
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

4-20-2011 

On Ramsey Theory and Slow Bootstrap Percolation On Ramsey Theory and Slow Bootstrap Percolation 

Fabricio Siqueira Benevides 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Benevides, Fabricio Siqueira, "On Ramsey Theory and Slow Bootstrap Percolation" (2011). Electronic 
Theses and Dissertations. 210. 
https://digitalcommons.memphis.edu/etd/210 

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/210?utm_source=digitalcommons.memphis.edu%2Fetd%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


To the University Council:

The Dissertation Committee for Fabricio Siqueira Benevides certifies that this is
the final approved version of the following electronic dissertation: “On Ramsey
Theory and Slow Bootstrap Percolation”.

Béla Bollobás, Ph.D.
Major Professor

We have read this dissertation and recommend
its acceptance:

Paul Balister, Ph.D.

Anna Kaminska, Ph.D.

Jenő Lehel, Ph.D.

Vladimir Nikiforov, Ph.D.

Accepted for the Graduate Council:

Karen D. Weddle-West, Ph.D.
Vice Provost for Graduate Programs



ON RAMSEY THEORY AND
SLOW BOOTSTRAP PERCOLATION

by

Fabricio Siqueira Benevides

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis

May, 2011



To my wife Juliana.

ii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and help of a

host of people, senior and junior alike: it is a great pleasure to have an opportunity

to thank them all.

I am especially grateful to my supervisor, Professor Dr. Béla Bollobás for all his

support, constant encouragement and well-meant criticism. I would like to thank him

for introducing me to many great mathematicians, taking me to many exciting

places, and giving me many beautiful and challenging mathematical problems.

I am indebted to my examiners, Professors Paul Balister, Anna Kaminska,

Jenő Lehel and Vladimir Nikiforov, for their comments and suggestions.

The memory of Professor Richard Schelp will stay with me forever: his deep

admiration for mathematics inspired and motivated me. I am grateful to him for our

many discussions, invaluable advice, and for telling me his conjectures.

I thank my co-authors Dr. Jozef Skokan and Michal Przykucki for working with

me on part of the problems of my dissertation.

Mrs. Gabriella Bollobás has often greatly surprised me with her artistic view of

the world: she showed me that the world is not made only for mathematics.

Mrs. Tricia Simmons has gone way beyond the call of duty to help me along and

learn about American culture: if I had paid her a penny for every piece of advice she

gave me, she would be a millionaire by now.

I am indebted to my many colleagues who supported me so many times: Alex,

Ago, Andrew, Dominik, Karen, Neal, Tomas, Vivek, and many others whom I met in

Memphis or around the world.

iii



My family, especially my parents, elder brother and elder sister, supported me

unconditionally along my journey; my nephews brought me joy whenever I was able

to visit them. The one above all of us, the omnipresent God, led the right people into

my way and gave me health and intellectual tools that I needed. For all of these I am

grateful more than I can say.

I could not have written my Ph.D. without the financial support of the Capes

Foundation, the Ministry of Education of Brazil, the Fulbright Commission, and the

University of Memphis.

Last, but not least, I would like to thank with all my heart my wife, Juliana

Gomes Varela: she has always been by my side, has always made me remember who

I am and where I am going, and has provided a solid ground where I am sure we will

always stand.

iv



ABSTRACT

Fabricio Siqueira Benevides. Ph.D. The University of Memphis. May, 2010. Ramsey
Theory and Slow Bootstrap Percolation. Major Professor: Béla Bollobás.

This dissertation concerns two sets of problems in extremal combinatorics. The
major part, Chapters 1 to 4, is about Ramsey-type problems for cycles. The shorter
second part, Chapter 5, is about a problem in bootstrap percolation. Next, we
describe each topic more precisely.

Given three graphs G, L1 and L2, we say that G arrows (L1, L2) and write
G → (L1, L2), if for every edge-coloring of G by two colors, say 1 and 2, there exists a
color i whose color class contains Li as a subgraph. The classical problem in Ramsey
theory is the case where G, L1 and L2 are complete graphs; in this case the question
is how large the order of G must be (in terms of the orders of L1 and L2) to
guarantee that G → (L1, L2). Recently there has been much interest in the case
where L1 and L2 are cycles and G is a graph whose minimum degree is large. In the
past decade, numerous results have been proved about those problems. We will
continue this work and prove two conjectures that have been left open. Our main
weapon is Szemerédi’s Regularity Lemma.

Our second topic is about a rather unusual aspect of the fast expanding theory of
bootstrap percolation. Bootstrap percolation on a graph G with parameter r is a
cellular automaton modeling the spread of an infection: starting with a set
A0 ⊆ V (G) of initially infected vertices, define a nested sequence of sets,
A0 ⊆ A1 ⊆ · · · ⊆ V (G), by the update rule that At+1, the set of vertices infected at
time t + 1, is obtained from At by adding to it all vertices with at least r neighbors
in At. The initial set A0 percolates if At = V (G) for some t. The minimal such t is
the time it takes for A0 to percolate. We prove results about the maximum
percolation time on the two-dimensional grid with parameter r = 2.

v



Contents

List of Figures vii

1 Introduction 1

1.1 Introduction to Ramsey theory . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Generalized Ramsey numbers . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Ramsey-Turán problems . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Regularity Lemma and Embeddings 8

2.1 The Regularity Lemma for Graphs . . . . . . . . . . . . . . . . . . . . 8

2.2 Embeddings Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Multipartite Ramsey numbers of odd cycles 22

3.1 Extremal colorings and stability . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Main tools and proof Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . 27

3.3 Proof of Theorem 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Proofs of Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



4 Ramsey numbers of cycles in graphs with large degree 53

4.1 Tools for finding large paths and cycles . . . . . . . . . . . . . . . . . . 54

4.2 Arrowing matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Slowly percolating sets 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Slowly percolating sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 101

vii



List of Figures

3.1 Three different types of colorings (EC1, EC2, EC3). . . . . . . . . . . . 25

3.2 Two other types of colorings (ECA, ECB). . . . . . . . . . . . . . . . . 27

4.1 Vertices of R∗-type on the left and of B∗-type on the right. . . . . . . 76

5.1 An example where rectangles R′ and R′′ are uniquely determined by the

initially infected sites and do overlap. . . . . . . . . . . . . . . . . . . . 87

5.2 Option A at moment i. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Option B at moment i. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 A set of initially infected sites which gives the maximum percolation

time on [2] × [ℓ] when ℓ is even. . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Three possible Rectangles alignments. . . . . . . . . . . . . . . . . . . . 93

5.6 Configuration C12
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



Chapter 1

Introduction

1.1 Introduction to Ramsey theory

The Ramsey-type problems, a particular type of problems in Extremal

Combinatorics, have been much studied over the last decades. In 1928, the young

mathematician Frank Plumpton Ramsey [34] wrote an article about an algorithm

problem in propositional logic. In that article, Ramsey proved also a purely

mathematical result, well-known nowadays as the Ramsey’s Theorem. This theorem

was originally only a tool in the original article but have turned out to be more

acknowledged than the article itself. Before we state the theorem, let us introduce

some notation.

Consider a graph G with vertex set V and edge set E. Given an integer k, a

k-edge-coloring of G is any function f : E → S where S is any set with k elements.

We say the G is colored by S and for each s ∈ S the color class s is the set of edges e

such that f(e) = s. It is sometimes convenient to take S = {1, . . . , k} and this is

what we shall do in the current chapter. However, in most of this dissertation, we will

have k = 2 in which case it will be convenient to take S = {“red”, “blue”}. So, for an

edge e ∈ E and a given coloring f , we say that e is colored red (or simply e is red) if
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f(e) = “red”; and similarly for “blue”. Also, when k = 3 we shall use the set

S = {“red”, “blue”, “green”} as our standard set of colors. In this dissertation,

whenever we talk about colorings we mean edge-colorings.

Given an integer s and graphs G,L1, . . . , Ls, we say that G arrows (L1, . . . , Ls)

and write G → (L1, . . . , Ls), if for every coloring of G by {1, 2, . . . , s}, there exists a

color i, with 1 ≤ i ≤ s, such that the graph induced by the edges of color i

contains Li as a subgraph, (not necessarily as an induced subgraph). The classical

problem in Ramsey theory is the case in which G and Li, for all 1 ≤ i ≤ s, are

complete graphs; in this case the question is how large the order of G must be

(in terms of the orders of Li) to guarantee that G → (L1, . . . , Ls).

Next, we state the most commonly used version of Ramsey’s Theorem for graphs,

where we denote by Kn the complete graph on n vertices.

Theorem 1.1. Given integers ℓ1, . . . , ℓs, there exists a number N such that

KN arrows (Kℓ1 , . . . , Kℓs).

In view of Theorem 1.1, for any fixed s, the (Ramsey) function r : Ns → N given

by r(ℓ1, . . . , ℓs) = min{N : KN → (Kℓ1 , . . . , Kℓs)} is well defined. Computing the

precise value of r(ℓ1, . . . , ℓs) is considered an extremely hard problem, even in the

case where s = 2 and ℓ1 = ℓ2. One can easily prove some bounds on r(ℓ, ℓ) as shown

by the next theorem, whose proof can be found on Chapter 6 of Bollobás [11]. But it

is hard to provide any substantial improvement on these bounds.

Theorem 1.2. We have that 2ℓ/2 ≤ r(ℓ, ℓ) ≤ 22ℓ−2√
ℓ

.

The original theorem of Ramsey has been expanded and applied to a number of

areas in Mathematics including areas outside Combinatorics. It involves a wide

number of techniques which are now part of what is known as Ramsey theory.

Notably in the past three decades, Ramsey theory has evolved from a collection of

theorems to become a cohesive sub-area of Extremal Combinatorics. One can find full
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books on the topic, for example, the one by Graham [20]. Nevertheless, a number of

the original problems are still unsolved.

1.2 Generalized Ramsey numbers

We consider the following generalization of the function r(ℓ1, . . . , ℓs).

Definition 1.3. Let R(L1, . . . , Ls) = min{N : KN → (L1, . . . , Ls)} be a function

whose domain is the set of s-tuples of graphs and co-domain is the set of natural

numbers.

The number R(L1, . . . , Ls) is called a generalized Ramsey number and has been

studied by many authors for many classes of graphs. It is an immediate consequence

of Theorem 1.1 that R(L1, . . . , Ls) is indeed a function, that is, the set

{N : KN → (L1, . . . , Ls)} is non-empty. In order to prove this, one can simply select

N = r(ℓ1, . . . , ℓs), where ℓi is the number of vertices of Li for every 1 ≤ i ≤ s. Clearly,

since KN → (Kℓ1 , . . . , Kℓs), for any s-coloring of KN there exists a color i whose color

class contains Kℓi
as a subgraph. The result follows as Li is a subgraph of Kℓi

and we

do not require it to be an induced subgraph. This argument further implies that

R(L1, . . . , Ls) ≤ r(ℓ1, . . . , ℓs). (1.1)

A much more interesting fact, however, is that sometimes the left-hand side of

inequality (1.1) is much smaller than its right hand side. In fact, it follows from

Theorem 1.2 that r(ℓ1, . . . , ℓs) is at least exponential in min{ℓ1, . . . , ℓs} while for some

classes of graphs, as exemplified bellow, the number R(L1, . . . , Ls) is linear in

max{ℓ1, . . . , ℓs}.

Here, we are particularly interested in the case where the graphs Li are cycles.

This is an example where R(L1, . . . , Ls) is linear. The case where s = 2 and the
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graphs L1, L2 are cycles of length n, denoted Cn, was raised by Bondy and Erdős [13]

and it was fully solved by Faudree and Schelp [18], and independently by Rosta [35].

(For a new short proof see Károlyi and Rosta [28]). They proved the following.

Theorem 1.4. Given integers n ≥ 3, we have

R(Cn, Cn) =







6, if n = 3 or 4

2n − 1, if n is odd, n ≥ 5

3n/2 − 1, if n is even, n ≥ 6.

Bondy and Erdős [13] conjectured that if n > 3 is odd then

R(Cn, Cn, Cn) = 4n − 3. (1.2)

Kohayakawa, Simonovits and Skokan [26] proved that there exists an n0 such that

equation (1.2) holds for every n odd with n > n0.

The case when n is even differs from the case when n is odd. Benevides and

Skokan [9], proved that there exists an integer n1 such that for every even n > n1,

R(Cn, Cn, Cn) = 2n. (1.3)

For a general number of colors s, one also has general (but not sharp) bounds on

R(Cn, . . . , Cn
︸ ︷︷ ︸

s times

) which are linear in n but exponential in s, by Bondy and Erdős [13]

and recently improved by Łuczak, Simonovits and Skokan [31].
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1.3 Ramsey-Turán problems

The main topics in this dissertation are the Ramsey-Turán problems recently

popularized by Schelp [36], which in turn are different from those previously

introduced by Simonovits and Sós [37]. To motivate the definition of this new kind of

Ramsey-Turán problems, we first consider the notion of restricted size Ramsey

number by Faudree and Sheehan [19]. For graphs G and H, denoting

R(H) = R(H,H), the restricted size Ramsey number of H is defined as the following

quantity:

min{|E(G)| : G ⊂ KR(H) and G → (H,H)}.

Clearly, by the definition of R(H), the graph KR(H) is the one with the smallest

number of vertices that arrows H. However, we should expect that if the graph H

above has few edges, for example, when H is a path or a cycle, many edges could be

deleted from KR(H) to form a graph G that also arrows H. It turns out that these

numbers are as hard to compute as the usual Ramsey numbers and very few of them

are known exactly. There are two natural ways of weakening this problem, both being

studied recently by quite a few authors.

The first one is to consider the case where G is a multi-partite subgraph of KR(H)

whose partition classes are of approximately the same order. In Chapter 3, we solve a

conjecture of Schelp about the multi-partite Ramsey number of a cycle Cn where n is

any large enough odd integer.

The second way to weaken the definition of restricted size Ramsey number is one

of Ramsey-Turán nature. It consists of finding the smallest possible constant c, with

0 < c < 1 such that for any graph G with R(H) vertices and minimum degree at least

c|V (G)|, we have G → H. In Chapter 4, we provide an exact result, as before, for the

case where H is a large enough odd cycle. This result will actually generalize our

main theorem of Chapter 3 and has an independent proof.
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1.4 Notation

Our notation is mostly standard. Nevertheless, we emphasize some points here.

In most of our theorems/lemmas we use non-standard looking subscripts for an

absolute or relative constant in its statement. We note that these subscripts are equal

to the reference number of the theorem/lemma. This makes it much easier for the

reader to find the place where a constant is defined.

We let [n] denote the set {1, 2, . . . , n}.

For graphs, unless otherwise stated, the first subscript indicates the number of

vertices, e.g., Kn is the complete graph, Cn is the cycle and Pn is the path each with n

vertices. The complete k-partite graph with partition sets of order n1, . . . , nk is

denoted by Kn1,...,nk
.

The length of a path is the number of its edges and, if x is its first vertex and x′ is

its last vertex, then we call it an (x, x′)-path. Given a set X of vertices of a graph G,

G[X] denotes the subgraph induced by the edges with both ends in X. Also, G \ X

denotes the subgraph obtained by deleting the vertices of X and the edges incident to

the deleted vertices.

The maximum degree of the vertices of a graph G is denoted by ∆(G). Given two

disjoint non-empty sets of vertices X and Y , E(X,Y ) denotes the set of all the edges

with one end in X and the other one in Y . We also set e(X,Y ) = |E(X,Y )|.

Define the density d(X,Y ) of the pair (X,Y ) as

d(X,Y ) =
e(X,Y )

|X||Y | .

We denote the bipartite subgraph of G with bipartition X ∪ Y and the edge set

E(X,Y ) by G[X,Y ], and in general for disjoint sets X1, X2, . . . , Xk we denote by

6



G[X1, X2, . . . , Xk] the multipartite graph induced by the edges of G from Xi to Xj for

every i 6= j. Furthermore, when there is no risk of confusion, we use G to denote the

multipartite complement of G which is defined as the graph we obtain from the usual

complement of G by deleting all edges within the classes in the given vertex partition.

The subgraphs induced by the edges of a given color are indicated by superscripts:

Gr is the red subgraph of G. But for the corresponding graph theoretical parameters

such as number of edges or degrees we use subscripts: er(X,Y ) denotes the number

of red edges joining X to Y in an edge-colored graph. If an edge xy of G is red, we

say that y is a red neighbor of x (and vice-versa). For a vertex x, N(x) denotes the

set of all vertices adjacent to x and we set deg(x, Y ) = |N(x) ∩ Y | (the degree of x

to Y ) and degr(x, Y ) = |Nr(x) ∩ Y | (the red degree of x to Y ).

A graph Gn is called γ-dense if it has at least γ
(

n
2

)
edges. A bipartite graph with

parts of order k and ℓ is γ-dense if it contains at least γkℓ edges.

We say that a graph Gn is q-complete if the maximum degree in its complement G

is at most q. Note that a γ(n − 1)-complete graph is (1 − γ)-dense.

7



Chapter 2

The Regularity Lemma and

Embeddings

In this chapter we introduce Szemerédi’s seminal work, the Regularity Lemma.

We define the so called reduced graphs and shall also discuss about a particular class

of lemmas, the so called embedding lemmas. We shall give a concrete example of an

embedding lemma along with its proof. Such a lemma together with Szemeredi’s

Lemma shall be our main tools for proving our main theorems of Chapter 3 and

Chapter 4.

2.1 The Regularity Lemma for Graphs

Much of modern Extremal Graph Theory rests on a fundamental lemma by

Szemerédi. Loosely put, Szemerédi’s Regularity Lemma [38] asserts that every graph

of positive edge-density can be approximated by the union of a bounded number of

random-like bipartite graphs. Before we can present it in a formal and precise form,

the concept of ε-regular pair needs to be defined.
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Definition 2.1. Let G = (V,E) be a graph and let 0 < ε ≤ 1. We say that a pair

(A,B) of two disjoint subsets of V is ε-regular (with respect to G) if

|d(A′, B′) − d(A,B)| < ε

holds for any two subsets A′ ⊂ A, B′ ⊂ B with |A′| > ε|A|, |B′| > ε|B|.

