42,791 research outputs found

    A computational model of texture segmentation

    Get PDF
    An algorithm for finding texture boundaries in images is developed on the basis of a computational model of human texture perception. The model consists of three stages: (1) the image is convolved with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses; (2) inhibition, localized in space, within and among the neural response profiles results in the suppression of weak responses when there are strong responses at the same or nearby locations; and (3) texture boundaries are detected using peaks in the gradients of the inhibited response profiles. The model is precisely specified, equally applicable to grey-scale and binary textures, and is motivated by detailed comparison with psychophysics and physiology. It makes predictions about the degree of discriminability of different texture pairs which match very well with experimental measurements of discriminability in human observers. From a machine-vision point of view, the scheme is a high-quality texture-edge detector which works equally on images of artificial and natural scenes. The algorithm makes the use of simple local and parallel operations, which makes it potentially real-time

    Preattentive texture discrimination with early vision mechanisms

    Get PDF
    We present a model of human preattentive texture perception. This model consists of three stages: (1) convolution of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neural-response profiles that results in the suppression of weak responses when there are strong responses at the same or nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of the degree of discriminability of different texture pairs match well with experimental measurements of discriminability in human observers

    A preliminary approach to intelligent x-ray imaging for baggage inspection at airports

    Get PDF
    Identifying explosives in baggage at airports relies on being able to characterize the materials that make up an X-ray image. If a suspicion is generated during the imaging process (step 1), the image data could be enhanced by adapting the scanning parameters (step 2). This paper addresses the first part of this problem and uses textural signatures to recognize and characterize materials and hence enabling system control. Directional Gabor-type filtering was applied to a series of different X-ray images. Images were processed in such a way as to simulate a line scanning geometry. Based on our experiments with images of industrial standards and our own samples it was found that different materials could be characterized in terms of the frequency range and orientation of the filters. It was also found that the signal strength generated by the filters could be used as an indicator of visibility and optimum imaging conditions predicted

    Learning midlevel image features for natural scene and texture classification

    Get PDF
    This paper deals with coding of natural scenes in order to extract semantic information. We present a new scheme to project natural scenes onto a basis in which each dimension encodes statistically independent information. Basis extraction is performed by independent component analysis (ICA) applied to image patches culled from natural scenes. The study of the resulting coding units (coding filters) extracted from well-chosen categories of images shows that they adapt and respond selectively to discriminant features in natural scenes. Given this basis, we define global and local image signatures relying on the maximal activity of filters on the input image. Locally, the construction of the signature takes into account the spatial distribution of the maximal responses within the image. We propose a criterion to reduce the size of the space of representation for faster computation. The proposed approach is tested in the context of texture classification (111 classes), as well as natural scenes classification (11 categories, 2037 images). Using a common protocol, the other commonly used descriptors have at most 47.7% accuracy on average while our method obtains performances of up to 63.8%. We show that this advantage does not depend on the size of the signature and demonstrate the efficiency of the proposed criterion to select ICA filters and reduce the dimensio
    corecore