1,658 research outputs found

    Maximal Bootstrap Percolation Time on the Hypercube via Generalised Snake-in-the-Box

    Get PDF
    In rr-neighbour bootstrap percolation, vertices (sites) of a graph GG are infected, round-by-round, if they have rr neighbours already infected. Once infected, they remain infected. An initial set of infected sites is said to percolate if every site is eventually infected. We determine the maximal percolation time for rr-neighbour bootstrap percolation on the hypercube for all r≥3r \geq 3 as the dimension dd goes to infinity up to a logarithmic factor. Surprisingly, it turns out to be 2dd\frac{2^d}{d}, which is in great contrast with the value for r=2r=2, which is quadratic in dd, as established by Przykucki. Furthermore, we discover a link between this problem and a generalisation of the well-known Snake-in-the-Box problem.Comment: 14 pages, 1 figure, submitte

    On Ramsey Theory and Slow Bootstrap Percolation

    Get PDF
    This dissertation concerns two sets of problems in extremal combinatorics. The major part, Chapters 1 to 4, is about Ramsey-type problems for cycles. The shorter second part, Chapter 5, is about a problem in bootstrap percolation. Next, we describe each topic more precisely. Given three graphs G, L1 and L2, we say that G arrows (L1, L2) and write G → (L1, L2), if for every edge-coloring of G by two colors, say 1 and 2, there exists a color i whose color class contains Li as a subgraph. The classical problem in Ramsey theory is the case where G, L1 and L2 are complete graphs; in this case the question is how large the order of G must be (in terms of the orders of L1 andL2) to guarantee that G → (L1, L2). Recently there has been much interest in the case where L1 and L2 are cycles and G is a graph whose minimum degree is large. In the past decade, numerous results have been proved about those problems. We will continue this work and prove two conjectures that have been left open. Our main weapon is Szemeredi\u27s Regularity Lemma.Our second topic is about a rather unusual aspect of the fast expanding theory of bootstrap percolation. Bootstrap percolation on a graph G with parameter r is a cellular automaton modeling the spread of an infection: starting with a set A0, cointained in V(G), of initially infected vertices, define a nested sequence of sets, A0 ⊆ A1 ⊆. . . ⊆ V(G), by the update rule that At+1, the set of vertices infected at time t + 1, is obtained from At by adding to it all vertices with at least r neighbors in At. The initial set A0 percolates if At = V(G) for some t. The minimal such t is the time it takes for A0 to percolate. We prove results about the maximum percolation time on the two-dimensional grid with parameter r = 2

    Threshold value of three dimensional bootstrap percolation

    Full text link
    The following article deals with the critical value p_c of the three-dimensional bootstrap percolation. We will check the behavior of p_c for different lengths of the lattice and additionally we will scale p_c in the limit of an infinite lattice.Comment: 8 pages including 9 figures for Int.J.Mod.Phys.

    Nucleation scaling in jigsaw percolation

    Full text link
    Jigsaw percolation is a nonlocal process that iteratively merges connected clusters in a deterministic "puzzle graph" by using connectivity properties of a random "people graph" on the same set of vertices. We presume the Erdos--Renyi people graph with edge probability p and investigate the probability that the puzzle is solved, that is, that the process eventually produces a single cluster. In some generality, for puzzle graphs with N vertices of degrees about D (in the appropriate sense), this probability is close to 1 or small depending on whether pD(log N) is large or small. The one dimensional ring and two dimensional torus puzzles are studied in more detail and in many cases the exact scaling of the critical probability is obtained. The paper settles several conjectures posed by Brummitt, Chatterjee, Dey, and Sivakoff who introduced this model.Comment: 39 pages, 3 figures. Moved main results to the introduction and improved exposition of section
    • …
    corecore