3 research outputs found

    Selection Combiner in Time-Varying Amplify Forward Cooperative Communication

    Get PDF
    This research presents the diversity combining schemes for Multiple Symbol Double Differential Sphere Detection (MSDDSD) in a time-varying amplify-and-forward wireless cooperative communication network. Four diversity combiners, including direct combiner, Maximal Ratio Combiner (MRC), semi MRC and Selection Combiner (SC) are demonstrated and explained in details. A comprehensive error probability and outage probability performance analysis are carried through the flat fading Rayleigh environment for semi MRC and SC. Specifically, error performance analysis is obtained using the PDF for SC detectors. Finally, power allocation expression based on error performance minimization approach is presented for the proposed SC performance optimization. It is observed that the performance analysis matches well with the simulation results. Furthermore, the proposed SC scheme offers better performance among the conventional MRC and direct combiner schemes in the presence of frequency offsets

    Differential Modulation and Non-Coherent Detection in Wireless Relay Networks

    Get PDF
    The technique of cooperative communications is finding its way in the next generations of many wireless communication applications. Due to the distributed nature of cooperative networks, acquiring fading channels information for coherent detection is more challenging than in the traditional point-to-point communications. To bypass the requirement of channel information, differential modulation together with non-coherent detection can be deployed. This thesis is concerned with various issues related to differential modulation and non-coherent detection in cooperative networks. Specifically, the thesis examines the behaviour and robustness of non-coherent detection in mobile environments (i.e., time-varying channels). The amount of channel variation is related to the normalized Doppler shift which is a function of user's mobility. The Doppler shift is used to distinguish between slow time-varying (slow-fading) and rapid time-varying (fast-fading) channels. The performance of several important relay topologies, including single-branch and multi-branch dual-hop relaying with/without a direct link that employ amplify-and-forward relaying and two-symbol non-coherent detection, is analyzed. For this purpose, a time-series model is developed for characterizing the time-varying nature of the cascaded channel encountered in amplify-and-forward relaying.Comment: PhD Dissertatio
    corecore