2,167 research outputs found

    Exact Algorithms for Maximum Independent Set

    Get PDF
    We show that the maximum independent set problem (MIS) on an nn-vertex graph can be solved in 1.1996nnO(1)1.1996^nn^{O(1)} time and polynomial space, which even is faster than Robson's 1.2109nnO(1)1.2109^{n}n^{O(1)}-time exponential-space algorithm published in 1986. We also obtain improved algorithms for MIS in graphs with maximum degree 6 and 7, which run in time of 1.1893nnO(1)1.1893^nn^{O(1)} and 1.1970nnO(1)1.1970^nn^{O(1)}, respectively. Our algorithms are obtained by using fast algorithms for MIS in low-degree graphs in a hierarchical way and making a careful analyses on the structure of bounded-degree graphs

    Minimum-weight Cycle Covers and Their Approximability

    Get PDF
    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. We investigate how well L-cycle covers of minimum weight can be approximated. For undirected graphs, we devise a polynomial-time approximation algorithm that achieves a constant approximation ratio for all sets L. On the other hand, we prove that the problem cannot be approximated within a factor of 2-eps for certain sets L. For directed graphs, we present a polynomial-time approximation algorithm that achieves an approximation ratio of O(n), where nn is the number of vertices. This is asymptotically optimal: We show that the problem cannot be approximated within a factor of o(n). To contrast the results for cycle covers of minimum weight, we show that the problem of computing L-cycle covers of maximum weight can, at least in principle, be approximated arbitrarily well.Comment: To appear in the Proceedings of the 33rd Workshop on Graph-Theoretic Concepts in Computer Science (WG 2007). Minor change

    Exponential Time Complexity of Weighted Counting of Independent Sets

    Full text link
    We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes x^k. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time 2^{\Omega(n)} (i.e. there is a c>0 such that no algorithm can solve #3SAT in time 2^{cn}), counting the independent sets of size n/3 of an n-vertex graph needs time 2^{\Omega(n)} and weighted counting of independent sets needs time 2^{\Omega(n/log^3 n)} for all rational weights x\neq 0. We have two technical ingredients: The first is a reduction from 3SAT to independent sets that preserves the number of solutions and increases the instance size only by a constant factor. Second, we devise a combination of vertex cloning and path addition. This graph transformation allows us to adapt a recent technique by Dell, Husfeldt, and Wahlen which enables interpolation by a family of reductions, each of which increases the instance size only polylogarithmically.Comment: Introduction revised, differences between versions of counting independent sets stated more precisely, minor improvements. 14 page

    A QPTAS for Maximum Weight Independent Set of Polygons with Polylogarithmically Many Vertices

    Full text link
    The Maximum Weight Independent Set of Polygons problem is a fundamental problem in computational geometry. Given a set of weighted polygons in the 2-dimensional plane, the goal is to find a set of pairwise non-overlapping polygons with maximum total weight. Due to its wide range of applications, the MWISP problem and its special cases have been extensively studied both in the approximation algorithms and the computational geometry community. Despite a lot of research, its general case is not well-understood. Currently the best known polynomial time algorithm achieves an approximation ratio of n^(epsilon) [Fox and Pach, SODA 2011], and it is not even clear whether the problem is APX-hard. We present a (1+epsilon)-approximation algorithm, assuming that each polygon in the input has at most a polylogarithmic number of vertices. Our algorithm has quasi-polynomial running time. We use a recently introduced framework for approximating maximum weight independent set in geometric intersection graphs. The framework has been used to construct a QPTAS in the much simpler case of axis-parallel rectangles. We extend it in two ways, to adapt it to our much more general setting. First, we show that its technical core can be reduced to the case when all input polygons are triangles. Secondly, we replace its key technical ingredient which is a method to partition the plane using only few edges such that the objects stemming from the optimal solution are evenly distributed among the resulting faces and each object is intersected only a few times. Our new procedure for this task is not more complex than the original one, and it can handle the arising difficulties due to the arbitrary angles of the polygons. Note that already this obstacle makes the known analysis for the above framework fail. Also, in general it is not well understood how to handle this difficulty by efficient approximation algorithms

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs

    Computing a maximum clique in geometric superclasses of disk graphs

    Full text link
    In the 90's Clark, Colbourn and Johnson wrote a seminal paper where they proved that maximum clique can be solved in polynomial time in unit disk graphs. Since then, the complexity of maximum clique in intersection graphs of d-dimensional (unit) balls has been investigated. For ball graphs, the problem is NP-hard, as shown by Bonamy et al. (FOCS '18). They also gave an efficient polynomial time approximation scheme (EPTAS) for disk graphs. However, the complexity of maximum clique in this setting remains unknown. In this paper, we show the existence of a polynomial time algorithm for a geometric superclass of unit disk graphs. Moreover, we give partial results toward obtaining an EPTAS for intersection graphs of convex pseudo-disks
    • …
    corecore