Thus, a pair of disjoint sets is regular if the distribution of the edges of the

bipartite graph determined by them is close to uniform. In the next section, we shall

implicitly make use of the following well-known facts about regular pairs. Both of

them have very simple proofs. We prove them here for the sake of completeness.

Fact 2.2. If (A,B) is an ε-regular pair with 0 < ε ≤ 1/2, then for any A0 ⊂ A,

B0 ⊂ B such that |A0| ≥ |A|/2 and |B0| ≥ |B|/2, the pair (A0, B0) is a 2ε-regular.

Proof. Take A′ ⊂ A0 and B′ ⊂ B0 such that |A′| > 2ε|A0| and |B′| > 2ε|B0|. This

implies that |A′| > ε|A| and |B| > ε|B|. Since (A,B) is an ε-regular pair, we have

|d(A′, B′) − d(A,B)| < ε.

Also, since |A0| ≥ |A|/2 > ε|A| and |B0| ≥ |B|/2 > ε|B|, we have

|d(A0, B0) − d(A,B)| < ε.

Therefore

|d(A′, B′) − d(A0, B0)| ≤ |d(A′, B′) − d(A,B)| + |d(A0, B0) − d(A,B)| < 2ε.

Hence, we conclude that (A0, B0) is a 2ε-regular pair.

Fact 2.3. Let G be a bipartite graph with bipartition V (G) = A ∪ B such that the

pair (A,B) is ε-regular with density d = d(A,B). Then, for any Y ⊂ B such that

9



|Y | > ε|B|, we have

|{x ∈ A : deg(x, Y ) < (d − ε)|Y |}| ≤ ε|A|.

In particular, all but at most ε|A| vertices v ∈ A satisfy deg(v) ≥ (d − ε)|B|.

Proof. Suppose, for a contradiction, that there exists a set Y ⊂ B such that

|Y | > ε|B| and

|{x ∈ A : deg(x,B) < (d − ε)|Y |}| > ε|A|.

Let X = {x ∈ A : deg(x, Y ) ≤ (d − ε)|Y |}. Then

e(X,Y ) =
∑

x∈X

deg(x, Y ) < (d − ε)|X| · |Y |,

and therefore

d(X,Y ) < d − ε,

contradicting the fact that (A,B) is ε-regular.

The next lemma, concerning long paths in regular pairs, is a slightly stronger

version of an assertion by Łuczak [30]. The original version treats the case where the

density below γ is equal to 1/4. Although our proof is essentially the same as the

original one, we exhibit it here for the sake of completeness. Recall that the subscript

of an absolute or relative constant in the statement of the lemma is equal to its

reference number. This make it easier for the reader to find the place where this

constant is defined.

Lemma 2.4. For every 0 < γ < 1 and ε, with 0 < ε < γ/20, there exists a constant

n2.4 = n2.4(γ, ε) such that for every n > n2.4 the following holds. Let G be a bipartite

graph with bipartition V (G) = V1 ∪ V2 such that |V1|, |V2| = n. Furthermore, let the

pair (V1, V2) be ε-regular with density at least γ. Then, for every integer ℓ with

10



1 ≤ ℓ ≤ n − 2εn/γ, and for every pair of vertices v′ ∈ V1, v′′ ∈ V2 satisfying

deg(v′), deg(v′′) ≥ γn/2, the graph G contains a (v′, v′′)-path of length 2ℓ + 1.

Proof. Given γ and ε as in the statement, let n2.4 be such that n2.4ε > 1. Let v′ and

v′′ as in the statement of the lemma. The strategy for building our path depends

(although only slightly) on range of the value of ℓ.

We first consider the case where 1 ≤ ℓ < γn/3.

For i = 1, 2, set

V −
i = {v ∈ Vi : deg(v) < γn/2}.

Since γn/2 < (γ − ε)|V(3−i)|, by Fact 2.3, we have |V −
i | ≤ ε|Vi|.

Then, setting

V +
i = Vi \ V −

i ,

we have that |V +
i | ≥ (1 − ε)n. Take maximum size sets V̂1 ⊆ V +

1 and V̂2 ⊆ V +
2

satisfying |V̂1| = |V̂2|. It is easy to see that the bipartite subgraph H = G[V̂1, V̂2] has

minimum degree at least γn/2 − εn > γn/3. Therefore, we can greedily construct a

path of length 2ℓ − 2, say P2ℓ−2 = v0v1 . . . v2ℓ−2, such that v0 = v′ and

V (P2ℓ−2) ⊆ V̂1 ∪ V̂2 \ {v′′}. In fact, first choose v0 = v′ and, assuming that v0, . . . , vi−1

were chosen, take vi to be any of the neighbors of vi−1 in V (H) \ {v0, . . . , vi−1} ∪ {v′′}.

Such vertex vi exists given that deg(vi−1) > ℓ, and so deg(vi−1) − V (P2ℓ−2) ≥ 1.

To show that we can extend P2ℓ−2 to a path of length 2ℓ + 1 ending at v′′, it is enough

to show that G contains an edge {v2ℓ−1, v2ℓ} from NH(v2ℓ−2) \ (V (P2ℓ−2) ∪ {v′′})

to NH(v′′) \ V (P2ℓ−2). More precisely, we would get a path P2ℓ+1 = P2ℓ−2v2ℓ−1v2ℓv
′′,

i.e., P2ℓ+1 = v0 . . . v2ℓv
′′. Such an edge {v2ℓ−1, v2ℓ} exists because
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|NH(v2ℓ−2) \ (V (P2ℓ−2) ∪ {v′′})| ≥ γn/2 − εn − γ/3 − 1 > εn

and, similarly,

|NH(v′′) \ V (P2ℓ−2)| > εn.

The ε-regularity of (V1, V2) implies that the density between these sets cannot be

zero, and we note also that those sets are non-empty as εn > 1.

In the range γn/3 ≤ ℓ ≤ n − 2εn/γ, we use induction on ℓ. Assume that we have

already constructed a path P2ℓ−1 = v0v1 . . . v2ℓ−1, such that v0 = v′ and v2ℓ−1 = v′′.

The strategy will be to replace one edge of this path by a path of length 3. We say

that a vertex v ∈ V (P2ℓ−1) is ‘good’ if it has at least εn neighbors not in V (P2ℓ−1),

that is, |NH(v) \ V (P2ℓ−1)| ≥ εn; otherwise we call v ‘bad’.

If there exists an i, with 0 ≤ i ≤ 2ℓ − 2, such that the vertices vi ∈ V (P2ℓ−1) ∩ V1

and vi+1 ∈ V (P2ℓ−1) ∩ V2 are good, then we can proceed as above: by the ε-regularity

of (V1, V2), the density between N(vi) \ V (P2ℓ−1) and N(vi+1) \ V (P2ℓ−1) cannot be

zero. In this case, there must be w′, w′′ 6∈ V (P2ℓ−1) such that {vi, w
′}, {w′, w′′} and

{w′′, vi+1} are edges of G. Therefore, we have a path v0v1 . . . viw
′w′′vi+1 . . . v2ℓ−1 of

length 2ℓ + 1 connecting v′ to v′′. It remains to prove that such an i exists.

Denote Y = V2 \ V (P2ℓ−1). Recall that |Y | ≥ 2εn/γ > εn. Let X be the set of

vertices of V1 which have degree at most (γ − ε)|Y | in Y . By Fact 2.3, |X| ≤ εn. Since

(γ − ε)|Y | > (γ/2)|Y | ≥ εn,

all bad vertices of V1 belong to X. Therefore there are at most εn bad vertices in V1.

Similarly, there are at most εn bad vertices in V2. Since there are ℓ independent edges

in P2ℓ−1 and at most 2εn < γn
3
≤ ℓ bad vertices, the bad vertices cannot cover all

edges of P2ℓ−1. Hence, the desired i exists.
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Given a graph G and a real number 0 < ε < 1, suppose that we have a partition

V (G) = V0 ∪ V1 ∪ · · · ∪ Vt satisfying the following properties:

• |V0| ≤ εn; |V1| = |V2| = · · · = |Vt|;

• and all but at most ε
(

t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular with respect

to G.

This means that most of the pairs of clusters (Vi, Vj) have the same order and

satisfy Definition 2.1 with some uniform (small) ε. We call this partition ε-regular

with respect to G. In his seminal work [38], Szemerédi proved that every sufficiently

large graph has an ε-regular partition in which the number of clusters is bounded by

a function of ε and is independent of the number of vertices of G. Its precise

statement, extended to more than one graph, is as follows.

Lemma 2.5 (Regularity Lemma). For every ε > 0 and s,m ∈ N there exist integers

N2.5 = N2.5(ε, s,m) and M2.5 = M2.5(ε, s,m) such that: for all graphs G1, . . . , Gs with

the same vertex set V where |V | ≥ N2.5, there is a partition of V into t + 1 sets

V = V0 ∪ V1 ∪ . . . ∪ Vt

which is ε-regular with respect to each Gk, 1 ≤ k ≤ s , and such that m ≤ t ≤ M2.5.

Remark. The original regularity lemma refers to the case s = 1. The proof is

essentially the same for an arbitrary but fixed number s of graphs. This version is

used, for example, by Erdős, Hajnal, Sós, and Szemerédi [17], and formulated in a

survey by Komlós and Simonovits [27].

Remark. The sets Vi in the partition given by this lemma are called clusters. When

the lemma is applied to a multipartite graph, we can assume that each of those

clusters is contained in one of the parts.
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The existence of the cluster V0 above is only for technical reasons: it allows us to

assume that all the other clusters have the same number of elements. Frequently,

alternative formulations are sometimes used; for example, one may assume that

V0 = ∅ if we weaken the condition |Vi| = |Vj| to |Vi| − |Vj| ≤ 1 for all i, j.

Note that Lemma 2.5 is vacuously true unless the graph G to which it is applied

has positive edge-density. Indeed, G is trivially “approximated” by a union of empty

bipartite graphs.

2.2 Embeddings Lemmas

The Regularity Lemma has been applied to asymptotically solve a number of

problems in extremal graph theory. Perhaps the most important classes of extremal

problems are the Turán-type problems and the Ramsey-type problems. These

problems involve finding large subgraphs with a particular property inside a larger

graph G. An embedding of a graph H into G is a map from V (H) to V (G) that

preserves adjacency. We loosely use the term ‘embedding lemma’ to refer to lemmas

that guarantee the existence of a embedding of H onto G whenever H and G satisfy a

certain property.

In this thesis, we are particularly interested in embeddings of paths and cycles.

A common type of embedding lemma uses various properties about regular pairs to

guarantee the existence of certain bipartite subgraphs in the graph determined by the

pair. For example, in Lemma 2.4 above, for any fixed positive density γ, choosing ε

small enough and n large enough, one can find ‘very long’ paths between the sets of

an ε-regular pair of density γ. In a more general set up, if one aims to find a long

path in a given graph G, it would be desirable to apply the Regularity Lemma to G

so that we can find lots of regular pairs, then apply Lemma 2.4 to some of those pairs

and finally try to ‘glue’ these paths together to find a longer path. We note, however,
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that the Regularity Lemma does not state anything about the density between the

pairs of clusters. Such densities may differ significantly from one pair of clusters to

another and may be zero for some pairs. Then, we may not be able to apply

Lemma 2.4 to all pairs. On the other hand, if the original graph G is dense and large

enough, many of the pairs of clusters shall also have positive density. Furthermore,

since the number of clusters is bounded, each cluster should also have a relatively

large number of vertices. It turns out that most of the difficulty comes from ‘glueing’

together those paths between regular pairs. Later, in Lemma 2.11, we prove that this

strategy works under certain conditions on the connections between the clusters. This

discussion motivates the following definition of a reduced graph which grasps the

connections between clusters.

Definition 2.6. Given a graph G, two parameters ε, d > 0 and an ε-regular partition

of V (G) into V0, . . . , Vt such that |V0| < εn, we define the reduced graph R = R(γ, ε)

as follows: the vertex set of R is V = {1, . . . , t}, and there is an edge from vertices i

to j if and only if (Vi, Vj) is ε-regular and has density at least γ.

In most applications of the regularity lemma, one chooses the parameters ε and γ

(along with many others) and construct such a reduced graph. One then uses the fact

that many properties of the reduced graph are inherited by the original graph G.

Proposition 2.8, bellow, whose proof can be found in Diestel [15], is probably the

most well-known embedding property related to the regularity lemma. Though we

will not use such proposition to prove our theorems, we believe it is relevant to

mention it. We shall need the following definition in order to state it.

Definition 2.7. Given a graph R, the graph Rs is the graph obtained by replacing

each vertex v of R by a set of s vertices and each edge of R by a complete bipartite

graph between its two corresponding sets of s vertices. This is commonly known as a

‘blow-up’ of R.
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Proposition 2.8. For every γ ∈ (0; 1], ∆ > 1 and s ≥ 1, there exists ε0 > 0 and n0

with the following property. Let Gn be a graph on n ≥ n0 vertices, and let

R = R(γ, ε) be a reduced graph of Gn with ε ≤ ε0 such that every cluster contains at

least 2s/γ∆ vertices. Then any subgraph H of Rs whose maximum degree is

∆(H) ≤ ∆, is also a subgraph of Gn.

Next, we are going to state and prove an embedding lemma that we shall use in

the proofs of our main results in Chapter 3 and 4. This lemma uses certain special

matchings in the reduced graph to find long cycles in the original graph. This idea

was first introduced by Łuczak [30]. In this version we combine implicit results

from [9] (for even cycles) and from [6] (for odd cycles). In order to state this lemma,

we need to introduce some notation.

Definition 2.9. A matching M in a graph G is a set of pairwise vertex-disjoint

edges. The size of a matching is the number of edges that it contains and is denoted

by e(M).

Definition 2.10. A connected matching is a matching M such that all the edges of

M are in the same connected component C of G. We say that M is an odd connected

matching, if the component C is not bipartite.

Lemma 2.11. Given 0 < η < 1/4, there exists c2.11 = c2.11(η) > 0, such that for any

real numbers 0 < γ < 1 and 0 < ε < 1 satisfying ε/γ ≤ c2.11 and any natural number

t, there exists n2.11 = n2.11(η, γ, ε, t) such that the following holds. Let Gn be a graph

on n > n2.11 vertices and let Rt = Rt(γ, ε) be a reduced graph of Gn on t vertices.

If Rt contains a connected matching M of size t1 ≥ (1/4 + η)t, then Gn contains an

even cycle of order ℓ for any even ℓ such that 4t < ℓ ≤ (1/2 + η)n. If, in addition,

M is contained in an odd component, then Gn also contains also odd cycles of any

order ℓ such that 4t < ℓ ≤ (1/2 + η)n. Furthermore, n2.11(η, γ, ε, t) increases when

η, γ, ε are fixed and t increases.

16



Proof. Let 0 < η < 1/4 be given. Choose c2.11 = η/20 and note that such choice

implies that for any reals 0 < γ < 1, 0 < ε < 1 satisfying ε/γ < c2.11 we have

(
1

2
+ 2η

)(

1 − 8ε

γ

)

(1 − 2ε) ≥
(

1

2
+ η

)

.

Fix such η, γ, ε, and let t be any natural number. We consider the constant

n2.4(γ/2, 2ε) obtained when we input γ/2 and 2ε to Lemma 2.4. Let n2.11 be such that

(1 − ε)n2.11

t
> max{2t + 2n2.4(γ/2, 2ε), 4t/ε, 32γ−3/2}.

Let Gn be any graph on n > n2.11 vertices and let Rt be a reduced graph as in the

statement of the lemma and let V0, V1, . . . , Vt, with |V0| < εn, be the clusters of the

ε-regular partition determining Rt. Note that for any i 6= 0, we have |Vi| = m and the

m ≥ (1 − ε)n2.11/t choice of n2.11 implies that m − 2t > m/2.

Let M = {a1b1, . . . , at1bt1} be a monochromatic connected matching in Rt of size

t1 ≥ (1/4 + η)t. Let K be the monochromatic component of Rt containing M .

First, we show that K has a closed walk of even length which contains all edges

of M . Let T be a spanning tree of K such that E(T ) contains all edges of M (this

can be done via Kruskal’s algorithm, i.e., starting with the edges of K and carefully

adding new edges until we get a spanning tree). Let Weven be the minimal closed

walk containing all the edges of T . Such a walk contains each edge of T exactly twice,

therefore it has an even length. Also, its length must be at most 2t.

In the case where K is an non-bipartite component, we can also find a closed walk

of odd length containing all edges of M . In fact, consider some arbitrary vertex r of

T and look at the levels of T as a rooted tree with root r. In this case, there must

exist an edge xy /∈ E(T ), such that x and y are in levels of same parity, i.e., the

lengths of the unique paths from x to r and from y to r in T have the same parity.
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Therefore, the unique path Pxy from x to y contained in Weven has even length. We

can construct a walk Wodd by taking Weven and replacing Pxy by the edge xy. It is

clear that Wodd is a closed walk, it has odd length and it contains every edge of M

(at least once), as desired.

Now, consider any ℓ in the range 4t < ℓ ≤ (1/2 + η)n. We aim to build a Cℓ in G.

We start by letting L = Wodd in the case ℓ is odd and L = Weven in the case ℓ is even.

In particular, we can proceed with the case where ℓ is odd only when such Wodd

exists, i.e., when the component K is non-bipartite. Denote L = i1i2 . . . isi1, which

implies that s and ℓ have the same parity. Next we use standard regularity arguments

and Lemma 2.4 to build the desired cycle in Gn.

For each j, with 0 ≤ j ≤ s, we say that a vertex in Vij is ‘good’ if it has at least

(γ − ε)|Vij | = (γ − ε)m neighbors in each of Vij−1
and Vij+1

, where we set Vi0 = Vis

and Vis+1
= Vi1 ; and we say that a vertex is ‘bad’ otherwise. Note that for any j, by

Fact 2.3 applied to (Vij , Vij+1
) and to (Vij , Vij−1

), at most 2εm vertices of Vij are bad.

