565 research outputs found

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic

    Belief-Propagation for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs with Integer Solutions

    Full text link
    We consider the general problem of finding the minimum weight \bm-matching on arbitrary graphs. We prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions, then the belief propagation (BP) algorithm converges to the correct solution. We also show that when the LP relaxation has a fractional solution then the BP algorithm can be used to solve the LP relaxation. Our proof is based on the notion of graph covers and extends the analysis of (Bayati-Shah-Sharma 2005 and Huang-Jebara 2007}. These results are notable in the following regards: (1) It is one of a very small number of proofs showing correctness of BP without any constraint on the graph structure. (2) Variants of the proof work for both synchronous and asynchronous BP; it is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial optimization problem.Comment: 28 pages, 2 figures. Submitted to SIAM journal on Discrete Mathematics on March 19, 2009; accepted for publication (in revised form) August 30, 2010; published electronically July 1, 201

    The densest subgraph problem in sparse random graphs

    Get PDF
    We determine the asymptotic behavior of the maximum subgraph density of large random graphs with a prescribed degree sequence. The result applies in particular to the Erd\H{o}s-R\'{e}nyi model, where it settles a conjecture of Hajek [IEEE Trans. Inform. Theory 36 (1990) 1398-1414]. Our proof consists in extending the notion of balanced loads from finite graphs to their local weak limits, using unimodularity. This is a new illustration of the objective method described by Aldous and Steele [In Probability on Discrete Structures (2004) 1-72 Springer].Comment: Published at http://dx.doi.org/10.1214/14-AAP1091 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore