4,630 research outputs found

    Notes on complexity of packing coloring

    Get PDF
    A packing kk-coloring for some integer kk of a graph G=(V,E)G=(V,E) is a mapping φ:V→{1,…,k}\varphi:V\to\{1,\ldots,k\} such that any two vertices u,vu, v of color φ(u)=φ(v)\varphi(u)=\varphi(v) are in distance at least φ(u)+1\varphi(u)+1. This concept is motivated by frequency assignment problems. The \emph{packing chromatic number} of GG is the smallest kk such that there exists a packing kk-coloring of GG. Fiala and Golovach showed that determining the packing chromatic number for chordal graphs is \NP-complete for diameter exactly 5. While the problem is easy to solve for diameter 2, we show \NP-completeness for any diameter at least 3. Our reduction also shows that the packing chromatic number is hard to approximate within n1/2−εn^{{1/2}-\varepsilon} for any ε>0\varepsilon > 0. In addition, we design an \FPT algorithm for interval graphs of bounded diameter. This leads us to exploring the problem of finding a partial coloring that maximizes the number of colored vertices.Comment: 9 pages, 2 figure

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either ⌊n/k⌋\left\lfloor n/k \right\rfloor or ⌈n/k⌉\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles

    Full text link
    Given a simple graph G=(V,E)G=(V,E), a subset of EE is called a triangle cover if it intersects each triangle of GG. Let νt(G)\nu_t(G) and τt(G)\tau_t(G) denote the maximum number of pairwise edge-disjoint triangles in GG and the minimum cardinality of a triangle cover of GG, respectively. Tuza conjectured in 1981 that τt(G)/νt(G)≤2\tau_t(G)/\nu_t(G)\le2 holds for every graph GG. In this paper, using a hypergraph approach, we design polynomial-time combinatorial algorithms for finding small triangle covers. These algorithms imply new sufficient conditions for Tuza's conjecture on covering and packing triangles. More precisely, suppose that the set TG\mathscr T_G of triangles covers all edges in GG. We show that a triangle cover of GG with cardinality at most 2νt(G)2\nu_t(G) can be found in polynomial time if one of the following conditions is satisfied: (i) νt(G)/∣TG∣≥13\nu_t(G)/|\mathscr T_G|\ge\frac13, (ii) νt(G)/∣E∣≥14\nu_t(G)/|E|\ge\frac14, (iii) ∣E∣/∣TG∣≥2|E|/|\mathscr T_G|\ge2. Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs, Combinatorial algorithm

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Convex Independence in Permutation Graphs

    Full text link
    A set C of vertices of a graph is P_3-convex if every vertex outside C has at most one neighbor in C. The convex hull \sigma(A) of a set A is the smallest P_3-convex set that contains A. A set M is convexly independent if for every vertex x \in M, x \notin \sigma(M-x). We show that the maximal number of vertices that a convexly independent set in a permutation graph can have, can be computed in polynomial time

    Bidimensionality and EPTAS

    Full text link
    Bidimensionality theory is a powerful framework for the development of metaalgorithmic techniques. It was introduced by Demaine et al. as a tool to obtain sub-exponential time parameterized algorithms for problems on H-minor free graphs. Demaine and Hajiaghayi extended the theory to obtain PTASs for bidimensional problems, and subsequently improved these results to EPTASs. Fomin et. al related the theory to the existence of linear kernels for parameterized problems. In this paper we revisit bidimensionality theory from the perspective of approximation algorithms and redesign the framework for obtaining EPTASs to be more powerful, easier to apply and easier to understand. Two of the most widely used approaches to obtain PTASs on planar graphs are the Lipton-Tarjan separator based approach, and Baker's approach. Demaine and Hajiaghayi strengthened both approaches using bidimensionality and obtained EPTASs for a multitude of problems. We unify the two strenghtened approaches to combine the best of both worlds. At the heart of our framework is a decomposition lemma which states that for "most" bidimensional problems, there is a polynomial time algorithm which given an H-minor-free graph G as input and an e > 0 outputs a vertex set X of size e * OPT such that the treewidth of G n X is f(e). Here, OPT is the objective function value of the problem in question and f is a function depending only on e. This allows us to obtain EPTASs on (apex)-minor-free graphs for all problems covered by the previous framework, as well as for a wide range of packing problems, partial covering problems and problems that are neither closed under taking minors, nor contractions. To the best of our knowledge for many of these problems including cycle packing, vertex-h-packing, maximum leaf spanning tree, and partial r-dominating set no EPTASs on planar graphs were previously known

    The cavity approach for Steiner trees packing problems

    Full text link
    The Belief Propagation approximation, or cavity method, has been recently applied to several combinatorial optimization problems in its zero-temperature implementation, the max-sum algorithm. In particular, recent developments to solve the edge-disjoint paths problem and the prize-collecting Steiner tree problem on graphs have shown remarkable results for several classes of graphs and for benchmark instances. Here we propose a generalization of these techniques for two variants of the Steiner trees packing problem where multiple "interacting" trees have to be sought within a given graph. Depending on the interaction among trees we distinguish the vertex-disjoint Steiner trees problem, where trees cannot share nodes, from the edge-disjoint Steiner trees problem, where edges cannot be shared by trees but nodes can be members of multiple trees. Several practical problems of huge interest in network design can be mapped into these two variants, for instance, the physical design of Very Large Scale Integration (VLSI) chips. The formalism described here relies on two components edge-variables that allows us to formulate a massage-passing algorithm for the V-DStP and two algorithms for the E-DStP differing in the scaling of the computational time with respect to some relevant parameters. We will show that one of the two formalisms used for the edge-disjoint variant allow us to map the max-sum update equations into a weighted maximum matching problem over proper bipartite graphs. We developed a heuristic procedure based on the max-sum equations that shows excellent performance in synthetic networks (in particular outperforming standard multi-step greedy procedures by large margins) and on large benchmark instances of VLSI for which the optimal solution is known, on which the algorithm found the optimum in two cases and the gap to optimality was never larger than 4 %
    • …
    corecore