The next important step in the proof is to construct a (small) cycle C̃ = vi1vi2 . . . vis

with vij ∈ Vij such that all its vertices are good. We emphasize that while we may

have Vik = Vij , for some numbers k, j with k 6= j, the vertices vij of C are chosen to

be pairwise distinct. Let us construct such cycle step by step, adding one vertex at

each step. At the first step, we let vi1 be any good vertex in Vi1 (which exists since

(1 − 2ε)|Vi1 | ≥ 1). Suppose that for some j, with 1 ≤ j ≤ s − 3, we have constructed

a path Pj = vi1vi2 . . . vij in which all vertices are good. In particular, vij has at least

(γ − ε)m neighbors in Vij+1
. Among those, at most 2εm are bad and less than j are

in Pj. Therefore, vij has at least (γ − 3ε)m − j good neighbors not in Pj. Finally,

since j ≤ s ≤ t < γm/2 and 3ε < γ/4, we have (γ − 3ε)|Vij+1
| − j ≥ γ|Vij+1

|/4 ≥ 1.

So there exists vij+1
∈ |Vij+1

| such that vij+1
is good and vi1vi2 . . . vijvij+1

is a path. At

step s − 2, we have contructed a path Ps−2 = vi1vi2 . . . vis−2
in which all vertices are

good. By the same argument as before, vs−2 has at least |Vis−1
|/4 good neighbors in

Vis−1
but not in Ps−2; let A be the set of such neighbors. Similarly, v1 has at least
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γ|Vis |/4 good neighbors in Vis but not in Ps−2; let B be set of such neighbors.

Because the pair (Vis−1
, Vis) is ε-regular and |A|, |B| ≥ εm, it follows that G[A,B] has

density at least (γ − ε) > γ/2. Therefore, the number of edges in G[A,B] is at least

γ|A||B|/2 ≥ γ3m2/32 ≥ 1, where the last inequality follows by the choice of n2.11.

Letting vis−1
vis be any edge of G[A,B], we have that vi1vi2 . . . vis−1

vis is a cycle as

desired.

For each akbk ∈ M , we take maximum size sets V ′
ak

⊂ (Vak
\ C̃) ∪ {vak

},

V ′
bk

⊂ (Vbk
\ C̃) ∪ {vbk

} satisfying |V ′
ak
| = |V ′

bk
| and notice that the assumptions of the

lemma give

|V ′
ak
| = |V ′

bk
| ≥ |Vak

| − |C̃| ≥ |Vak
| − 2t > n2.4(

γ

2
, 2ε) (2.1)

We also note that

deg(vak
, V ′

bk
) ≥ deg(vak

, Vbk
) − t ≥ (γ − ε)|Vbk

| − t ≥ γ|Vbk
|/2, (2.2)

where the last inequality follow from the fact that ε < γ/4 and t/m < γ/4 (by the

definitions of ε and n2.11 respectively). Of course, the analogous inequality holds for

deg(vbk
, V ′

ak
).

We can use Lemma 2.4 to replace the edges of C̃ corresponding to edges of M by

long paths resulting in a larger cycle in Gn. Next, we give bound on how large such

cycles can be.

It is clear that |V ′
ak
| ≥ |Vak

|/2 and |V ′
bk
| ≥ |Vbk

|/2, which implies that G[V ′
ak

, V ′
bk

] is

(2ε)-regular by Fact 2.2. It is also easy to see that G[V ′
ak

, V ′
bk

] has density at least

γ − ε > γ/2. By Equations (2.1) and (2.2), together with the fact that 2ε < γ/2
20

, we

are allowed to apply Lemma 2.4 to G[V ′
ak

, V ′
bk

] with parameters γ/2 and 2ε: For each

edge akbk of M , we choose a natural number ℓk satisfying

1 ≤ ℓk ≤ (1 − 8ε/γ) min
{
|Vak

| − 2t, |Vbk
| − 2t

}
≤ (1 − 8ε/γ) min

{
|V ′

ak
|, |V ′

bk
|
}
,
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and for any such choice there exists a path Pak,bk
of length 2ℓk + 1 starting at vak

,

ending at vbk
, and consisting only of edges in G[V ′

ak
, V ′

bk
]. If we replace the edge vak

vbk

in C̃ by the path Pak,bk
, we get a cycle of order s − t1 +

t1−1∑

k=0

(2ℓk + 1) = s +
t1−1∑

k=0

2ℓk.

So, the length of the expanded cycle can attain any value which has the same parity

of s and is between s + 2t1 and

s +

t1−1∑

i=0

2 (1 − 8ε/γ) min{|Vak
| − 2t, |Vbk

| − 2t}.

Furthemore, s + 2t1 < 4t and

s +

t1−1∑

i=0

2 (1 − 8ε/γ) min{|Vak
| − 2t, |Vbk

| − 2t} ≥

≥ 2t1 (1 − 8ε/γ)

(
(1 − ε)n

t
− 2t

)

≥
(

1

2
+ 2η

)

t(1 − 8ε/γ)
(1 − 2ε)n

t
≥
(

1

2
+ η

)

n.

Therefore, the expanded cycle can attain length ℓ as desired.

Corollary 2.12. Let η, γ, ε, Gn and Rt = Rt(γ, ε) be as in the statement of

Lemma 2.11. Also, assume that V0, V1, . . . , Vt is the ε-regular partition of V (G) which

determines Rt and assume M is a matching of size t1 ≥ (1/4 + η)t contained in a

monochromatic component K of Rt, as in the proof of the lemma. Then, there exists

a set of vertices F , such that |F | ≤ 4εn and for any two vertices

u, v ∈
(
⋃

i∈K

Vi

)

\ F,

say u ∈ Vi and v ∈ Vj, there exists a (u, v)-path of length ℓ in Gn for each ℓ in the

range 4t < ℓ ≤ (1/2 + η)n whose parity is the same as some walk from i to j in Rt.

Proof. As in the proof of Lemma 2.11, consider a spanning tree T of K containing all

edges of M and let W = i1i2 . . . isi1 be the closed walk which contains all edges of T
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twice. As before, we consider the subscripts modulo s. For each k ∈ {1, 2, . . . , s}, let

Fk be the set of vertices of Vik with degree less than (γ − ε)|Vik | in Vik−1
or Vik+1

.

Fact 2.3, applied to the pairs (Vik−1
, Vik) and (Vik , Vik+1

), implies that |Fk| ≤ 2ε|Vik |.

So, letting F =
⋃

1≤k≤s Fk, we have

|F | ≤ s(2ε|Vik |) ≤ 4tε|Vik | ≤ 4εn.

We claim that F has the required properties. Let u, v ∈
(⋃

i∈K Vi

)
\ F and assume

that u ∈ Vi and v ∈ Vj, for some i, j ∈ V (T ). It is easy to find a walk of length at

most 2t using only edges of T , starting at i, ending at j and using each edge of M at

least once. Let L be such a walk.

Because u, v /∈ F , with the same argument of the proof of the lemma, we can

greedily find a (u, v)-path of same length as L. We can also use this path and

Lemma 2.4 to build (u, v)-path of any length ℓ, 4t < ℓ ≤ (1/2 + η)n, as long as ℓ has

the same parity of the length of L.

This completes the proof of the corollary.
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Chapter 3

Multipartite Ramsey numbers of odd

cycles

Recently, there has been much interest in seeing what happens to the Ramsey

numbers when we allow fixed edge deletions from the complete graph KN , in

particular, if we delete the edges of a complete subgraphs Kr.

For example, a tripartite version of Gerencsér-Gyárfás’s Theorem was given by

Gyárfás, Ruszinkó, Sárközy and Szemerédi [22], i.e., it was proved that the Ramsey

number for a path is about the same when two-colorings of a complete graph or a

balanced complete tripartite graph are considered. In a paper of Nikiforov and

Schelp [33], it was shown, among other things, that for any odd n ≥ 5 if we delete the

edges of a complete subgraph of order (n − 1)/2 from the complete graph of order

2n − 1 and two-color the rest, we can still guarantee a monochromatic Cn.

Furthermore, in a recent article of Gyárfás, Sárközy and Schelp [24], the following

theorem in the same direction was proved.

Theorem 3.1. For all 0 < η < 1/2 there exists an n3.1 = n3.1(η) with the following

properties. For any odd integer n > n3.1, in any two-coloring of the edges of the

complete 5-partite graph of order (2 + η)n with 5 parts of size g(1), g(2), g(3), g(4)
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and g(5), where we have n/2 ≥ g(1) ≥ g(2) ≥ g(3) ≥ g(4) ≥ g(5) ≥ ηn, there is a

monochromatic Cn.

In this chapter, we prove, for sufficiently large n, that a similar result holds in a

sharp form. This result was conjectured in the same article [24] in which Theorem 3.1

appeared. More precisely, we prove the following main theorem.

Theorem 3.2. There exists n3.2 such that, for any odd integer n ≥ n3.2, in any

2-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1

there is a monochromatic Cn.

Note that the graph we are coloring above is obtained from a K2n−1 by making

four big ‘holes’ of order (n − 1)/2 each. We are removing a total of (n − 1)(n − 3)/2

edges, i.e., almost 1/4 of the total number of edges, and we are claiming that (for

large odd n) the two-color Ramsey number for Cn does not change. This is somewhat

surprising and sharp. It is sharp in two different ways:

• if we had made only a single hole of order (n + 1)/2, instead of four holes of

order (n− 1)/2, there would be no guarantee that we could find a monochromatic Cn.

In fact, let A ⊂ V = V (K2n−1) with |A| = (n + 1)/2 and consider the graph obtained

by the removal of the edges spanned by A from K2n−1. Split the vertices V \ A into

two sets B and C with |B| = (n− 1)/2 and |C| = n− 1. Color all the edges within B,

within C and between A and B by red; and color the remaining edges, i.e., those

between A ∪ B and C, by green. It is easy to see that there is no monochromatic Cn;

• there exists a 2-edge-coloring of K2n−2 without monochromatic Cn, as we recall

from Theorem 1.4 that R(Cn, Cn) = 2n − 1 for any odd n > 3.

It is also interesting to compare our result with the one from equation (1.2),

where we 3-color the complete graph.
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3.1 Extremal colorings and stability

In this chapter, we will use a variant of a stability theorem of Gyárfás, Ruszinkó,

Sárközy, and Szemerédi [21, 23], stated by Benevides and Skokan [5, 9]. But before

we can state this theorem we need to define particular (extremal) colorings. It is

convenient, as we will notice later, to consider 3-multi-colorings instead of 3-colorings.

In a 3-multi-coloring of a graph G, every edges get at least one color but some edges

can be assigned more than one color. For c ∈ {(r)ed,(g)reen, (b)lue}, we say that c is

the exclusive color of an edge if the edge is assigned only color c. We denote by Gb∗

the subgraph induced by the edges exclusively colored blue ; and denote Gr∗ and Gg∗

the corresponding subgraph for red and green respectively.

Now we define the three types of coloring.

Coloring 3.3 (EC1(α, δ) type). A 3-multi-coloring of a graph G is of type EC1(α, δ),

where 0 ≤ α, δ < 1, if there exists a partition A ∪ B ∪ C ∪ D of V (G) such that

(a) |A|, |B|, |C|, |D| ≥ (1 − α)|V (G)|/4;

(b) The bipartite graphs Gr∗ [A,B], Gr∗ [C,D], Gg∗ [A,D], Gg∗ [B,C], Gb∗ [A,C] and

Gb∗ [B,D] are (1 − δ)-dense.

Coloring 3.4 (EC2(α, δ) type). A 3-multi-coloring of a graph G is of type EC2(α, δ),

where 0 ≤ α, δ < 1, if there exists a partition A ∪ B ∪ C ∪ D of V (G) such that

(a) |A|, |B|, |C|, |D| ≥ (1 − α)|V (G)|/4;

(b) The bipartite graphs Gr∗ [A,B], Gg∗ [A ∪ B,C] and Gb∗ [A ∪ B,D] are

(1 − δ)-dense.

Coloring 3.5 (EC3(µ, c1, c2, δ) type). A 3-multi-coloring of a graph G is of type

EC3(µ, c1, c2, δ), where 0 ≤ µ, c1, c2, δ < 1, if there exists a partition A ∪ B ∪ C ∪ D

of V (G) such that
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(a) |A|, |B|, |C| ≥ (1 − c1µ)|V (G)|/4, |D| ≥ µ|V (G)|/4;

(b) |A| ≥ max{|B|, |C|, |D|} + µ|V (G)|/4, |A ∪ D| ≤ (1 + c2µ)|V (G)|/2;

(c) The bipartite graphs Gr∗ [A,B], Gr∗ [C,D], Gg∗ [A,D], Gg∗ [B,C],

Gb∗ [A,C] and Gb∗ [B,D] are (1 − δ)-dense.

EC3

A B

CD

EC2

A B

CD

EC1

A B

CD

red

green

blue

Figure 3.1: Three different types of colorings (EC1, EC2, EC3).

Now we can state the variant [5, 9] of the stability lemma of Gyárfás, Ruszinkó,

Sárközy and Szemerédi [21, 23].

Theorem 3.6. Given α0 > 0 and µ0 > 0, there exist positive reals η3.6, β3.6 and µ3.6,

µ3.6 < µ0, such that for all β < β3.6 there exists a positive integer n3.6 = n3.6(β, α0, µ0)

such that the following holds. If n ≥ n3.6 and a (1 − β)-dense graph Gn of order n is

3-multi-colored, then one of the following cases occurs:

a) Gn contains a monochromatic connected matching of size at least (1/4 + η3.6)n

edges;

b) the coloring is of type EC1(α0, α0), or EC2(α0, α0), or EC3(µ3.6, 0.7, 0.2, β1/3).

Remark. In a multi-coloring, we consider a set E of edges monochromatic if there is

a color c such that all edges in E have been colored with c. However, note that we do

not require the edges in E to be colored exclusively with c.

The proof of Theorem 3.6 is essentially the same as the one by Gyárfás, Ruszinkó,

Sárközy and Szemerédi [21, 23] and can be found in [5]. This theorem was used first
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to compute R(Pn, Pn, Pn) and by Benevides and Skokan [9] to compute R(Cn, Cn, Cn)

when n is even. It basically says that either we find a large monochromatic connected

matching or the coloring of the graph can be well described. Later in this chapter, we

will use this theorem to prove Theorem 3.10 which, in turn, will be used in the proof

of Theorem 3.2. Theorem 3.10 involves two other types of colorings, this time,

2-multi-colorings of a 4-partite graph. We define those colorings here, but we will

state Theorem 3.10 only when needed, in Section 3.2.

Coloring 3.7 (ECA(α, δ) type). A 2-multi-coloring of a 4-partite graph G is of type

ECA(α, δ), where 0 ≤ α, δ < 1, if there exist disjoint sets of vertices A, B, C and D

such that

(a) |A|, |B|, |C|, |D| ≥ (1 − α)|V (G)|/4 and each of A, B, C and D is an

independent set;

(b) The bipartite graphs Gg∗ [A,D], Gg∗ [B,C] have maximum degree at most

δ|V (G)|;

(c) The bipartite graphs Gr∗ [A,B], Gr∗ [C,D] have maximum degree at most

δ|V (G)|.

Remark. Condition (a) implies that at most α|V (G)| vertices do not belong to

A ∪ B ∪ C ∪ D.

Coloring 3.8 (ECB(α, δ) type). A 2-multi-coloring of a 4-partite graph G, whose

vertex partition into independent sets is given, say V (G) = U1 ∪ U2 ∪ U3 ∪ U4, is of

type ECB(α, δ), where 0 ≤ α, δ < 1, if there exist disjoint sets X, Y ⊆ V (G) for

which, letting Xi = Ui ∩ X, Yi = Ui ∩ Y for 1 ≤ i ≤ 4, we have

(a) |X|, |Y | ≥ (1 − α)|V (G)|/2;

(b) For 1 ≤ i ≤ 4, the bipartite graph Gr∗ [Xi,
⋃

j 6=i Yj] has maximum degree at most

δ|V (G)|;
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(c) For 1 ≤ i ≤ 4, the bipartite graph Gr∗ [Yi,
⋃

j 6=i Xj] has maximum degree at most

δ|V (G)|;

(d) The (multipartite) graphs Gg∗ [X1, X2, X3, X4] and Gg∗ [Y1, Y2, Y3, Y4] have

maximum degree at most δ|V (G)|.

Remark. Condition (a) implies that at most α|V (G)| vertices do not belong to

X ∪ Y .

ECA

A B

CD

ECB

X1

X2

X3

X4

Y1

Y2

Y3

Y4

red
green

Figure 3.2: Two other types of colorings (ECA, ECB).

The remainder of this chapter is organized as follows: In Section 3.2 we state

(without proofs) our main tools, one theorem and two lemmas, and use them to prove

Theorem 3.2. In Sections 3.3 and 3.4, we give the missing proofs.

3.2 Main tools and proof Theorem 3.2

In the light of Lemma 2.11, if one aims to find large cycles in a graph G it is

natural to search for a connected matching in a suitable reduced graph. In the case

where we have a coloring of a graph G and want to find a monochromatic cycles, the

following notion of a monochromatic connected matching will play a similar role

Definition 3.9. We say that M is a monochromatic connected matching, if all its

edges have the same color and it is a connected matching within the graph induced by

such this color. In addition, we say that M is odd if this component is non-bipartite.
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Our main tool is the following theorem, which shall eventually be used to find a

monochromatic connected matching in a suitable reduced graph. We postpone its

proof to Section 3.3.

Theorem 3.10. Given α1, there exist strictly positive real numbers η3.10 = η3.10(α1),

β3.10 = β3.10(α1) and also n3.10 = n3.10(β3.10, η3.10) such that for any n > n3.10 the

following holds: if G is a 4-partite graph on n vertices such that each part has at least

(1/4 − β)n vertices and its multipartite complement G satisfies ∆(G) ≤ βn, then for

any 2-multi-coloring of G, either we find an odd connected monochromatic matching

of size at least (1/4 + η3.10)n edges or the coloring is of type ECA(α1, α1) or

ECB(α1, α1).

