2/ADA449928.

6. Busck, Jens and Henning Heiselberg. “High accuracy 3-D laser radar”.Proc. of SPIE,

5412:257–263, 2004.

7. Cain, Stephen C. “Deconvolution of laser pulse profiles from 3D LADAR temporal

returns”.Proc. of SPIE, 5558, 2004.

8. Cain, Stephen C. “EENG 680: Image Processing”. Course notes, Air Force Institute

of Technology 2004.

9. Cain, Stephen C., Richard Richmond, and Ernest Armstrong. “Flash light detection

and ranging accuracy limits for returns from single opaque surfaces via Cramer-Rao

bounds”.Applied Optics, 45(24):6154–6162, August 2006.

10. Cannata, Richard, William Clifton, Steven Blask, and Richard M. Marinob. “Obscu-

ration Measurements of Tree Canopy Structure Using a 3D Imaging Ladar System”.

Proc. of SPIE, 5412, 2004.

141



11. Canny, J. “A computational approach to edge detection”.IEEE Trans. Pattern Anal.

Mach. Intell., 8(6):679–698, 1986.

12. Cho, Peter, Hyrum Anderson, Robert Hatch, and Prem Ramaswami. “Real-Time 3D

Ladar Imaging”.Proc. of SPIE, 6325, 2006.

13. Cooley, James W. and John W. Tukey. “An Algorithm for the Machine Calculation of

Complex Fourier Series”.Math. Comput., 19:297–301, 1965.

14. Craig, R., I. Gravseth, R. P. Earhart, J. Bladt, S. Barnhill, L. Ruppert, and C. Centa-

more. “Processing 3D Flash LADAR Point-Clouds in Real-timefor Flight Applica-

tions”. Proc. of SPIE, 6555, 2007.

15. Dabov, K., A. Foi, V. Katkovni, and K. Egiazarian. “Imagerestoration by sparse 3D

transform-domain collaborative filtering”.Proc. of SPIE, 6812, 2008.

16. Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. “Maximum likelihood from

incomplete data via the EM algorithm”.Statistical Society, 1977.

17. Dion, Bruno and Nick Bertone. “An overview of avalanche photodiodes and pulsed

lasers as they are used in 3D laser radar type applications”.Proc. of SPIE, 5435:187–

195, 2004.

18. Dolne, J.J., D. Gerwe, , and M. Johnson. “Performance of Three Reconstruction Meth-

ods on Blurred and Noisy Images of Extended Scenes”.Proc. of SPIE, 3815, 1999.

19. Dries, J. Christopher, Brian Miles, and Roger Stettner.“A 32 x 32 Pixel FLASH Laser

Radar System Incorporating InGaAs PIN and APD Detectors”.Proc. of SPIE, 5412.

20. Eriksson, Jonny and Mats Viberg. “On Cramer Rao Bounds and Optimal Beamspace

Transformation in Radar Array Processing”.Phased Array Systems and Technology,

1996., IEEE International Symposium on, 301 –306. 1996.

21. Fish, D.A., A.M. Brinicombe, and E.R. Pike. “Blind deconvolution by means of the

Richardson-Lucy algorithm”.Optical Society of America, 12, No.1, 1995.

142



22. Gelbart, Asher, Chris Weber, Shannon Bybee-Driscoll, Jonathan Freeman, Gregory J.

Fetzer, Tom Seales, Karen A. McCarley, and Jim Wright. “FLASH lidar data collec-

tions in terrestrial and ocean environments”.Proc. of SPIE, 5086:27–38, 2003.

23. Gerchberg, R.W. and W.O. Saxton. “A Practical Algorithmfor the Determination of

Phase from Image and Diffraction Plane Pictures”.Optik, 35(2), 1971.

24. Goodman, Joseph W.Statistical Optics. McGraw-Hill, Inc., New York, NY, 1985.

25. Goodman, Joseph W.Introduction to Fourier Optics. Roberts & Company, Englewood,

Colorado, 2005.

26. Greer, D.R., R. Fung, and J.H. Shapiro. “Maximum-Likelihood Multiresolution Laser

Radar Range Imaging”.IEEE Transactions on Image Processing, 6(1), 1997.

27. de Haag, Maarten Uijt, Don Venable, and Mark Smearcheck.“Use of 3D laser radar for

navigation of unmanned aerial and ground vehicles in urban and indoor environments”.

Proc. of SPIE, 6550, 2007.

28. Hagen, Nathan, Matthew Kupinski, and Eustace L. Dereniak. “Gaussian profile esti-

mation in one dimension”.Applied Optics, 46(22):5374–5383, 2007.

29. Halmos, Maurice J. “Eyesafe 3-D FLASH LADAR for targets under obscuration”.

Proc. of SPIE, 5086:70–83, 2003.

30. Hecht, Eugene.Optics. Addison Wesley, New York, 4th edition, 2002.

31. Heinrichs, Richard, Brian Aull, Richard Marino, DanielFouche, and Alexander McIn-

tosh. “Three-Dimensional Laser Radar with APD Arrays.”Proc. of SPIE, 4377.

32. Hernandex-Marin, Sergio, Andrew Wallace, and Gavin Gibson. “Bayesian Analysis

of Lidar Signals with Multiple Returns.”IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2007.

33. Hernandex-Marin, Sergio, Andrew Wallace, and Gavin Gibson. “Multilayered 3D

LiDAR Image Construction using Spatial Models in a BayesianFramework.” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2008.

143



34. Holmes, T.J. “Blind deconvolution of quantum-limited incoherent imagery: maximum-

likelihood approach”.Journal of the Optical Society of America, 9(7), 1992.

35. Hong, Seung-Hyun and Bahram Javidi. “Three-dimensional optimum filter for de-

tecting distorted LADAR image in disjoint background noise”. Proc. of SPIE, 5243,

2003.

36. Hong, SeungHyun and Bahram Javidi. “Three-dimensionaloptimum nonlinear filter

for detecting distorted target location and distance”.Proc. of SPIE, 4864, 2002.

37. Jain, Anil K. Fundamentals of Digital Image Processing. Prentice Hall, New Jersey,

1989.

38. Johnson, Steven.Range precision of LADAR Systems. Ph.D. thesis, Air Force Institute

of Technology, 2008. http://handle.dtic.mil/100.2/ADA488211.

39. Johnson, Steven and Stephen C. Cain. “Bound on range precision for shot-noise limited

ladar systems”.Applied Optics, 47(28):5147–5154, October 2008.

40. Jr., Robert D. Habbit, Robert O. Nellums, Aaron D. Niese,and Jose L. Rodriguez. “Uti-

lization of Flash LADAR for Cooperative & Uncooperative Rendezvous and Capture”.

Proc. of SPIE, 5088:146–157, 2003.

41. Khoury, J., C. L. Woods, J. Lorenzo, J. Kierstead, D. Pyburn, and S. K. Sengupta.

“Resolution Limits in Imaging LADAR Systems”.Proc. of SPIE, 5437, 2004.

42. Kundur, Deepa and Dimitrio Hatzinakos. “Blind Image Deconvolution”. IEEE Signal

Processing Magazine, May 1996.

43. Kundur, Deepa and Dimitrio Hatzinakos. “Blind Image Deconvolution Revisited”.

IEEE Signal Processing Magazine, November 1996.

44. van der Laan, D. J., Marnix C. Maas, Dennis R. Schaart, Peter Bruyndonckx, Sophie

Leonard, and Carel W. E. van Eijk. “Using CramerRao Theory Combined With Monte

Carlo Simulations for the Optimization of Monolithic Scintillator PET Detectors”.Nu-

clear Science, IEEE Transactions, 53(3):1063–1070, 2006.

144



45. Lamoreux, James, James Siekierski, and J.P. Nick Carter. “Space Shuttle Thermal

Protection System Inspection by 3D Imaging Laser Radar.”Proc. of SPIE, 5412.

46. Lane, R.G. “Blind Deconvolution of Speckle Images”.Optical Society of America,

1992.

47. Leung, W-Y.V. and R.G. Lane. “Blind deconvolution of images blurred by atmospheric

speckle”.Proc. of SPIE, 4123, 2000.

48. Li, Jian, Luzhou Xu, Petre Stoica, Keith Forsythe, and Daniel Bliss. “Range Com-

pression and Waveform Optimization for MIMO Radar: A Cramer-Rao Bound Based

Study”. Signal Processing, IEEE Transactions on, 56(1):218 –232, 2008. ISSN 1053-

587X.

49. Linnehan, Robert, David Brady, John Schindler, Leonid Perlovsky, and Muralidhar

Rangaswamy. “On the Design of SAR Apertures using the Cramer-Rao Bound”.

Aerospace and Electronic Systems, IEEE Transactions on, 43(1):334–355, 2007.

50. Lucy, L.B. “An iterative technique for the rectificationof observed distributions”.The

Astronomical Journal, 1974.

51. MacDonald, Adam and Stephen Cain. “Derivation and Application of an Anisoplanatic

Optical Transfer Function for Blind Deconvolution of LaserRadar Imagery”.Proc. of

SPIE, 5896, 2005.

52. MacDonald, Adam, Stephen C. Cain, and Ernest Armstrong.“Maximum a posteriori

image and seeing condition estimation from partially coherent two-dimensional light

detection and ranging images”.Optical Engineering, 2006.

53. Mahalanobis, Abhijit and Alan J Van Nevel. “Performanceof Multi-Dimensional Al-

gorithms for Target Detection in LADAR Imagery”.Proc. of SPIE, 4789, 2002.

