47 research outputs found

    Matching Image Sets via Adaptive Multi Convex Hull

    Get PDF
    Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    VOICE ACTIVITY DETECTION USING A SLIDING-WINDOW, MAXIMUM MARGIN CLUSTERING APPROACH

    Get PDF
    ABSTRACT Recently, an unsupervised, data clustering algorithm based on maximum margin, i.e. support vector machine (SVM) was reported. The maximum margin clustering (MMC) algorithm was later applied to the problem of voice activity detection, however, the application did not allow for real-time detection which is important in speech processing applications. In this paper, we propose a voice activity detector (VAD) based on a sliding window, MMC algorithm which allows for real-time detection. Our system requires a separate initialization stage which imposes an initial detection delay, however, once initialized the system can operate in real-time. Using TIMIT speech under several NOISEX-92 noise backgrounds at various SNRs, we show that our average speech and non-speech hit rates are better than state-of-the-art VADs

    Hierarchical Metric Learning for Optical Remote Sensing Scene Categorization

    Full text link
    We address the problem of scene classification from optical remote sensing (RS) images based on the paradigm of hierarchical metric learning. Ideally, supervised metric learning strategies learn a projection from a set of training data points so as to minimize intra-class variance while maximizing inter-class separability to the class label space. However, standard metric learning techniques do not incorporate the class interaction information in learning the transformation matrix, which is often considered to be a bottleneck while dealing with fine-grained visual categories. As a remedy, we propose to organize the classes in a hierarchical fashion by exploring their visual similarities and subsequently learn separate distance metric transformations for the classes present at the non-leaf nodes of the tree. We employ an iterative max-margin clustering strategy to obtain the hierarchical organization of the classes. Experiment results obtained on the large-scale NWPU-RESISC45 and the popular UC-Merced datasets demonstrate the efficacy of the proposed hierarchical metric learning based RS scene recognition strategy in comparison to the standard approaches.Comment: Undergoing revision in GRS

    Label Propagation for Learning with Label Proportions

    Get PDF
    Learning with Label Proportions (LLP) is the problem of recovering the underlying true labels given a dataset when the data is presented in the form of bags. This paradigm is particularly suitable in contexts where providing individual labels is expensive and label aggregates are more easily obtained. In the healthcare domain, it is a burden for a patient to keep a detailed diary of their daily routines, but often they will be amenable to provide higher level summaries of daily behavior. We present a novel and efficient graph-based algorithm that encourages local smoothness and exploits the global structure of the data, while preserving the `mass' of each bag.Comment: Accepted to MLSP 201

    Unsupervised Maximum Margin Feature Selection with manifold regularization

    Get PDF

    Information‐Theoretic Clustering and Algorithms

    Get PDF
    Clustering is the task of partitioning objects into clusters on the basis of certain criteria so that objects in the same cluster are similar. Many clustering methods have been proposed in a number of decades. Since clustering results depend on criteria and algorithms, appropriate selection of them is an essential problem. Recently, large sets of users’ behavior logs and text documents are common. These are often presented as high‐dimensional and sparse vectors. This chapter introduces information‐theoretic clustering (ITC), which is appropriate and useful to analyze such a high‐dimensional data, from both theoretical and experimental side. Theoretically, the criterion, generative models, and novel algorithms are shown. Experimentally, it shows the effectiveness and usefulness of ITC for text analysis as an important example
    corecore