229 research outputs found

    Packing Plane Perfect Matchings into a Point Set

    Full text link
    Given a set PP of nn points in the plane, where nn is even, we consider the following question: How many plane perfect matchings can be packed into PP? We prove that at least log2n2\lceil\log_2{n}\rceil-2 plane perfect matchings can be packed into any point set PP. For some special configurations of point sets, we give the exact answer. We also consider some extensions of this problem

    Edge-Removal and Non-Crossing Configurations in Geometric Graphs

    Get PDF
    A geometric graph is a graph G = (V;E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V . We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.Postprint (published version

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal k/2\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k2k \leq 2 and equals k+1k+1 if k3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    On the optimization of bipartite secret sharing schemes

    Get PDF
    Optimizing the ratio between the maximum length of the shares and the length of the secret value in secret sharing schemes for general access structures is an extremely difficult and long-standing open problem. In this paper, we study it for bipartite access structures, in which the set of participants is divided in two parts, and all participants in each part play an equivalent role. We focus on the search of lower bounds by using a special class of polymatroids that is introduced here, the tripartite ones. We present a method based on linear programming to compute, for every given bipartite access structure, the best lower bound that can be obtained by this combinatorial method. In addition, we obtain some general lower bounds that improve the previously known ones, and we construct optimal secret sharing schemes for a family of bipartite access structures.Peer ReviewedPostprint (author's final draft

    The hamburger theorem

    Full text link
    We generalize the ham sandwich theorem to d+1d+1 measures in Rd\mathbb{R}^d as follows. Let μ1,μ2,,μd+1\mu_1,\mu_2, \dots, \mu_{d+1} be absolutely continuous finite Borel measures on Rd\mathbb{R}^d. Let ωi=μi(Rd)\omega_i=\mu_i(\mathbb{R}^d) for i[d+1]i\in [d+1], ω=min{ωi;i[d+1]}\omega=\min\{\omega_i; i\in [d+1]\} and assume that j=1d+1ωj=1\sum_{j=1}^{d+1} \omega_j=1. Assume that ωi1/d\omega_i \le 1/d for every i[d+1]i\in[d+1]. Then there exists a hyperplane hh such that each open halfspace HH defined by hh satisfies μi(H)(j=1d+1μj(H))/d\mu_i(H) \le (\sum_{j=1}^{d+1} \mu_j(H))/d for every i[d+1]i \in [d+1] and j=1d+1μj(H)min(1/2,1dω)1/(d+1)\sum_{j=1}^{d+1} \mu_j(H) \ge \min(1/2, 1-d\omega) \ge 1/(d+1). As a consequence we obtain that every (d+1)(d+1)-colored set of ndnd points in Rd\mathbb{R}^d such that no color is used for more than nn points can be partitioned into nn disjoint rainbow (d1)(d-1)-dimensional simplices.Comment: 11 pages, 2 figures; a new proof of Theorem 8, extended concluding remark

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete
    corecore