54. McLachlan, Geoffrey J. and Thriyambakam Krishnan.The EM Algorithm and Exten-

sions. John Wiley & Sons, Inc., New Jersey, 2nd edition, 2008.

55. McMahon, Jason R., Stephen C. Cain, and Richard K. Martin. “Improving 3-D

LADAR range estimation via spatial filtering”.IEEE Aerospace Conference. 2009.

145



56. McMahon, Jason R., Richard K. Martin, and Stephen C. Cain. “3D FLASH LADAR

Range Estimation via Blind Deconvolution”.Journal of Applied Remote Sensing,

4:043517, 2010. URLhttp://link.aip.org/link/?JRS/4/043517/1.

57. Moseley, General T. Michael. “The Nations Guardians Americas 21st Century Air

Force”. CSAF White Paper, 2007.

58. Murray, James T., Steve E. Moran, Nick Roddier, Rick Vercillo, Robert Bridges, and

William Austin. “Advanced 3D polarimetric flash ladar imaging through foliage”.

Proc. of SPIE, 5086, 2003.

59. Oppenheim, Allen V., Ronald W. Shafer, and Thomas G. Stockham. “Nonlinear Filter-

ing of Multiplied and Convolved Signals”.Proceedings of the IEEE, 56:1264–1291.

60. Papoulis, A. and S.U. Pillai.Probability, Random Variables and Stochastic Processes.

McGraw-Hill, New York, 2002.

61. R. P. Millane, P. J. Bones and H. Jiang. “Blind Deconvolution for Multidimensional

Images”.IEEE, 1994.

62. Richardson, W.H. “Bayesian-Based Iterative Method of Image Restoration”.Journal

of the Optical Society of America, 62(1), 1972.

63. Richmond, Richard and Stephen Cain.Direct-Detection LADAR Systems. SPIE Publi-

cations, Washington, USA, 2010.

64. Richmond, Richard, Roger Stettner, and Howard Bailey. “Laser radar focal plane array

for three-dimensional imaging”.Proc. of SPIE, 2748, 1996.

65. Richmond, Richard, Roger Stettner, and Howard Bailey. “Laser radar focal plane array

for three-dimensional imaging (Update)”.Proc. of SPIE, 3065, 1997.

66. Richmond, Richard, Roger Stettner, and Howard Bailey. “Laser radar focal plane array

for three-dimensional imaging (Update)”.Proc. of SPIE, 3380, 1998.

67. Roggemann, Michael C. and Byron Welsh.Imaging Through Turbulence. CRC Press,

New York, 1996.

146

http://link.aip.org/link/?JRS/4/043517/1


68. Rosenbush, Gavin, Tsai Hong, and Roger D. Eastman. “Super-Resolution Enhance-

ment of Flash LADAR Range Data”.Proc. of SPIE, 6736, 2007.

69. Rye, Barry J. and R. Michale Hardesty. “Discrete Spectral Peak Estimation in Inco-

herent Backscatter Heterodyne Lidar. I: Spectral Accumulation and the Cramer-Rao

Lower Bound”.Geoscience and Remote Sensing, IEEE Transactions on, 31(1):16–27,

1993.

70. Schroeder, Daniel J.Astronomical optics. Academic Press, 2nd edition, 2000.

71. Schulz, Timothy J. “Multiframe blind deconvolution of astronomical images”.Optical

Society of America, 10, No. 5, 1993.

72. S̈oderman, Ulf, Simon Ahlberg, Magnus Elmqvist, and̊Asa Persson. “Three-

dimensional environment models from airborne laser radar data”. Proc. of SPIE, 5412,

2004.

73. Seal, Michael D.Nonlinear Time-Variant Response in an Avalanche Photodiode Array

based Laser Detection and Ranging System. Master’s thesis, Air Force Institute of

Technology, 2007. Http://handle.dtic.mil/100.2/ADA469310.

74. Shepherd, O., A.J. LePage, G. Wyntjes, and T.F. Zehnpfennig. “Counter sniper 3-D

laser radar”.SPIE Sensor Law Enforcement Conference, 3577.

75. Shepp, L.A. and Y. Vardi. “Maximum-likelihood reconstruction for emission tomog-

raphy”. IEEE Transactions on Medical Imaging, MI-1(2):113–122, 1982.

76. Skolnik, Merrill I. Introduction to RADAR Systems. McGraw-Hill, New York, 3rd

edition, 2002.

77. Stann, Barry, Mark Giza Brian C. Redman, William Lawler,and John Dammann.

“Chirped amplitude modulation ladar for range and Doppler measurements and 3-D

imaging”. Proc. of SPIE, 6550, 2007.

78. Steinvall, Ove, Lena Kiasen, Christina Grnwall, Ulf Söderman, Simon Ahlberg, Asa
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