We will also need the following two lemmas, whose proofs we also postpone.

Lemma 3.11. For n odd, let G = K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be its only

vertex of degree 2n − 2 and let H = G \ {u}. There exists α3.11 > 0 such that, for all

α ≤ α3.11 and δ ≤ α, there is a positive integer n3.11 = n3.11(α, δ) with the following

property: for every odd n ≥ n3.11, every 2-coloring of G, such that the induced

coloring in H is of type ECA(α, δ), contains a monochromatic Cn.

Lemma 3.12. For n odd, let G = K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be its only

vertex of degree 2n − 2 and let H = G \ {u}. There exists α3.12 > 0 such that, for all

α ≤ α3.12 and δ ≤ α, there is a positive integer n3.12 = n3.12(α, δ) with the following

property: for every odd n ≥ n3.12, every 2-coloring of G, such that the induced

coloring in H is of type ECB(α, δ), contains a monochromatic Cn.

We restate Theorem 3.2 for easy reference. Afterward we give a concise sketch of

its proof, which is then immediately followed by the full proof.

Theorem 3.2. There exists n3.2 such that, for any odd integer n ≥ n3.2, in any

2-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1

there is a monochromatic Cn.
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We consider a 2-coloring of the graph G = K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, say

(Gr, Gg), where n is odd and n > n0. Let u be the (only) vertex of G of degree

2n − 2. We apply the Regularity Lemma (Lemma 2.5) with carefully chosen ε (see

equation (3.1) below) to the graphs Gr \ {u}, Gg \ {u} (s = 2) and obtain a partition

V0 ∪ V1 ∪ · · · ∪ Vt of V (G) \ {u} satisfying conditions (a)-(c) in Lemma 2.5. Using this

partition we define a reduced graph R, as well as an appropriate 2-multi-coloring of

its edges: the vertex set of R is {1, . . . , t}, we have an edge between i and j if and

only if (Vi, Vj) has positive density and is an ε-regular pair with respect to Gr and

Gg, and an edge ij is colored red (resp. green) if Gr[Vi, Vj] (resp. Gg[Vi, Vj]) has edge

density at least ε1/3.

By Remark 2.1, we can assume that the reduced graph R is 4-partite. Then, we

apply Theorem 3.10 to R, which will lead us to one of three cases: either R has a

monochromatic connected odd matching of a certain size or its 2-multi-coloring is of

type ECA or of type ECB. In the first case, we use Lemma 2.11, the embedding

lemma, to find a Cn in G as the same color of the matching. In the other two cases,

we prove that the original coloring of G must be of the same type as the one of R. In

this case, we apply Lemma 3.11 or Lemma 3.12 to G to find a monochromatic Cn.

Proof of Theorem 3.2. We start by choosing some parameters.

Let α1 = min{(α3.11/10)2, (α3.12/10)2, 1/20} so that, in particular, we can input

δ = α = 10
√

α1 to Lemmas 3.11 and 3.12 and get n3.11 = n3.11(10
√

α1, 10
√

α1) and

n3.12 = n3.12(10
√

α1, 10
√

α1). Passing α1 to Theorem 3.10, we obtain η3.10 = η3.10(α1)

and β3.10 = β3.10(α1).

Let η = η3.10/2. Now Lemma 2.11 give us c2.11(η) and we can finally define ε as

follows:

ε =
1

2
min

{

(β3.10/2)2, 1/106,
α3

1

1000
,
η2

3.10

2000
, c

3/2
2.11

}

. (3.1)

29



Let β = 2
√

ε and notice that β < β3.10. With this β, Theorem 3.10 yields

n3.10 = n3.10(β, η3.10). We also set m = max{2n3.10, 1/ε} and from Lemma 2.5 we

obtain N2.5 = N2.5(ε, 2,m) and M2.5 = M2.5(ε, 2,m). Because ε/ε1/3 ≤ c2.11, it is legal

to apply Lemma 2.11 to get n2.11 = n2.11(η, ε1/3, ε,M2.5). Then we may finally choose

n3.2 = max

{

N2.5, 2M2.5n2.11, n3.11, n3.12,
2

η

}

. (3.2)

Consider any 2-coloring (Gr, Gg) of G = K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 with n odd

and n > n3.2. We denote V (G) = U1 ∪ U2 ∪ U3 ∪ U4 ∪ {u}, where U1, U2, U3, U4 are

the independent sets of order (n − 1)/2 and u is the (only) vertex of degree 2n − 2.

We apply the Regularity Lemma (Lemma 2.5) to the pair of graphs Gr \ {u} and

Gg \ {u}, with parameters ε and m chosen as above (and s = 2).

Let V = V (G) = V0 ∪ V1 ∪ . . . ∪ Vt be the partition guaranteed by this lemma,

thus satisfying

(a) m ≤ t ≤ M2.5,

(b) |V0| ≤ ε(2n − 2), |V1| = . . . = |Vt|, and

(c) all but at most ε
(

t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular with respect to

both Gr and Gg.

By Remark 2.1, we can assume that each of these clusters (Vk) lies inside one of

the sets Ui, 1 ≤ i ≤ 4.

Now we define a reduced graph R = R(0, ε) in the following way: the vertex set of

R is {1, . . . , t} and we have an edge between vertices i and j if and only if Vi and Vj

are contained in different sets of the partition {U1, U2, U3, U4} and (Vi, Vj) is an

ε-regular pair with respect to both Gr and Gg. By definition, R is a 4-partite graph,

say V (R) = W1 ∪ W2 ∪ W3 ∪ W4, with Wi = {k : Vk ⊂ Ui, 1 ≤ k ≤ t}. It easy to see
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that all sets Wi have approximately the same order. More precisely, if we denote

ti = |Wi|, then ti ≥ (1/4 − ε)t, for 1 ≤ i ≤ 4. In fact, for any 1 ≤ i ≤ 4 and for

arbitrary k 6= 0, the above property (b) implies that

ti
2n − 2

t
≥ ti|Vk| = |Ui| − |Ui ∩ V0| ≥

(
1

4
− ε

)

(2n − 2),

and the previous statement follows.

We also define a 2-multi-coloring (Rr, Rg) of R as follows: for c ∈ {r, g}, and

ij ∈ E(R) we put ij into Hc if ec(Vi, Vj) ≥ ε1/3|Vi||Vj|. Note that, whenever

ij ∈ E(R), that is, i and j are in different sets of the partition {W1,W2,W3,W4}, we

have that G[Vi, Vj] is a complete bipartite graph. So, at least one of Gr[Vi, Vj] and

Gb[Vi, Vj] has density at least 1/2. Since 1/2 > ε1/3, all edges of R receive at least one

of the colors.

Remark. We note that the graph Rr defined above is a reduced graph of Gr with

parameters ε1/3 and ε; and Rb is a reduced graph of Gb also with parameters ε1/3

and ε. One could start by defining Rr and Rb directly in an attempt to shorten the

proof and skip the definition of R. But later in the proof, we will need the fact that

R = Rr ∪ Rb is an (1 − ε)-dense graph.

It is convenient here to work on graphs with high degree (rather than simply on

dense graphs). So, we start by cleaning up R: We throw away the (small) set of

vertices that do not have high degree. Let F = {v ∈ V (R) : degR(v) ≥ √
εt} where R

is the multipartite complement of R. We have |F |√εt ≤ 2e(R) ≤ 2ε
(

t
2

)
, where the

second inequality follows from property (c) above. Then, |F | ≤ √
ε(t − 1) <

√
εt. We

consider the graph H induced by V (R) \ F and denote t′ = |V (H)| and W ′
i = Wi \ F .

Clearly, t′ ≥ (1 −√
ε)t.
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Therefore,

∆(H) ≤ √
εt ≤

√
ε

1 −√
ε
t′ ≤ 2

√
εt′ = βt′

and

|W ′
i | ≥ (1/4 − ε)t −√

εt ≥ (1/4 − 2
√

ε)t ≥ (1/4 − 2
√

ε)t′ = (1/4 − β)t′.

We also consider the induced coloring (Hr, Hg) of H where Hr = H ∩ Rr and

Hb = H ∩ Rb. Because t′ ≥ (1 −√
ε)t ≥ (1 −√

ε)m ≥ m/2 ≥ n3.10, by the above

conditions on |W ′
i | and ∆(H) and since β < β3.10, we can apply Theorem 3.10 (with

parameters α1, η3.10, β) to H so that either we find an odd monochromatic connected

matching M of size t1 at least (1/4 + η3.10)t
′ or we conclude that the coloring of H is

of type ECA(α1, α1) or of type ECB(α1, α1). We analyze each of these three cases now.

Case 1: There is an odd monochromatic connected matching M of size t1 in H,

t1 ≥ (1/4 + η3.10)t
′.

Note that

(
1

4
+ η3.10

)

t′ ≥
(

1

4
+ η3.10

)

(1 −√
ε)t ≥

(
1

4
+

η3.10

2

)

t =

(
1

4
+ η

)

t.

Without loss of generality assume that M is red and let aibi, 0 ≤ i < t1, be all the

edges of M .

Now, by Lemma 2.11, such an (odd connected) matching in Rr = Rr
t (ε

1/3, ε)

implies that we can find in Gr any cycle of length between 4t and (1/2 + η)(2n − 2).

In particular, we can find a Cn.

Case 2: (Hr, Hg) is a coloring of type ECA(α1, α1).

We will show that this implies that (Gr \ {u}, Gg \ {u}) is of type

ECA(10
√

α1, 10
√

α1). Let A, B, C, D be subsets of V (H) satisfying conditions (a)-(c)
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of ECA(α1, α1). It is natural to consider the collection {f(A), f(B), f(C), f(D)} of

subsets of V (G) given by f(S) =
⋃

j∈S Vj for S ∈ {A,B,C,D}. Note that

|f(A)| ≥ |A|(1 − ε)(2n − 2)

t

≥ (1 − α1)
t′

4

(1 − ε)(2n − 2)

t

≥ (1 − α1) (1 −√
ε)(1 − ε)

2n − 2

4

≥ (1 − 2α1)
2n − 2

4
.

Similarly, we obtain that |f(B)|, |f(C)|, |f(D)| ≥ (1 − 2α1)(2n − 2)/4. Therefore,

condition (a) of ECA(10
√

α1, 10
√

α1) is satisfied with room to spare. Unfortunately,

the partition {f(A), f(B), f(C), f(D)} might not satisfy conditions (b) and (c) of

ECA(10
√

α1, 10
√

α1). But we shall prove that we can remove a few (bad) vertices

from each f(S), S ∈ {A,B,C,D}, so that the resulting sets continue to satisfy (a)

and also satisfy (b) and (c).

So, we count how many vertices do not have low degree in one of the bipartite

graphs Gg∗ [f(A), f(D)], Gg∗ [f(B), f(C)], Gr∗ [f(A), f(B)] or Gr∗ [f(C), f(D)]: we say

that a vertex bad if its induced degree in any of the above graphs is larger than

2
√

α1|V (G) \ {u}| = 2
√

α1(2n − 2). We claim that at most 2
√

α1(2n − 2) vertices

of G are bad.

Fix a vertex i ∈ V (H) and assume without loss of generality that i ∈ A. We

bound the number of red edges from Vi to f(D) in the following way. Recalling that

f(D) =
⋃

j∈D Vj, it is enough to bound er(Vi, Vj) for each j ∈ D. When ij /∈ Hg∗ , we

use the trivial bound |Vi||Vj| for er(Vi, Vj), but we note that condition (b) implies that

there are at most α1t
′ such j’s. However, for ij ∈ Hg∗ we can conclude that ij 6∈ Hr,

thus, from the definition of Hr, er(Vi, Vj) ≤ ε1/3|Vi||Vj|. This implies the following.
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er(Vi, f(D)) ≤
∑

j∈D

ij 6∈Hg∗

|Vi||Vj| +
∑

j∈D

ij∈Hg∗

ε1/3|Vi||Vj|

≤ α1t
′|Vi||Vi| + |D|ε1/3|Vi||Vi|

≤ α1t|Vi||Vi| + ε1/3t|Vi||Vi|

≤ 2α1|Vi|(2n − 2),

where we have used that |Vi| = |Vj| for any i, j ≥ 1, t|Vj| ≤ 2n − 2 and ε1/3 ≤ α1.

Therefore, at most
√

α1|Vi| vertices of Vi can have more than 2
√

α1(2n − 2) red

neighbors in f(D). Similarly, at most
√

α1|Vi| vertices of Vi can have more than

2
√

α1(2n − 2) green neighbors in f(B). Hence at most 2
√

α1|Vi| vertices of Vi are

bad. Now, if we vary i over all vertices of V (H), we conclude that at most

2
√

α1|f(A) ∪ f(B) ∪ f(C) ∪ f(D)| ≤ 2
√

α1(2n − 2) vertices are bad.

Finally, we define Ã, B̃, C̃, D̃ as the sets obtained from f(A), f(B), f(C), f(D)

by removing the bad vertices. We have that

|Ã| ≥ |f(A)| − 2
√

α1(2n − 2) ≥ (1 − 10
√

α1)(2n − 2)/4.

The same holds for |B̃|, |C̃| and |D̃|, that is, condition (a) of ECA(10
√

α1, 10
√

α1) is

satisfied. Clearly, conditions (b) and (c) are satisfied by {Ã, B̃, C̃, D̃} as well. So, the

original 2-coloring of G \ {u} is of type ECA(10
√

α1, 10
√

α1).

Now, as 10
√

α1 ≤ α3.11 and n > n3.11(10
√

α1, 10
√

α1), we can use Lemma 3.11 to

conclude that there is a monochromatic Cn in G.

Case 3: (Hr, Hg) is a coloring of type ECB(α1, α1).

Similarly to the previous case, we can show that the coloring (Gr \ {u}, Gg \ {u})

of V (G) \ {u} is also of type ECB(10
√

α1, 10
√

α1). We omit some of the technical
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details here, but we still give a sketch of the argument to prove this. Let X, Y be

subsets of V (H) satisfying the conditions (a)-(d) of ECB(α1, α1) when we consider

Xi = X ∩ Wi and Yi = Y ∩ Wi.

As in the previous case, we consider the collection {f(X), f(Y )} of subsets of

V (G), where we denote f(S) =
⋃

j∈S Vj for any S ⊂ V (H). We also observe that

f(Xi) = f(X) ∩ Ui. Much as before, we have that

|f(X)|, |f(Y )| ≥ (1 − 2α1)
2n − 2

2
.

Therefore, condition (a) of ECB(10
√

α1, 10
√

α1) is satisfied with room to spare.

Similarly to Case 2, conditions (b)-(d) may not be satisfied by f(X), f(Y ). But,

again, we can give an upper bound for the number of vertices that do not have low

degree in one of the bipartite graphs: Gr∗ [f(Xi),
⋃

j 6=i f(Yj)], Gr∗ [f(Yi),
⋃

j 6=i f(Xj)],

for 1 ≤ i ≤ 4, Gg∗ [f(X1), f(X2), f(X3), f(X4)] and Gg∗ [f(Y1), f(Y2), f(Y3), f(Y4)]. We

call a vertex bad if its induced degree in any of the above graphs is larger than

2
√

α1|V (G) \ {u}| = 2
√

α1(2n− 2). The same argument from Case 2 shows that there

are at most 2
√

α1(2n − 2) bad vertices. By removing the bad vertices from f(X) and

f(Y ), we obtain sets which satisfy all the conditions of ECB(10
√

α1, 10
√

α1).

Therefore, the original 2-coloring of G \ {u} is of type ECB(10
√

α1, 10
√

α1).

Finally, since 10
√

α1 ≤ α3.12 and n > n3.12(10
√

α1, 10
√

α1), we can use

Lemma 3.12 to conclude that there is a monochromatic Cn in G.

3.3 Proof of Theorem 3.10

We will need the following two easy lemmas which are variants of lemmas by

Gyárfás, Sárközy and Schelp [24]. The first lemma is rather trivial but since it is used

so many times we rather state it formally and prove it.
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Lemma 3.13. Let H be a bipartite graph with part A and B so that every vertex in

one part is not adjacent to at most m vertices in the other part. If 2m < |A| ≤ |B|,

then H is a connected and contains a matching of size at least |A| − m.

Proof. Two vertices in A (resp. B) have a common neighbor in B (resp. A). Also, if

a ∈ A, b ∈ B then b and any neighbor of a have a common neighbor in A. Thus H is

a connected subgraph. Moreover any maximum matching M misses fewer than m

vertices of A, otherwise we could select any unmatched vertex of B and such vertex

would need to have a neighbor among the (at least) m + 1 unmatched vertices

of A.

Lemma 3.14. Assume that G is an r-partite graph with N vertices such that r ≥ 2,

and ∆(G) < m. Suppose that the largest class in the partition of V (G) has at most

as many vertices as the sum of the orders of the others. Then G has a matching

covering all but at most rm vertices.

Proof. We prove the lemma by induction on the order of the graph G. If |G| ≤ rm,

there is nothing to do, since an empty matching suffices. Let V (G) = V1 ∪ . . . Vr

where |G| > rm and assume that |V1| ≤ . . . ≤ |Vr| where |Vr| ≤ |V1 ∪ . . . ∪ Vr−1|.

Clearly, |Vr| > m and therefore |V1 ∪ . . .∪ Vr−1| > m. In particular Vr−1 6= ∅. Then we

can find an edge xy from Vr−1 to Vr.

The hypothesis that the largest partite class is at most as large as the sum of the

others still holds on the graph G′ = G \ {u, v}, though the relative order for the size

of the sets V ′
i = Vi \ {u, v} might change. Now, G′ is r′-partite, with r′ ≤ r and, by

induction, we can find a matching M ′ that covers all but r′m ≤ rm vertices of G′.

Finally, M = M ′ ∪ {xy} is the matching that we are looking for.

