327 research outputs found

    Polyhedral characteristics of balanced and unbalanced bipartite subgraph problems

    Full text link
    We study the polyhedral properties of three problems of constructing an optimal complete bipartite subgraph (a biclique) in a bipartite graph. In the first problem we consider a balanced biclique with the same number of vertices in both parts and arbitrary edge weights. In the other two problems we are dealing with unbalanced subgraphs of maximum and minimum weight with nonnegative edges. All three problems are established to be NP-hard. We study the polytopes and the cone decompositions of these problems and their 1-skeletons. We describe the adjacency criterion in 1-skeleton of the polytope of the balanced complete bipartite subgraph problem. The clique number of 1-skeleton is estimated from below by a superpolynomial function. For both unbalanced biclique problems we establish the superpolynomial lower bounds on the clique numbers of the graphs of nonnegative cone decompositions. These values characterize the time complexity in a broad class of algorithms based on linear comparisons

    Clique-Stable Set separation in perfect graphs with no balanced skew-partitions

    Get PDF
    Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set Separation in a non-hereditary subclass of perfect graphs. A cut (B,W) of G (a bipartition of V(G)) separates a clique K and a stable set S if KBK\subseteq B and SWS\subseteq W. A Clique-Stable Set Separator is a family of cuts such that for every clique K, and for every stable set S disjoint from K, there exists a cut in the family that separates K and S. Given a class of graphs, the question is to know whether every graph of the class admits a Clique-Stable Set Separator containing only polynomially many cuts. It is open for the class of all graphs, and also for perfect graphs, which was Yannakakis' original question. Here we investigate on perfect graphs with no balanced skew-partition; the balanced skew-partition was introduced in the proof of the Strong Perfect Graph Theorem. Recently, Chudnovsky, Trotignon, Trunck and Vuskovic proved that forbidding this unfriendly decomposition permits to recursively decompose Berge graphs using 2-join and complement 2-join until reaching a basic graph, and they found an efficient combinatorial algorithm to color those graphs. We apply their decomposition result to prove that perfect graphs with no balanced skew-partition admit a quadratic-size Clique-Stable Set Separator, by taking advantage of the good behavior of 2-join with respect to this property. We then generalize this result and prove that the Strong Erdos-Hajnal property holds in this class, which means that every such graph has a linear-size biclique or complement biclique. This property does not hold for all perfect graphs (Fox 2006), and moreover when the Strong Erdos-Hajnal property holds in a hereditary class of graphs, then both the Erdos-Hajnal property and the polynomial Clique-Stable Set Separation hold.Comment: arXiv admin note: text overlap with arXiv:1308.644

    A reverse Sidorenko inequality

    Full text link
    Let HH be a graph allowing loops as well as vertex and edge weights. We prove that, for every triangle-free graph GG without isolated vertices, the weighted number of graph homomorphisms hom(G,H)\hom(G, H) satisfies the inequality hom(G,H)uvE(G)hom(Kdu,dv,H)1/(dudv), \hom(G, H ) \le \prod_{uv \in E(G)} \hom(K_{d_u,d_v}, H )^{1/(d_ud_v)}, where dud_u denotes the degree of vertex uu in GG. In particular, one has hom(G,H)1/E(G)hom(Kd,d,H)1/d2 \hom(G, H )^{1/|E(G)|} \le \hom(K_{d,d}, H )^{1/d^2} for every dd-regular triangle-free GG. The triangle-free hypothesis on GG is best possible. More generally, we prove a graphical Brascamp-Lieb type inequality, where every edge of GG is assigned some two-variable function. These inequalities imply tight upper bounds on the partition function of various statistical models such as the Ising and Potts models, which includes independent sets and graph colorings. For graph colorings, corresponding to H=KqH = K_q, we show that the triangle-free hypothesis on GG may be dropped; this is also valid if some of the vertices of KqK_q are looped. A corollary is that among dd-regular graphs, G=Kd,dG = K_{d,d} maximizes the quantity cq(G)1/V(G)c_q(G)^{1/|V(G)|} for every qq and dd, where cq(G)c_q(G) counts proper qq-colorings of GG. Finally, we show that if the edge-weight matrix of HH is positive semidefinite, then hom(G,H)vV(G)hom(Kdv+1,H)1/(dv+1). \hom(G, H) \le \prod_{v \in V(G)} \hom(K_{d_v+1}, H )^{1/(d_v+1)}. This implies that among dd-regular graphs, G=Kd+1G = K_{d+1} maximizes hom(G,H)1/V(G)\hom(G, H)^{1/|V(G)|}. For 2-spin Ising models, our results give a complete characterization of extremal graphs: complete bipartite graphs maximize the partition function of 2-spin antiferromagnetic models and cliques maximize the partition function of ferromagnetic models. These results settle a number of conjectures by Galvin-Tetali, Galvin, and Cohen-Csikv\'ari-Perkins-Tetali, and provide an alternate proof to a conjecture by Kahn.Comment: 30 page

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP \nsubseteq BPP, no polynomial time algorithm gives n1εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis
    corecore