Remark. With just a little more care, one can prove that there is a matching that

covers all but at most 2m vertices of G. But here, we will only use the lemma with

r = 4 and omit unnecessary details.
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Corollary 3.15. Let G be an r-partite graph with N vertices, say with vertex

partition V (G) = V1 ∪ . . . ∪ Vr, with r ≥ 2. Assume that Vr is its largest class and let

k = max{|Vr| −
∑r−1

i=1 |Vi|, 0}. Suppose that ∆(G) < m. Then we can find a matching

covering all but at most k + rm vertices.

Proof. Simply remove any k vertices from Vr and use the previous lemma in the

resulting graph.

Now we are ready to prove Theorem 3.10.

Proof of Theorem 3.10. Let α1 > 0 be given. We define two extra parameters by

α0 = µ0 = 1/20 that will eventually be used as input to Theorem 3.6 which, in turn,

outputs η3.6 = η3.6(α0, µ0), β3.6 = β3.6(α0, µ0) and µ3.6 = µ3.6(α0, µ0) < µ0 = 1/20. We

also define η3.10 = min{η3.6/5, α1/10} and

β = β3.10 = min
{
β3.6/4, 10−5, η3.10/10

}
.

By Theorem 3.6 there exists a constant n3.6 = n3.6(2β, µ3.6, η3.6, α0). Finally, define

n3.10 = max{n3.6, (2β)−1}.

Suppose we are given a 4-partite graph G of order n, with n > n3.10, and a

partition V (G) = V1 ∪ V2 ∪ V3 ∪ V4 into independent sets that satisfies the conditions

in the statement of the lemma, i.e., |Vi| ≥ (1/4 − β)n (1 ≤ i ≤ 4) and ∆(G) ≤ βn.

Take any 2-multi-coloring of its edges, say with red and green.

Now we consider the graph K obtained from G by adding all edges inside the

sets Vi. We color those new edges exclusively with blue and let all other edges of K

keep the same colors they have in G. Notice that now we have a 3-multi-coloring of
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an almost complete graph on n vertices. In particular,

∆(K) ≤ βn

implies that K is a (1 − 2β)-dense graph. As n ≥ n3.6 and 2β < β3.6, we can apply

Theorem 3.6 to K in order to find either a monochromatic matching of size at least

(1/4 + η3.6)n ≥ (1/4 + 5η3.10)n (edges), or an EC1(α0, α0), or an EC2(α0, α0), or an

EC3(µ3.6, 0.7, 0.2, (2β)1/3).

Note, however, that our coloring of K is not of any of these types. In fact, first

note that all color classes defined by these three types of colorings contain a

monochromatic bipartite subgraph where each set in the bipartition has order at least

(1 − max{α0, 0.7µ3.6})n/4 > n/5 which are (1 − max{α0, (2β)1/3})-dense. In

particular, those bipartite graphs are at least 19/20-dense. However, the graph

induced by the blue edges in K does not have this property, beeing a union of four

cliques of order close to n/4 with no edges connecting them. Therefore, there must

exist a monochromatic connected matching M of size at least (1/4 + 5η3.10)n.

Since there exists no blue edge from Vi to Vj, where i 6= j, every blue connected

component has order at most (1/4 + 3β)n. As β < η3.10 and M is connected, M

cannot be blue. Therefore, M is a monochromatic connected matching in the original

coloring of G. Assume, without loss of generality, that M is red. From this point on,

we will return to work on the original multipartite graph G, i.e., we will ignore the

blue edges. Let C be the (maximal) connected component of Gr containing M .

Recall that this means that all edges of C are colored red but that they are not

necessarily exclusively red. If C is non-bipartite we are done. Therefore, we can

assume C is bipartite.

Let V (C) = X ∪ Y be an arbitrary bipartition of C and let Z = V \ C. From the

definition of C and the choice of X and Y , no edge inside X, inside Y or from Z to

38



X ∪ Y is colored red. Therefore, these edges are exclusively colored green. Note that

e(M) ≥ (1/4 + 5η3.10)n implies

|Z| ≤
(

1

2
− 10η3.10

)

n.

For 1 ≤ i ≤ 4, denote Xi = Vi ∩ X, Yi = Vi ∩ Y and Zi = Vi ∩ Z. Since

|X| ≥ e(M) ≥ (1/4 + 5η3.10)n and |Xi| ≤ |Vi| ≤ (1/4 + 3β)n ≤ (1/4 + 3η3.10)n, at

least two of the sets X ′
is are larger than 2η3.10n > 2βn. By Lemma 3.13, these two

Xi’s induce a (green) connected graph. Also, all other vertices in X and in Z have at

least one neighbor in the union of those two sets. Therefore, Gg[X ∪ Z] is connected.

Similarly, Gg[Y ∪ Z] is connected. So if Z 6= ∅, then Gg[X ∪ Y ∪ Z] is connected. In

the next cases, we will prove that this (green) component is odd and has a large

matching, unless many of the sets Xi, Yi, Zi are very small, in which case we will

prove that the coloring has the desired structure.

Case 1: |Z| > η3.10n.

We claim that we can find a large enough odd connected green matching. Because

Z 6= ∅, we have that Gg[X ∪ Y ∪ Z] is connected. To verify that Gg[X ∪ Y ∪ Z] is not

bipartite, we can easily check that it contains a triangle. In fact, we can assume,

without loss of generality, |Z1| > η3.10n/4, which implies |Z1| > 2βn. Look at the

orders of the sets Xi and Yj. If there is any edge uv in Gg[X2, X3, X4], since

∆((G)) ≤ βn, we can find a common neighbor of u and v in Z1 and we are done. But

we already know that at least one of X2, X3, X4, say X2, is larger than 2βn. If either

X3 or X4 is nonempty, we can find an edge in Gg[X2, X3 ∪ X4] and we are done.

Therefore we can assume that X3 and X4 are empty. Similarly, either we have a

triangle or two of the sets Y2, Y3, Y4 are empty, which means that at least one of Y3 or

Y4 is empty. Call it Yi (i = 3 or 4). Notice now that Zi = Ui and, in particular,

|Zi| ≥ 2βn and we can find a triangle in Gg[X1, X2, Zi].
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Now, we only need to find a large matching in the green component. The basic

idea is to use Hall’s Theorem to find a matching M1 in G[Z,X ∪ Y ] that covers the

all vertices in Z and afterward use Corollary 3.15 to prove that there are large

matchings M2 in V (X) \ V (M1) and M3 in V (Y ) \ V (M1). But in order to use

Corollary 3.15 effectively, we want the difference between the largest part in

V (X) \ V (M1) and the sum of the others to be small. So, the matching M1 needs to

be chosen with some care.

We select a set L ⊂ X ∪ Y that shall be avoided by M1. Let L be a subset of

X ∪ Y of order 4 ⌊2η3.10n⌋ containing ⌊2η3.10n⌋ vertices from each of two different Xi’s

and two different Yi’s, and otherwise arbitrary.

We check that Hall’s condition works to find a matching M1, among the (green)

edges from Z to (X ∪ Y ) \ L, that covers all vertices of Z. In fact, a single vertex in

Z, say z ∈ Z1, has degree at least |(X ∪ Y ) \ L| − |X1 ∪ Y1| − βn >

2(1/4 + 5η3.10)n − (8η3.10n) − (1/4 + 3β)n − βn > (1/4 + η3.10)n. Then, for any

S ⊂ Z, denoting by N(S) the set of neighbors of S in (X ∪ Y ) \ L, we have: if

|S| < (1/4 + η3.10)n then |N(S)| ≥ |S|; and if |S| ≥ (1/4 + η3.10)n then S intersects at

least two of the sets Zi’s, in which case we have

|N(S)| ≥ |(X ∪ Y ) \ L| − 2βn

> 2(1/4 + 5η3.10)n − (8η3.10n) − 2βn > (1/2 + η3.10)n > |Z| ≥ |S|.

Therefore, there exists a green matching M1 that covers all vertices of Z. Denote

X ′ = X \ V (M1), X ′
i = Xi \ V (M1) and assume, without loss of generality, that X ′

1 is

the largest among X ′
1, X ′

2, X ′
3 and X ′

4. Let

k = max{|X ′
1| − (|X ′

2| + |X ′
3| + |X ′

4|), 0}.
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Since |X ′
1| ≤ |V1| ≤ (1/4 + 3β)n and because at least one of the sets X ′

2, X ′
3, X ′

4

contains ⌊2η3.10n⌋ vertices from L, we have k ≤ (1/4 + 3β − ⌊2η3.10⌋)n. By

Corollary 3.15, applied to Gg[X ′
1, X

′
2, X

′
3, X

′
4] with m = βn and r = 4, there is a

matching M2 that covers all vertices in X ′ except for at most

k + 4βn ≤ (1/4 + 7β − ⌊2η3.10⌋)n

vertices. The analogous statement holds replacing X ′
i by Y ′

i .

The conclusion is that M1 ∪ M2 ∪ M3 leaves uncovered at most

2(1/4 + 7β − ⌊2η3.10⌋)n

vertices. Therefore,

|V (M1) ∪ V (M2) ∪ V (M3)| ≥ |V (G)| − (1/2 − 2 ⌊2η3.10⌋ + 14β)n ≥ (1/2 + 2η3.10)n,

as desired.

Case 2: |Z| ≤ η3.10n.

We claim that if |X| > (1/2 + 2η3.10)n, we can find a large monochromatic odd

connected (green) matching in Gg[X]. In fact, if |X| > (1/2 + 2η3.10)n, then at least

three of the sets Xi’s are larger than η3.10n > 2βn. Therefore Gg[X] contains a

triangle and, in particular, is not bipartite. Also remember that Gg[X] is connected.

Finally, we check that Lemma 3.14 gives us a large matching inside X: since

|Xi| < (1/4 + 3β)n < |X|/2, for 1 ≤ i ≤ 4, no Xi can be larger than the sum of the

others, so we apply the lemma and conclude that there exists a matching of order at

least |X| − 4βn > (1/2 + η3.10)n, i.e., the orders of X and Y are close to each other.

Now, we can assume that |X|, |Y | ≤ (1/2 + 2η3.10)n. Since Z ≤ η3.10n, we have

|X|, |Y | ≥ (1/2 − 3η3.10)n = (1 − 6η3.10)n/2. If there is no green edge from X to Y ,
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then we have an ECB(6η3.10, β) which in particular is an ECB(α1, α1). Now, assume

that there is a green edge uv from X to Y . Since Gg[X] and Gg[Y ] are connected, we

conclude that Gg[X ∪ Y ] is connected. Using Corollary 3.15 twice, we can find large

green matchings inside each of X and Y . In fact, as |X| > (1/2 − 3η3.10)n and

max{|Xi|} ≤ (1/4 + 3β)n, the difference between the largest |Xi| and the sum of the

others is at most 3η3.10 + 6β. This implies that there is a matching in Gg[X] that

misses at most ((3η3.10 + 6β) + 4β)n vertices of X. Similarly, there is a matching in

Gg[Y ] that misses at most (3η3.10 + 10β)n vertices of Y . The union of those

matchings is a (very) large green connected matching M : it covers almost all vertices

of G and we only need to cover (1/2 + 2η3.10)n vertices.

If either X or Y has at least three non-empty parts, then we can find a triangle,

as in the beginning of the previous case, in which case M is an odd matching and we

are done. Otherwise, at least two of Xi’s and two of Yi’s are empty. We can assume,

without loss of generality, that the sets X3 and X4 are empty. This implies that

|X1|, |X2| ≥ ((1/4 − β) − η3.10)n ≥ (1 − 5η3.10)n/4. Therefore, |Y1|, |Y2| ≤ 5η3.10n and,

as |Y | ≥ (1/2 + 2η3.10)n and |Yi| ≤ n/4 for all i, we have that |Y3| and |Y4| are

non-empty. It follows that Y1 and Y2 must be empty, which implies

|Y3|, |Y4| ≥ (1 − 5η3.10)n/4.

We are getting closer to prove that the coloring of G must be an ECA(5η3.10, β).

In fact, we already know that there is no red edge in G[X1, X2] or G[Y3, Y4]. We can

assume, without loss of generality, that the green edge uv from X to Y is such that

u ∈ X1 and v ∈ Y3. If there is any green edge in G[X1, Y4] we can greedily construct

an odd green cycle, in which case M will be odd. Therefore we can assume that there

is no green edge in G[X1, Y4]. Similarly, we can assume that there is no green edge in

G[X2, Y3]. Then, we conclude that our coloring is of type ECA(5η3.10, β) which in

particular is an ECA(α1, α1).
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3.4 Paths and cycles in bipartite graphs and in the

extremal colorings

The aim of this section is to prove Lemmas 3.11 and 3.12. To this end, we will

need the following fact which appears as Theorem 15 of Chapter 10 of Berge [10].

Lemma 3.16. Let G = (A,B) be a bipartite graph with |A| = |B| = n ≥ 2, δ(G) ≥ 2

such that for each j, 2 ≤ j ≤ n+1
2

, in each of the sets A, B, the number of vertices of

degree at most j is smaller than j − 1. Then G is Hamilton-connected, i.e., each pair

of vertices v, w with v ∈ A and w ∈ B can be connected by a Hamiltonian path.

The next easy lemma, originally from [5] (in Portuguese), state that we can find

long paths in bipartite graph with large minimum degree. The idea of the proof is to

build such paths in a greedy fashion. We give a full proof here for easy reference.

Lemma 3.17. Let H be a bipartite graph with bipartition X ∪ Y , |X|, |Y | ≥ 4, and

let p and q be integers such that 0 ≤ p < |X|/3 and 0 ≤ q < |Y |/3. Assume that for

every x ∈ X, deg(x, Y ) ≥ |Y | − q and for every y ∈ Y , deg(y,X) ≥ |X| − p. Then

(a) for any two vertices x, x′ ∈ X there exists an (x, x′)-path of length 2k − 2 for

every k, 2 ≤ k ≤ min{|X|, |Y | − 2q}; the analogous statement, obtained by

exchanging the two vertex classes, also holds;

(b) for any two vertices x ∈ X, y ∈ Y there exists an (x, y)-path of length 2k − 1

for every k odd, 2 ≤ k ≤ min{|X| − 2p, |Y | − 2q}.

Proof. In order to prove (a), we first select k distinct vertices x1, . . . , xk ∈ X (recall

k ≤ |X|) such that x1 = x, xk = x′. It is easy to build a path Pk = x1y1x2y2 . . . yk−1xk,

with yi ∈ Y for all i, 1 ≤ i ≤ k − 1. Assuming that for a given ℓ, 1 ≤ ℓ ≤ k − 1, we

have built Pℓ = x1y1 . . . yℓ−1xℓ, let yℓ be any vertex in the common neighborhood of xℓ
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and xℓ+1 which is not in V (Pℓ). Then set Pℓ+1 = Pℓyℓxℓ+1. Such a vertex exists as

|(N(xℓ−1) ∩ N(xℓ)) \ V (Pl)| ≥ (|Y | − 2q) − (l − 1) ≥ 2 > 1,

since

l ≤ k − 1 ≤ |Y | − 2q − 1.

The proof of (b) is similar: first take a neighbor x′ of y such that x′ 6= x, and then

apply the previous construction to find a path of length 2k from x to x′, while

making sure that this path also avoids y.

Lemma 3.18. Let r ≥ 3 and let G be an r-partite graph of order n ≥ 3, with parts

Vi such that |Vi| ≤ ⌊n/2⌋, 1 ≤ i ≤ r. Assume that each Vi is partitioned into Xi ∪ Wi

where |⋃r
i=1 Wi| < n/(2r) and that for every i 6= j the graphs G[Xi, Xj] and

G[Xi,Wj] are complete. Then G has a Hamiltonian cycle.

Proof. In this proof, contrary to our standard notation, we write Pk for a path with

2k vertices. We also set V k
i = Vi \ V (Pk), Xk

i = Xi \ V (Pk), W k
i = Wi \ V (Pk),

V k =
⋃r

i=1 V k
i , W k =

⋃r
i=1 W k

i and nk = |V k| = n − 2k.

We say that a path Pk in G is good if it is such that |V k
i | ≤ ⌊nk/2⌋ for every

1 ≤ i ≤ r and that either |W k| ≤ 1 or |W k| < nk/r whenever k is odd and

|W k| < nk/(2r) whenever k is even. We prove by induction on k that, for

k ≤ ⌊(n − 2)/2⌋, there exists a good path Pk.

For k = 1, we let Pk = x1y1, where x1 is a vertex belonging to a largest class Vi

and y1 a vertex belonging to the second largest class. One can easily check that this

is a good path. Now, assume that Pk = xkxk−1 . . . x1y1 . . . yk−1yk is a good path for

some k ≤ ⌊(n − 2)/2⌋ − 1.

We claim that we can extend Pk to a good path Pk+1 by adding a new neighbor to

each endpoint of Pk. Let ik be such that |V k
ik
| is maximum among |V k

1 |, . . . , |V k
r |.
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Select two vertices u, v such that u ∈ V k
ik

, v ∈ V k \ V k
ik

, u is adjacent to one of xk, yk

and v is adjacent to the other. Notice that |W k| < nk/r implies that Xk
ik

= V k
ik
\ W k

and Xk \ Xk
ik

are nonempty, therefore we have no trouble with the existence of u and

v (even if xk, yk ∈ W k). But we require extra care while choosing v. In the case where

|V k
ik
| = (nk − 1)/2, two things can happen: either all other classes V k

i have order

strictly less than (nk − 1)/2 or there are only three nonempty classes, two of order

(nk − 1)/2 and one of order 1. In the latter case, we require v to be chosen from the

large class not containing u. We also assume that u and v are chosen from W k

whenever this is possible. Finally, we let {xk+1, yk+1} = {u, v} and

Pk+1 = yk+1yk . . . y1x1 . . . xkxk+1.

We claim that for the choice of u, v as above the path Pk+1 is good. The fact that

|V k+1
i | ≤ ⌊nk+1/2⌋ is straightforward. One also verify that for every i, with 1 ≤ i ≤ k,

either |W i| ≤ 1 or at least one among the vertices xi, yi, xi+1, yi+1 is chosen from W .

In fact, if both xi, yi are not in W , then xi+1 or yi+1 can be chosen from W except in

the particular case where there are only three nonempty classes, two of order

(ni − 1)/2 and one of order 1 and in which the only vertex of W is that in the class of

order 1. If k + 1 is even, then the facts that nk+1 = nk−1 − 4, one xk, yk, xk+1, yk+1 is

in W and |W k−1| ≤ nk−1/(2r) implies that |W k+1| ≤ nk−1/(2r) − 1 ≤ nk+1/(2r). If

k + 1 is odd, the fact that |W k| ≤ nk/(2r) implies that |W k+1| ≤ nk+1/r. Therefore

Pk+1 is good. Next treat the case whether n is even or n is odd separately.

First, we assume that n is odd. Let k = (n − 3)/2. We conclude that there exists

a good path Pk = ykyk−1 . . . y1x1 . . . xk−1xk (of order 2k = n − 3), such that

Pk−1 = yk−1 . . . y1x1 . . . xk−1 is also good. Let V k = V \ V (Pk) = {a, b, c}. The fact

that Pk−1 is good implies that at most one of xk, yk, a, b, c is in W . And the fact that

Pk is good implies that a, b and c belong to different partition classes. Therefore a, b,

c are adjacent to each other. Also, two of them, say a, b, are such that a is adjacent

to xk and b is adjacent to yk. Therefore, we have a Hamiltonian cycle

Cn = cby(n−3)/2 . . . y1x1 . . . x(n−3)/2ac.
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Finally, assume that n is even. Let k = (n − 2)/2. As in the previous case, we

consider a good path denoted by Pk = ykyk−1 . . . y1x1 . . . xk−1xk (of order 2k = n − 2),

and so that Pk−1 is also good and we let V k = V \ V (Pk) = {a, b}. Using that Pk and

Pk−1 are good we conclude that at most one among xk, yy, a, b is in W and that a and

b are in different partition classes. Therefore, we have a Hamiltonian cycle

Cn = by(n−2)/2 . . . y1x1 . . . x(n−2/2ab.

We are ready to prove Lemma 3.11, which we shall restate for easy reference.

Lemma 3.11. For n odd, let G = K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be the only

vertex of degree 2n − 2 and let H = G \ {u}. There exists α3.11 > 0 such that, for all

α ≤ α3.11 and δ ≤ α, there is a positive integer n3.11 with the following property: for

every odd n ≥ n3.11, every 2-coloring of G such that the induced coloring in H is of

type ECA(α, δ) contains a monochromatic Cn.

Proof. We set

α3.11 = 10−4

and consider any α ≤ α3.11. Note that, for every δ ≤ α, any coloring of type

ECA (α, δ) is also of type ECA (α, α), hence, we may assume that δ = α. Take

n3.11 =
⌊
α−4
⌋
.

Select n odd, with n ≥ n3.11. We let V (G) = U1 ∪ U2 ∪ U3 ∪ U4 ∪ {u}, where U1,

U2, U3, U4 are independent sets of order (n− 1)/2 and u is the (only) vertex of degree

2n − 2. We also let H = G \ {u}. Consider any 2-coloring of G such that the coloring

restricted to H is of type ECA(α, α). We aim to find a monochromatic Cn in this

coloring. Let A, B, C, D be sets satisfying conditions (a), (b) and (c) of ECA(α, α)

and notice that we must have A ⊂ U1, B ⊂ U2, C ⊂ U3, D ⊂ U4 (without loss of

generality on the ordering of the sets Ui). Also, let Z = V (H) \ (A ∪ B ∪ C ∪ D).
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Now, consider the vertex u with full degree and look at the color of the edges

from u to A ∪ B ∪ C ∪ D.

Claim 3.19. If u has red neighbors in both A and B, we can find a

monochromatic Cn. Similarly, if either u has red neighbors in both C and D or green

neighbors in both B and C or green neighbors in both A and D, then we can find

find a monochromatic Cn.

Proof. Suppose that there exist a ∈ A and b ∈ B such that ua and ub are red. We

show how to find a Cn in this case; the other cases can be dealt with similarly.

We show that if there exists a pair of vertex-disjoint red edges between A \ {a}

and C, say a1c1 and a2c2, with ai ∈ A \ {a} and ci ∈ C, i = 1, 2, one can find a red

Cn. In fact, we can find such a path by applying Lemma 3.17 a few times with

p = q = α2n. More precisely, there exists a (b, a1)-path P in Gr[A \ {a}, B] of length

3. Also, there is a (c1, c2)-path Q in Gr[C,D] of any even length between 2 and

2(min{|C|, |D| − 2α(2n)}) − 2, and a (a2, a)-path R in Gr[A \ V (P ), B \ V (P )] for

any even length between 2 and 2 min{|A \ V (P )|, |B \ V (P )| − 2α(2n)} − 2.

Then for any even number k between 4 and

2
(
min{|A \ V (P )|, |B \ V (P )| − 2α(2n)} + min{|C|, |D| − 2α(2n)}

)
− 4, (3.3)

we can choose Q and R so that e(Q) + e(R) = k. Clearly,

P ∪ Q ∪ R ∪ {au, ub, a1c1, a2c2} is a copy of Ck+7. Notice from the above expression

that we can take k = n− 7 with room to spare. In fact, by condition (a) of ECA (α, δ)

we have

|A \ V (P )|, |B \ V (P )|, |C|, |D| ≥ (1 − α)(n − 1)

2
− 2.

Together with the bound (3.3), we have that k can be any even number between 4 and

2
(
(1 − α)(n − 1) − 8αn

)
− 4 = 2n − 18αn − 6 + α, which is much bigger than n − 7.
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This means that we can assume that there is no red edge in E(A \ {a}, C), with

the exception of at most one red star. This implies that all red edges in E(A,C) are

contained in at most two stars. By the same argument, there are no red edges in

E(B,D) with the exception of at most two red stars. So, almost all edges in

E(A ∪ B,C ∪ D) are green.

Again by Lemma 3.17 with p = q = α(2n) ≥ α(2n − 2) + 4, this time applied to

Gg[A ∪ B,C ∪ D], for any x, y ∈ A ∪ B, we can find a (x, y)-path of any given even

length between 2 and 2(min{|A ∪ B|, |C ∪ D|} − 2α(2n)) − 2. We remark that when

x = a or when x is the center of a red star, we cannot apply the lemma directly (as a

might not satisfy the condition deg(a, C ∪ D) ≥ |C ∪ D| − α(2n)). However, we still

can select one of its green neighbors in D, say d, and use the lemma to find a long

(d, y)-path. Again, the upper estimate on the order of our path is close to 2n and is

clearly larger than n − 1. Therefore, if there is any green edge xy with x ∈ A and

y ∈ B, we can find a green Cn.

Now, we can assume that all edges in G[A,B] are red. Similarly, we can assume

that all edges in G[C,D] are red. Once more, by applying Lemma 3.17 to

Gg[A ∪ B,C ∪ D], for any x ∈ A ∪ B and y ∈ C ∪ D, we can find a (x, y)-path of any

odd length up to almost 2n and in particular we can find a (x, y)-path of length

n − 2. Therefore, if there is any vertex in Z ∪ {u} that has green neighbors in both

A ∪ D and B ∪ C we can find a green Cn. So, we can assume that this does not

happen, which means that we can partition the set Z ∪ {u} into sets S and T such

that the vertices in S have only red neighbors in A ∪ B and the vertices in T have

only red neighbors in C ∪ D. Since we have 2n − 1 vertices in total (in G), either

A ∪ B ∪ S or C ∪ D ∪ T has at least n vertices. Without loss of generality, we can

assume that |A ∪ B ∪ S| ≥ n. Let W be any subset of S such that |A ∪ B ∪ W | = n.

Notice that now we can apply Lemma 3.18 to find a red Cn in G[A ∪ B ∪ W ] as

follows: denote X1 = A, X2 = B, X3 = X4 = X5 = ∅, Wi = W ∩ Ui, for 1 ≤ i ≤ 4 and
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W5 = W ∩ {u}. Clearly, |Xi ∪ Wi| ⊂ |Ui| ≤ ⌊n/2⌋ and |W | ≤ |Z ∪ {u}| ≤ α(2n − 2),

so the conditions of the lemma are satisfied. Therefore, we can find a red Cn. This

finishes the proof of the claim.

Continuing with the proof of Lemma 3.11, select any edge from u to A. From the

symmetry of the coloring, we can assume that such an edge is red. Applying

Claim 3.19 repeatedly, either we find a Cn, or we can assume that all edges from u to

B are green, all edges from u to C are red, all from u to D are green and all from u

to A are red.

Consider any edge xy ∈ E(A,C). Either if xy is red or green we can use an

argument similar to the one in proof of Claim 3.19 to find a monochromatic Cn. More

precisely, if xy is red take a ∈ A, c ∈ C with a 6= x and c 6= y. So, we have that au and

cu are red. We can use Lemma 3.17 to find an even length (a, x)-path P in Gr[A,B]

and an even length (c, y)-path Q in Gr[C,D] so that P ∪ Q ∪ {au, uc, xy} is a red Cn.

Similarly, if xy is green we consider any b ∈ B and d ∈ D. So, we have bu and du are

green and by Lemma 3.17 we can find odd length (x, d)-path P in Gg[A,D] and an

odd length (y, b)-path Q in Gg[B,C] such that P ∪ Q ∪ {xy, bu, ud} is a green Cn.

This completes the proof of Lemma 3.11.

To finish this section, we give a proof for Lemma 3.12, which we also restate for

easy reference.

Lemma 3.12. For n odd, let G = K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1, let u be its only

vertex of degree 2n − 2 and let H = G \ {u}. There exists α3.12 > 0 such that, for all

α ≤ α3.12 and δ ≤ α, there is a positive integer n3.12 with the following property: for

every odd n ≥ n3.12, every 2-coloring of G, such that the induced coloring in H is of

type ECB(α, δ), contains a monochromatic Cn.
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Proof. Similarly to the proof of Lemma 3.11, we set

α3.12 = 10−4

and consider any α ≤ α3.12. Again, note that for every δ ≤ α, any coloring of type

ECB (α, δ) is also of type ECB (α, α), hence, we may assume that δ = α. Take

n3.12 =
⌊
α−4
⌋
.

Let n be odd, with n ≥ n3.12. We let V (G) = U1 ∪ U2 ∪ U3 ∪ U4 ∪ {u}, where U1,

U2, U3, U4 are independent sets of order (n− 1)/2 and u is the (only) vertex of degree

2n − 2. We also let H = G \ {u}. Consider any 2-coloring of G such that the coloring

restricted to H is of type ECB(α, α). We aim to find a monochromatic Cn in this

coloring.

Let X ∪ Y ∪Z be a partition of V (H) where X and Y satisfy conditions (a)-(d) of

ECB(α, δ). Let Xi = X ∩ Ui, Yi = Y ∩ Ui. In particular, |X|, |Y | ≥ (1 − α)(n − 1)

which implies that |Z| ≤ α(2n − 2).

We claim that if there is any red edge inside X we can find a red Cn. To see that,

assume that wx is such an edge. Let y be any red neighbor of x in Y . We claim that

we can construct a (w, y)-path P of length n − 2 in Gr[X \ {x}, Y ]. We choose

subsets X ′ ⊂ X and Y ′ ⊂ Y such that:

(a) w ∈ X ′, x /∈ X ′, y ∈ Y ′,

(b) |X ′| = |Y ′| = (n − 1)/2 and

(c) |X ′
i ∪ Y ′

i | ≤ (n + 1)/4 + αn, where X ′
i = X ′ ∩ Ui and Y ′

i = Y ′ ∩ Ui.

This can be done because (1 + α)(n − 1) ≥ |X|, |Y | ≥ (1 − α)(n − 1) and

|Xi ∪ Yi| ≤ |Ui| = (n − 1)/2. In fact, for example, one can start taking half of the
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elements of each set Xi and Yi (rounded to the closest integer), so that property (c)

will be true with some room to spare, and then add or subtract at most αn/2 vertices

to each X ′ and Y ′, so that properties (a) and (b) are satisfied.

Let us check that the graph Gr[X ′, Y ′] satisfies the conditions of Lemma 3.16. Let

2 ≤ j ≤ (|Y ′| + 1)/2 and write j = (|Y ′| + 1)/2 − k = (n + 1)/4 − k, for some

0 ≤ k ≤ (|Y ′| + 1)/2 − 2. Let Rj = {v ∈ X ′ : deg(v, Y ′) ≤ j}. We need to check that

|Rj| < j − 1.

We claim that for k > 3αn we have Rj = ∅ and for k ≤ 3αn we have

|Rj ∩ X ′
i| ≤ 3αn − (k − 1). To see this, assume that Rj ∩ X ′

i 6= ∅, for some 1 ≤ i ≤ 4,

and let v ∈ Rj ∩ X ′
i. Since v is adjacent to all but at most α(2n − 2) vertices in

⋃

t6=i Yt, we have that

∑

t6=i

|Y ′
t | − α(2n − 2) ≤ deg(v, Y ′) ≤ j =

|Y ′| + 1

2
− k.

Therefore,

|Y ′
i | = |Y ′| −

(
∑

t6=i

|Y ′
t |
)

≥ |Y ′| − 1

2
+ k − α(2n − 2) ≥ n − 3

4
+ k − 2αn.

This and condition (c) above imply that

|Rj ∩ X ′
i| ≤ |X ′

i| = |X ′
i ∪ Y ′

i | − |Y ′
i | ≤ 3αn − (k − 1).

In particular, whenever Rj 6= ∅ we have k ≤ 3αn, proving the claim.

We conclude that |Rj| ≤ 12αn − 4(k − 1) < n+1
4

− k − 1 = j − 1. Therefore, we

can use Lemma 3.16 to find a (red) Hamiltonian (w, y)-path in Gg[X ′, Y ′].

Appending the edges wx and xy to this path we get a red Cn.

We can assume now that all edges of G[X] are green, i.e., G[X] is a complete

green multipartite graph. Similarly, we can assume that all edges in G[Y ] are also
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green. Furthermore, if there is any vertex z in Z such that z has red neighbors x, y

with x ∈ X and y ∈ Y , we can use the same argument as above to find a (x, y)-path

P in Gr[X,Y ] such that P ∪ {xz, zy} is a (red) Cn. Finally, if this does not happen,

the set Z ∪ {u} can be partitioned into S ∪ T such that all edges from S to X and all

edges from T to Y are green. Since the total number of vertices in G is 2n − 1, we

have that either |X ∪ S| ≥ n or |Y ∪ T | ≥ n. Assume, without loss of generality, that

the first inequality holds. Letting W be any subset of S such that |X ∪ W | = n, one

can apply Lemma 3.18 to find a green Cn in G[X ∪ W ]. In fact, the conditions of

Lemma 3.18 are satisfied by the sets Vi = Xi ∪ Wi where Wi = W ∩ Ui, for 1 ≤ i ≤ 4,

W5 = W ∩ {u} and X5 = ∅. This completes the proof.

We remark that our main theorem of Chapter 4 (Theorem 4.2) shall generalizes

Theorem 3.2 as follows: if the graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 in the statement of

Theorem 3.2 is replaced by any graph G on 2n − 1 vertices and large minimum

degree, then any 2-coloring G must still contain a monochromatic Cn. We note,

however, that the proofs in Chapter 4 do not rely on any theorem of Chapter 3.

Indeed, what we shall do is to prove a more general version of Theorem 3.10 whose

proof is self-contained; then we use this more general version to prove Theorem 4.2.
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Chapter 4

Ramsey numbers of cycles in graphs

with large degree

In a recent article, Li, Nikiforov and Schelp [29] conjectured that the following

generalization of Theorem 3.2 holds.

Conjecture 4.1. Let N ≥ 4 and let G be a graph of order N and minimum degree

bigger than 3N/4. For any 2-coloring of the edges of G and any k, 4 ≤ k ≤ ⌈N/2⌉, G

contains a monochromatic Ck.

They proved [29] that, for any ε > 0 and n large enough, the same assumptions

imply that we can find a monochromatic Ck for every k between 4 and ⌊(1/8 − ε)N⌋.

Compare Conjecture 4.1 with Theorem 3.2: given a natural number n, letting

G = Kn−1

2
, n−1

2
, n−1

2
, n−1

2
,1 and N = 2n − 1, so that N is the number of vertices of G, we

have that all but one vertex of G has degree exactly ⌈3N/4⌉. We remark, however,

that denoting by u the vertex of G which has full degree, if we remove a few edges

incident to u in a way that u has degree ⌈3N/4⌉, our proof of Theorem 3.2 shall still

work. In fact, one would only need make slight changes in the proofs of Lemmas 3.11

and 3.12 to make them work with this subgraph of G, and those lemmas are the only
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places where u plays a crucial role. This means that Theorem 3.2 is a tight situation

in which the above conjecture holds.

Together with Bollobás and Skokan [7], who independently thought about the

same conjecture, we attacked Conjecture 4.1 in the opposite direction that Li,

Nikiforov and Schelp did, i.e., we considered the case where k = ⌈N/2⌉. In this

chapter, we give a proof of the following theorem which generalizes Theorem 3.2 and

is also sharp.

Theorem 4.2. There exists an integer n0 with the following property: If n > n0 is

an odd integer and G is a graph on 2n − 1 vertices such that its complement, G, has

maximum degree at most (n − 3)/2, we have that G arrows Cn.

Remark. We note that in Theorem 4.2 the minimum degree of G is at least

3n−1
2

=
⌈

3(2n−1)
4

⌉

=
⌈

3N
4

⌉
, where N = 2n − 1 = |V (G)|.

4.1 Tools for finding large paths and cycles

We shall make use of a series of well-known results. The first one is due to Erdős

and Gallai [16].

Theorem 4.3. Given integers n and ℓ, with ℓ ≥ 3, every graph G on n vertices and

at least (ℓ − 1)(n − 1)/2 + 1 edges contains a cycle of length at least ℓ. In particular,

if G has at least ℓn/2 edges, then it contains a connected matching of size at least ℓ/2

(edges).

When a graph has large minimum degree we can say a little more. The following

theorem is a consequence of the well-known result of Bondy [12].

Theorem 4.4. Suppose that G is a graph with minimum degree δ(G) > |V (G)|/2.

Then G contains the cycle Ck for each k = 3, . . . , |V (G)|.
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We will also use the following well know construction and theorem by Bondy and

Chvátal.

Definition 4.5. The Hamilton closure of a graph on n vertices is obtained by

recursively joining any two non-adjacent vertices whose sum of degrees is at least n.

Theorem 4.6. A graph is Hamiltonian if and only if it Hamilton closure also is.

To finish this section, we state and prove another lemma which is a simple

consequence of Theorem 4.6.

Lemma 4.7. Let G be a graph on k vertices. Suppose that there is a partition of the

vertex set V (G) into X ∪ W so that every vertex in X has at most (k − 3)/2

non-neighbors in X ∪ W , every vertex in W has at most (k − 3)/2 non-neighbors in

X and |W | ≤ (k + 1)/4. Then G is hamiltonian.

Proof. Let H be the hamiltonian closure of G. Any vertex in X has degree at least

k − 1 − ⌊(k − 3)/2⌋ = ⌈(k + 1)/2⌉. Therefore, any two vertices in X are connected by

an edge in H, i.e., H[X] is a complete graph. Knowing this, we also conclude that, in

H, every vertex of X has degree at least k − 1 − |W |. We also knew from start that

every vertex of W has degree at least |X| − (k − 3)/2. Also, we trivially have

|X| − |W | = k − 2|W | ≥ (k − 1)/2. Hence, if we choose a vertex from X and a vertex

from W , the sum of their degrees in H is at least k − 1 − |W | + |X| − (k − 3)/2 ≥ k.

Therefore, H[X,W ] is a complete bipartite graph.

It is easy to see that H is Hamiltonian. Indeed, first we take a path in H[X,W ]

starting and ending at X and saturates all the vertices of W . Then, in the complete

graph H[X], we complete this path to a Hamiltonian cycle. By Theorem 4.6, G is

also Hamiltonian.

Remark. Lemma 4.7 would not be true if |W | ≥ (k + 1)/4 + 1. For example, when k

is congruent to 3 modulo 4, we can consider sets X1, X2,W so that |W | = (k + 5)/4,
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|X1| = (k + 1)/4, |X2| = (k − 3)/2. Denoting X = X1 ∪ X2, we consider the graph on

X ∪ W containing all edges inside X, all edges from W to X1 and nothing else. Such

graph is not hamiltonian as we can find no path covering all vertices of W .

4.2 Graphs with large minimum degrees arrow large

connected matchings

In this section, we shall prove a self-contained stability theorem concerning large

monochromatic connected matchings in a 2-multi-coloring of a graph with large

minimum degree. Such theorem will be our main tool to prove Theorem 4.2. As in

the previous chapter, before we can state our stability theorem we need to introduce

some notation and define two particular (extremal) colorings.

A bipartite graph H with bipartition V (H) = A ∪ B is said to be bi-q-complete if

the maximum degree in its multipartite complement H is at most q, that is, a vertex

in A misses at most q vertices in B and vice-versa. We shall omit the prefix “bi-”

when there is no risk of confusion. Also, note that if for some n and γ we have that

|A| = |B| = n and A ∪ B is bi-γn-complete, then H is (1 − γ)-dense.

Coloring 4.8 (EC1(α, δ, γ)-type). Let G be a graph with |V (G)| = n. A

2-multi-coloring of a graph G is of type EC1(α, δ, γ), where 0 ≤ α, δ, γ < 1, if there

exist disjoint sets of vertices A, B, C, D such that

(a) |A|, |B|, |C|, |D| ≥ (1/4 − α)n;

(b) the graphs G[A], G[B], G[C], G[D] are δn-complete;

(c) the bipartite graphs Gr∗ [A,B], Gr∗ [C,D], Gb∗ [A,D], Gb∗ [B,C], are δn-complete.

(d) the bipartite graphs G[A,C], G[B,D] are γn-complete.
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Remark. We do not require A ∪ B ∪ C ∪ D to contains all vertices of V (G), but

condition (a) implies that at most 2α|V (G)| vertices do not belong to A ∪B ∪C ∪D.

Coloring 4.9 (EC2(α, δ)-type). Let G be a graph with |V (G)| = n. A

2-multi-coloring of a graph G is of type EC2(α, δ), where 0 ≤ α, δ < 1, if there exist

disjoint set of vertices A and B such that

(a) |A|, |B| ≥ (1/2 − α)n;

(b) in one color, say red, the graphs Gr∗ [A], Gr∗ [B] are (1/4 + δ)n-complete;

(c) in the other color, say blue, the bipartite graph Gb[A,B] is connected and

contains a matching of size (1/4 + δ)n.

Remark. We do not require A∪B to contains all vertices of V (G), but condition (a)

implies that at most 4α|V (G)| vertices do not belong to A ∪ B.

One should also recall Definition 3.9, of a monochromatic connected matching in a

multi-coloring, to understand the next lemma.

Lemma 4.10. For every η with 0 < η < 10−4 there exists an integer t4.10 = t4.10(η)

with the following property: For every t > t4.10 and for every 2-multi-coloring of a

graph G on t vertices such that its complement G has maximum degree at most

(1/4 + η)t, either G has a monochromatic connected matching of size (strictly) bigger

than (1/4 + η)t or the coloring of G is of type EC1(4η, 4η, 0).

Proof. Assume that we are given 0 < η < 10−4 and let t4.10 = 2/η. Also, define

s = ⌊(1/4 + η)t⌋, let G be a graph on t vertices such that ∆(G) ≤ s and consider any

2-multi-coloring of G. Let M be the largest monochromatic connected matching and

assume that M is red. Let C be the connected component of Gr containing M .

We assume that

|M | ≤ (1/4 + η)t,
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aiming to prove that the coloring of G is of type EC1(4η, 4η, 0). Let Z = C \ V (M)

and observe that no edge in Z is colored red because the size of M is maximal.

Moreover, the maximality of M also implies that we can write

M = {x1y1, . . . , xmym}, where every xi has at most one red neighbor in C \ V (M).

Let X = {xi : i ∈ [1, . . . ,m]} and Y = {yi : i ∈ [1, . . . ,m]}. Put C ′ := V (G) \ C

and note that, by the maximality of C, no edge between C and C ′ is colored red.

We distinguish two cases according to the number of vertices in |C ′|.

Case 1: |C ′| ≤ 5ηt (including |C ′| = ∅).

If |Z| ≥ 2s + 3, then the blue graph induced on Z has minimun degree at least

|Z| − 1 − s > |Z|/2. So, it satisfies the assumptions of Theorem 4.4 and, therefore, it

contains a blue cycle of length |Z| > 2s + 2 > 2|M |. Thus it has a (monochromatic

connected) matching bigger than M , a contradiction.

Hence, assume that |Z| ≤ 2s + 2. From this we obtain that

(
1

4
− 4η

)

t ≤ t

2
− s − 1 − 2.5ηt ≤ t − |Z| − |C ′|

2
= |X| = |Y | ≤

(
1

4
+ η

)

t

and
(

1

2
− 7η

)

t ≤ t − |X| − |Y | − |C ′| = |Z| ≤ 2s + 2 ≤
(

1

2
+ 3η

)

t.

Claim 4.11. X ∪ Z is contained in one blue component.

Proof of Claim 4.11. Suppose, for a contradiction, that Z has non-empty

intersections with at least two blue components and let Z = Z1 ∪ Z2 be a partition

such that there are no blue edges between Z1 and Z2. There cannot be any red edges

between Z1 and Z2 as well because there are no red edges in Z. Therefore there are

no edges between Z1 and Z2 at all. We immediately have that |Z1|, |Z2| ≤ s.
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Consequently, for i = 1, 2,

s − 9ηt ≤ (1/4 − 7η − η)t ≤ |Z| − s ≤ |Zi| ≤ s = (1/4 + η)t.

Now, every vertex of Zi is non-adjacent to all vertices of Z3−i, then it has at most

another 9ηt non-neighbors in X. Each vertex of X has at most one red neighbor in

Z, in particular, the number of red edges from X to Zi is at most |X|. Since for i = 1

and i = 2, we have 2|Zi| > |X|, we can find vertices zi ∈ Zi such that zi has at most

one red neighbor in X. But now, as 9ηt + 1 < |X|/2, z1 and z2 must have a common

blue neighbor in X. This contradicts the assumption that Z1 and Z2 are contained in

different blue components.

Therefore, Z is contained in one blue component. Now, as |Z| > s + 1, every

vertex of X has a blue neighbor in Z. Hence, X is contained in the same blue

component. This finishes the proof of the claim.

Remark. It is also worth noting that such a component is non-bipartite, although

we do not need to use this immediately . In fact, as |X ∪Z| > t− |C ′| − |Y | > 2s + 2,

we can choose any edge in Z (which exists because |Z| ≥ s + 1) and find a common

neighbor for its endpoints, yielding a triangle. This will be useful in the proof of the

next lemma.

Now we shall build a blue matching in X ∪ Z. First, we select a maximal blue

matching M1 between X and Z. Such a matching has size at least

min{|X|, |Z| − s − 1} > (1/4 − 9η)t,

as this is the size of a matching build by greedily choosing vertices of X and

matching them to an unsaturated vertex in Z. As |X| ≥ (1/4 + η)t, M1 covers all but

at most 10ηt vertices of X. Let M2 be the largest matching in Z \ V (M1).
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If |M1| + |M2| ≥ s + 1, then we are done. Otherwise, |M1| + |M2| ≤ s, and we have

that |M2| ≤ 10ηt.

We consider the sets Z1 = Z \ (V (M1) ∪ V (M2)) and Z2 = Z \ Z1. By the

maximality of M2, we have that Z1 is an independent set. And clearly, it has order at

least |Z| − (|M1|+ |M2|)− |M2| ≥ (1/4− 18η)t. Therefore, a vertex in Z1 has at least

s − 19ηt − 1 non-neighbors in Z1 itself, so it has at most another 20ηt non-neighbors

Z2 ∪ X. This means that there are at most 20ηt|Z1| < 20ηt2 missing edges in

G[Z1, Z2 ∪ X]. We say that a vertex in Z2 ∪ X is bad if it misses more than t/8

vertices of Z1; and it is good otherwise. So, there are at most 160ηt bad vertices.

Because 160ηt < |M1| − 10η, we can find a subset M∗ of the edges of M1 such

that |M∗| = 10ηt and all endpoints of the edges in M∗ are good vertices. And since

all vertices of Z2 ∪X have at most one red neighbor in Z1, each of them must have at

least |Z1| − t/8 − 1 > 20ηt blue neighbors in Z1. Then we can remove M∗ from M1

and use its 2|M∗| vertices to construct (greedily) a blue matching M ′ in

G[Z1, Z2 ∪ X] of size 2|M∗|. Clearly, (M1 ∪ M2 ∪ M ′) \ M∗ is a blue matching of size

|M1| + |M2| − |M∗| + |M ′| = |M1| + |M2| + |M∗| ≥ s + 1.

Case 2: |C ′| > 5ηt.

We treat two subcases according to the order of C.

Subcase 2.1: |C| ≥ 2s + 1.

In this subcase, any two vertices of C ′ have a common (blue) neighbor in C. This

implies that C ′ is contained in one blue component. Also, note that we can find a

matching from C ′ to C covering min{|C ′|, |C| − s} ≥ min{|C ′|, s + 1} vertices of C ′.

Indeed, one can do that simply by greedily choosing vertices from C ′ and finding an

unsaturated vertex in C which is its neighbor. If |C ′| > |X| then such a matching is
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larger than M and we have a contradiction. Hence, we have

|C ′| ≤ |X| ≤ ⌊(1/4 + η) t⌋ = s,

which implies that

|Z| ≥ t − 3|X| ≥ (1/4 − 3η) t.

We will also use that

|Z| + |C ′| = t − |X| − |Y | ≥ (1/2 − 2η)t.

Claim 4.12. X ∪ Z ∪ C ′ is contained in the same blue component.

Proof of Claim 4.12. We already know that C ′ 6= ∅ and C ′ is in one blue component.

Let X1 ⊂ X and Z1 ⊂ Z be such that X1 ∪ Z1 ∪ C ′ is the intersection of the largest

blue connected component containing C ′ with X ∪ Z ∪C ′. Also, let X2 = X \X1 and

Z2 = Z \ Z1. Assume for a contradiction that X2 ∪ Z2 6= ∅. In this case, there are no

blue edges from X1 ∪ Z1 ∪ C ′ to X2 ∪ Z2. Every vertex in X2 ∪ Z2 is such that it has

no (blue or red) neighbor in C ′, and it has no blue and at most one red neighbor in

Z1. Therefore, |Z1| + |C ′| ≤ s + 1. Since |Z2| ≥ t − |X| − |Y | − (s + 1), it follows that

|Z2| ≥ (1/4 − 4η)t. In particular, the set Z2 is non-empty.

Now, any vertex in Z2 has no (blue or red) neighbor in C ′ ∪ Z1 and no blue

neighbor in X1. Additionally, since there are at most |X1| red edges from X1 to Z2

and |X1| < 2|Z2|, there must be a vertex in Z2 that has at most one red neighbor in

X1. Therefore, |X1 ∪ C ′ ∪ Z1| ≤ s + 1. Similarly, since no vertex in C ′ has a (blue or

red) neighbor in X2 ∪ Z2, we have |X2 ∪ Z2| ≤ s. This is impossible because

|X| + |Z| + |C ′| = t − |Y | > 2s + 1.

This finishes the proof of Claim 4.12.
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To continue with Subcase 2.1, our next goal is to find a blue matching M ′ of size

|X| − |C ′| + 1 in G[X ∪ Z]. Assuming that one has such M ′, observe that we can

greedily match all vertices from C ′ to vertices in (X ∪ Y ∪ Z) \ V (M ′), yielding a

matching larger than M . Indeed we can cover C ′, as all edges from C ′ to

(X ∪ Y ∪ Z) \ V (M ′) are blue and |C ′| ≤ (|X ∪ Y ∪ Z| − 2|M ′|) − s (because

|X ∪ Y ∪ Z| − 2|M ′| − s = |Z| + 2|C ′| − s − 2 ≥ |C ′| + (1/2 − 2η)t − s − 2 ≥ |C ′|).

Finally, by the previous claim, the resulting matching is connected, contradicting the

fact that M is maximal.

To prove the existence of a matching M ′ as above, consider the largest matching L

from X to Z. Assume, without loss of generality, that L = {xizi : i ∈ [ℓ]}. If

ℓ ≥ |X| − |C ′| + 1, there is nothing to prove, so we may assume that ℓ ≤ |X| − |C ′|.

Let X ′ = X \ V (L) and Z ′ = Z \ V (L). By the maximality of L, there are no blue

edges from X ′ to Z ′ and, by the choice of X, there are at most |X ′| red edges from

X ′ to Z ′. Now, every vertex of Z ′ has at least |X ′| + |Z ′| − s − 1 (red or blue)

neighbors in X ′ ∪ Z ′. Discounting the edges from Z ′ to X ′, we conclude that the

number of edges inside Z ′ is at least (|Z ′|(|X ′| + |Z ′| − s − 1) − |X ′|) /2. This

number is positive and all those edges are blue as there are no red edges inside Z ′. By

Theorem 4.3, the set Z ′ contains a matching L′ of size at least |X′|+|Z′|−s−1
2

− |X′|
2|Z′| .

Therefore, L ∪ L′ is a matching of size

|L ∪ L′| ≥ ℓ +
|X ′| + |Z ′| − s − 1

2
− |X ′|

2|Z ′| (4.1)

Clearly, 2|Z ′| = 2(|Z| − ℓ) ≥ 2(|Z| − |X| + |C ′|) ≥ (1/2 − 6η)t ≥ |X| ≥ |X ′|, and

so |X′|
2|Z′| ≤ 1.

Since |X ′| = |X| − ℓ and |Z ′| = |Z| − ℓ, inequality (4.1) implies that that

|L ∪ L′| ≥ |X| + |Z| − s − 1

2
− 1.
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To conclude Subcase 2.1, we only need to check that

|X| + |Z| − s − 1

2
− 1 ≥ |X| − |C ′| + 1.

This inequality is equivalent to

|X| + |Z| − s − 1 ≥ 2|X| − 2|C ′| + 4.

Replacing |Z| by t − 2|X| − |C ′|, we see that the inequality above is equivalent to

|C ′| + t ≥ 3|X| + s + 5.

This does hold since |C ′| > 5ηt, |X| ≤ (1/4 + η)t and s ≤ (1/4 + η)t.

Subcase 2.2: |C| ≤ 2s.

If |C ′| ≥ 2s + 1, then every two vertices of C have a common blue neighbor, what

implies that C is contained in one blue component. It easy to see that one can

greedily find a blue matching saturating all the vertices of X and one vertex from Y

in the blue bipartite graph G[C,C ′]. This contradicts the choice of M . Hence, we

have |C ′| ≤ 2s and this implies

(1/2 − 2η)t = t − 2s ≤ |C| ≤ 2s,

(1/2 − 2η)t = t − 2s ≤ |C ′| ≤ 2s.

Suppose that one of C and C ′ is contained in one blue component. Let M ′ be1 the

largest matching in the blue graph G[C,C ′]. Since M ′ must be connected, we must

have |M ′| < (1/4 + η)t, so there must be vertices u ∈ C and v ∈ C ′ not saturated

1Although we used the same letter, M
′, for a matching in the previous subcase, these two

matchings are unrelated.
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by M ′. Notice, however, that we can greedily construct a blue matching in G[C,C ′]

of size at least (1/2 − 2η)t − s = (1/4 − 3η)t. Therefore, |M ′| ≥ (1/4 − 3η)t. All the

vertices of C ′ \ V (M ′) are non-neighbors of u and all the vertices of C \ V (M ′) are

non-neighbors of v. Hence, the number of non-neighbors of u in C ′ ∩V (M ′) is at most

s − (1/4 − 3η)t = 4ηt < |M ′|/2. Similarly, v has at most |M ′|/2 non-neighbors in

C ∩ V (M ′). Hence, there are u′v′ ∈ M ′ such that u′v and v′u are blue. Consequently,

M ′ ∪ {u′v, v′′u} \ {u′v′} is a larger blue matching than M ′, a contradiction.

We have learned that, each of C and C ′ intersects at least two blue components

of G. Let C = C1 ∪ C2 be such that C1 6= ∅ and C2 6= ∅ are in different blue

components. Clearly, we can assume that C1 is contained in one blue component. Let

C ′
1 be the set of all vertices in C ′ with a blue neighbor in C1. Set C ′

2 = C ′ \ C ′
1. From

the previous paragraph, C ′ is not contained in a single blue component, therefore

C ′
2 6= ∅.

By the definition of C ′
1, no vertex in C1 can have any blue neighbors in C ′

2. So,

G[C1, C
′
2] is empty which implies |C1|, |C ′

2| ≤ s. Now |C ′
1| ≥ (t− 2s)− s ≥ (1/4− 3η)t.

In particular, we also have C ′
1 6= ∅. As no vertex of C ′

1 has any blue or red neighbors

in C2, we have |C ′
1|, |C2| ≤ s and G[C ′

1, C2] is empty. We conclude that

min{|C1|, |C ′
1|, |C2|, |C ′

2|} ≥ (t − 2s) − s ≥ (1/4 − 3η)t. (4.2)

It follows that every vertex of C1 has at most 4ηt non-neighbors in C1 ∪ C2 ∪ C ′
1,

since it has no neighbor in C ′
2. We have similar statements for vertices in C2, C ′

1 and

C ′
2. So, we obtain that G[C1, C

′
1] and G[C2, C

′
2] are blue 4ηt-complete bipartite

graphs, G[C1, C2] and G[C ′
1, C

′
2] are red 4ηt-complete bipartite graphs, and G[C1],

G[C2], G[C ′
1] and G[C ′

2] are 4ηt-complete graphs in which both colors are possible.

Therefore, we have a EC1(4η, 4η, 0) coloring.

This completes the proof of Subcase 2.2 and so Lemma 4.10 is proved.

64



Lemma 4.13. For any 0 < η < 10−4 there is an integer t4.13 = t4.13(η) such that:

For any t ≥ t4.13 and every two-coloring of a graph G on t vertices such that its

complement G has maximum degree at most (1/4 + η)t, if G has a monochromatic

connected matching of size bigger than (1/4 + η)t then either it must contain a

monochromatic connected matching of size at least (1/4 + η)t in a non-bipartite

component or the coloring of G is of type EC2(3η, η).

Proof. Given 0 < η < 10−4, set t4.13 := 1/η2 and consider G as in the statement of the

lemma. Also, let s = ⌊(1/4 + η)t⌋ and consider any two-coloring of G containing a

monochromatic connected matching of size bigger than s, say in a red component C.

If C is not bipartite, there is nothing to prove, so assume it is. Let X and Y be a

bipartition of the red bipartite component C and let C ′ = V (G) \ C. We distinguish

several cases according to the order of C ′.

Case 1: |C ′| ≤ s/2 (includes C ′ = ∅).

Suppose that one of X ∪ C ′ or Y ∪ C ′, say X ∪ C ′, has order at least 2s + 3.

Choose W ⊂ C ′ such that |X ∪ W | = 2s + 3.

Since the missing degree of each vertex is at most s and all edges inside X and

from X to W are blue, the graph Gb[X ∪ W ] satisfy the conditions of Lemma 4.7

(with k = 2s + 3). Hence, Gb[X ∪ W ] is hamiltonian and we have a blue cycle of

order 2s + 3. In particular, we have a matching of size s + 1 in a blue non-bipartite

component.

Therefore, we may assume that |X ∪ C ′| ≤ 2s + 2 and |Y ∪ C ′| ≤ 2s + 2. Hence,

we have |Y | = t − |X ∪ C ′| ≥ t − 2s − 2 ≤ (1/2 − 3η)t and, similarly,

|X| ≥ (1/2 − 3η)t. Consequently, |C ′| ≤ 6ηs. The graphs G[X] and G[Y ] are

s-complete and all their edges are blue, Gr[X,Y ] is connected and contains a

matching of size at least s. Thus, the coloring of G is of type EC2(3η, η).
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Case 2: |C ′| ≥ s + 1.

Recall that |X|, |Y | > s. Since all edges from C ′ to X ∪ Y are blue and

|X ∪ Y | > 2s, we can find a blue matching from C ′ to X ∪ Y of size at least s + 1s,

by greedily choosing vertices of C ′ together with an unsaturated neighbor of it in

X ∪ Y . Next, we prove that, unless we have an EC1(4η, 4η), the whole blue graph,

Gb, is connected. But if Gb is connected, we are back to the situation of Case 1 with

the roles of blue and red interchanged and therefore done with this case.

We have that |X ∪C ′| ≥ 2s + 1 and |Y ∪C ′| ≥ 2s + 1. Since the missing degree of

each vertex is at most s, and because all edges inside X and from X to C ′ are blue,

any pair of non-adjacent vertices in X have a common (blue) neighbor in X ∪ C ′. So,

X is contained in one blue component. Similarly, Y is contained in one blue

component. Furthermore, as |X|, |Y | > s, every vertex in C ′ has a (blue) neighbor in

both X and Y . Since C ′ is non-empty, the blue component containing X is the same

as the one containing Y . Therefore, Gb is connected.

Case 3: s/2 ≤ |C ′| ≤ s + 1.

First, if |X| + |C ′| ≤ 2s + 1, then |Y | ≥ (1/2 − 3η)t and all edges inside Y are

blue. Since |C ′| ≥ s/2 ≥ 6ηt, we can take a subset W of C ′ so that

|W |+ |Y | = 2s + 3. This time, because |W | ≤ 6ηn < s/2, the graph Gb[Y,W ] satisfies

the conditions of Lemma 4.7 with room to spare. Hence, it must be hamiltonian and

we obtain an odd blue cycle of length 2s + 3, which, in particular, give us a matching

of size s in an odd component. The analogous argument holds if |Y | + |C ′| ≤ 2s + 1.

This shows that we can assume |X| + |C ′| ≥ 2s + 2 and |Y | + |C ′| ≥ 2s + 2.

Consequently, any two vertices in X have a common blue neighbor (in X ∪ C ′), and

so X is contained in a blue component. Similarly, any two vertices in Y have a

common blue neighbor (in Y ∪ C ′), so Y is contained in a blue component. In

addition, we have |X|, |Y | ≥ s + 1, hence each vertex of C ′ has a blue neighbor in
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both X and in Y . Hence, the component containing X and the component containing

Y are the same and it also contains C ′. This means that the graph Gb is connected.

Let M be the largest blue matching in G. If M has size at least s + 1, we are

again in Case 1 with the roles of red and blue reversed. Then assume that |M | ≤ s.

Now, one should realize that we are in the same situation as in Case 1 of the proof of

Lemma 4.10 (with the roles of red and blue reversed). Using the exact same steps of

such case, one can prove that there is a large red connected matching and check that

such matching is odd by the remark following Claim 4.11. For clarity, we include here

the full details on how to finish this case. Luckily, here we already have some extra

information, more precisely, we already know that there exists a red matching of size

(1/4 + η)t, and this makes the proof shorter.

Set Z = V (G) \ V (M). By the maximality of M , all the edges inside Z are red. If

|Z| ≥ 2s + 3, by Dirac’s theorem, any subgraph of Gr[Z] with 2s + 3 vertices is

Hamiltonian. So there must be a red cycle on 2s + 3 vertices. In particular, we have

an odd connected monochromatic matching of size bigger than s. So, we can assume

that |Z| ≤ 2s + 2, which implies that |M | ≥ (1/4 − η)t − 1.

Now, suppose that (1/4 − η)t − 1 ≤ |M | ≤ s, so that (1/2 − 2η)t ≤ |Z| ≤ 2s + 2.

By the maximality of M , we can write M = {a1b1, . . . , aℓbℓ}, where bi has at most

one blue neighbor in Z. Let A = {a1, . . . , aℓ} and B = {b1, . . . , bℓ}. By Claim 4.11

and the remark following it, B ∪ Z is contained in a red component which is

non-bipartite. Such a component contains at least |B ∪ Z| = t − |A| ≥ (3/4 − η)t

vertices. On the other hand, we know that Gr has a connected matching of size

(1/4 + η)t, which is therefore in a component with at least (1/2 + 2η)t vertices. Since

(3/4 − η)t + (1/2 + 2η)t > t, these two components must be the same. Therefore, the

component containing the red matching is non-bipartite.
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4.3 The proof of Theorem 4.2

We are ready to prove Theorem 4.2. We restate it for easy reference.

Theorem 4.2. There exists an integer n0 with the following property: If n > n0 is

an odd integer and G is a graph on 2n − 1 vertices such that its complement, G, has

maximum degree at most (n − 3)/2, then G arrows Cn.

Proof. Take η = 10−8. For such η, Lemma 4.10 and Lemma 4.13 give us numbers

t4.10(η) and t4.13(η) respectively; and Lemma 2.11, our embedding lemma, gives us the

constant c2.11 = c2.11(η/2).

Let ε = min{η2/16, c2
2.11}, in order that we have η ≥ 4ε1/2 and ε1/2 ≤ c2.11(η).

Define m0 = 2 max{t4.10(η), t4.13(η)}. The Regularity Lemma (Lemma 2.5), with

parameters ε, m0 and s = 2, gives constants N0 = N0(ε, 2,m0) and M0 = M0(ε, 2,m0).

We also consider the number n2.11(η/2, ε1/2, ε,M0) obtained from Lemma 2.11.

Define n0 = max{N0, n2.11(η/2, ε1/2, ε,M0), 1/(4ε1/2)}.

Let n be an odd integer with n ≥ n0 and let G be a graph on 2n − 1 vertices such

that ∆(G) ≤ (n − 3)/2. Consider any 2-coloring of the edges of G, say by red

and blue. We aim to prove that there exists a monochromatic Cn. We apply the

Regularity Lemma (Lemma 2.5) with parameters ε, m0 and s to the graphs Gr

and Gb. The Regularity Lemma yields a partition V0 ∪V1 ∪ . . .∪Vt of V (G) satisfying:

(a) m0 ≤ t ≤ M0,

(b) |V0| ≤ ε(2n − 1), |V1| = . . . = |Vt|, and

(c) all but at most ε
(

t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular with respect to

both Gb and Gr.
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In particular, letting ℓ = |Vi|, where 1 ≤ i ≤ t, we have

ℓ =
|V (G) \ V0|

t
≥ (1 − ε)(2n − 1)

t
.

As in the previous chapter, we also consider a reduced graph. Let R = R(2ε1/2, ε)

be the graph whose vertex set is {1, . . . , t} and in which there is an edge between

vertices i and j if and only if the following conditions hold:

(I) (Vi, Vj) is an ε-regular pair with respect to both Gr and Gb;

(II) G[Vi, Vj] has density at least 2ε1/2.

We define a 2-multi-coloring (Rr, Rb) of the edges of R in the following way: for

i, j ∈ V (R) and c ∈ {r, b}, we let ij be an edge of Rc if and only if Gc[Vi, Vj] has

density at least ε1/2. Note that condition (II) implies that either Gr[Vi, Vj] or

Gb[Vi, Vj] has density at least ε1/2, so every edge of R receives at least one of the

colors. We remark that Rb ⊆ Rb(ε1/2, ε), where Rb(ε1/2, ε) is a reduced graph for Gb

representing the ε-regular pairs which have density at least ε1/2 (in fact, Rb represents

the ε-regular pair which are also regular with respect to Gr); and similarly

Rr ⊆ Rr(ε1/2, ε) is a reduced graph for Gr.

We claim that all vertices of R, except for at most ε1/2t, have at most (1
4

+ 2ε1/2)t

non-neighbors (in R). This is easy to show, as follows.

Firstly, we consider the set F of vertices i ∈ V (R) such that there are at least

ε1/2t vertices j for which (Vi, Vj) is not an ε-regular pair in Gr or Gb, i.e., (Vi, Vj) does

not satisfy (I). Clearly, property (c) above implies that condition (I) is not satisfied

by at most ε
(

t
2

)
pairs (i, j). This implies that |F |ε1/2t

2
≤ ε
(

t
2

)
. Then we have that

|F | ≤ ε1/2t.
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Secondly, we note that for any vertex i ∈ V (R) there are at most (1
4

+ ε1/2)t

vertices j for which (Vi, Vj) does not satisfy (II). Let

Si = {j ∈ V (R) : j 6= i, (Vi, Vj) does not satisfy (II)}

and let si = |Si|. For each j ∈ Si the graph G[Vi, Vj] has at most 2ε1/2ℓ2 edges, or

equivalently, G[Vi, Vj] has at least (1 − 2ε1/2)ℓ2 edges. Therefore, G[Vi, V \ Vi] has at

least si(1 − 2ε1/2)ℓ2 edges. However, since ∆(G) ≤ (n − 3)/2, the number of edges in

G[Vi, V \ Vi] is at most ℓ(n − 3)/2. Hence we have

si(1 − 2ε1/2)ℓ2 ≤ ℓ(n − 3)

2
.

As ℓ ≥ (1 − ε)(2n − 1)/t, this implies

si(1 − 2ε1/2)
(1 − ε)(2n − 1)

t
≤ n − 3

2
,

which implies

si ≤
t

4(1 − 2ε1/2)(1 − ε)
≤
(

1

4
+ ε1/2

)

t.

Remember that, for any i, j, the edge ij is in the graph R when (Vi, Vj) satisfy

conditions (I) and (II) simultaneously. Summarizing the above we have that: for

every i 6∈ F there are at most ε1/2 vertices j so that (Vi, Vj) does not satisfy (I) and at

most (1/4 + ε1/2)t for which (Vi, Vj) does not satisfy (II). So, in total, at most

(1/4 + 2ε1/2)t vertices are non-adjacent to a vertex i which is not in F . This proves

our claim.

Now, if we consider the subgraph of R induced by V (R) \ F , say H, and define

t′ = |V (H)| we have that t′ ≥ (1 − ε1/2)t. Furthermore,

∆(H) ≤ max{si : i ∈ [t]} ≤
(

1

4
+ 2ε1/2

)

t ≤
(

1

4
+ 3ε1/2

)

t′ ≤
(

1

4
+ η

)

t′.
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Finally, we consider the 2-multi-coloring (Hr, Hb) of the edges of H induced by the

2-multi-coloring of R.

We apply Lemma 4.10 to H with parameter η = 4ε1/2. Note that the conditions

to apply Lemma 4.10 are indeed satisfied as η < 10−4 and

t′ ≥ (1 − ε1/2)t ≥ (1 − ε1/2)m0 ≥ t4.10(η). (4.3)

As a result we have two possibilities: either H contains a connected monochromatic

matching of size k ≥ (1/4 + 4ε1/2)t′ or the coloring of H is of type EC1(4η, 4η, 0). We

treat two cases accordingly.

Case 1: H contains a monochromatic connected matching, of size k ≥ (1/4 + η)t′.

Now, similarly to equation (4.3), we also have t′ ≥ t4.13(η). Hence, we can apply

Lemma 4.13 to H in order to show that: either H contains an odd connected

monochromatic matching M , say blue, of size k ≥ (1/4 + η)t′ ≥ (1/4 + η/2)t or the

coloring of H is of type EC2(3η, η).

In the first subcase, we only need to check that the conditions to apply

Lemma 2.11 to the graph Gb with its reduced graph Rb(ε1/2, ε), (which contains Rb

and hence contains the odd connected matching M), are satisfied. This is clear, as

|V (G)| > n2.11(η/2, ε1/2, ε,M0) and ε/ε1/2 ≤ c2.11(η/2). And because M is an odd

matching, Lemma 2.11 tell us that for any integer ℓ satisfying

4t < ℓ < (1/2 + η/2)|V (G)|, the graph G contains a monochromatic cycle of length ℓ.

In particular, G contains a monochromatic Cn.

In the second subcase, the coloring of H is of type EC2(3η, η). This means that

there are sets A,B ⊂ V (H) each of order at least (1/2− 3η)t′ > (1/2− 4η)t, and such

that the subgraph H[A,B] contains a monochromatic, say blue, matching M of size

k ≥ (1/4 + η)t′ ≥ (1/4 + η/2)t. Also we have that Hb[A,B] is connected. Letting

A =
⋃

i∈A Vi and B =
⋃

i∈B Vi, we have that |A ∪ B| ≥ (1 − 9η)(2n).
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We note that the conditions to apply Corollary 2.11 are the same as those to

apply Lemma 2.12, hence they are satisfied by Gb together with its reduced graph

Rb(ε1/2, ε) and the matching M . Therefore, there exists a set F ⊂ V (G) such that

|F | ≤ 4εn and for any u, v ∈ A \ F and any even number ℓ satisfying

4t < ℓ < (1/2 + η/2)|V (G)|, there is a blue (u, v)-path of length ℓ. In particular, we

can find a blue (u, v)-path of length n − 1. Hence, if there are u, v ∈ A \ F such that

uv is a blue edge, then we can find a blue Cn. Therefore, we can assume that all

edges in A \ F are red. Similarly, we can assume that all edges in B \ F are red.

Again by Corollary 2.12, for any vertices u ∈ A \ F and v ∈ B \ F and any odd

number ℓ, with 4t < ℓ < (1/2 + η/2)|V (G)|, there is a blue (u, v)-path of length ℓ. In

particular, there is a blue path of length (n − 2) between any such u, v. Consider the

set X defined as the union of F and all clusters not in A ∪ B (including V0). If a

vertex in X has a blue neighbor in A and B, again, we can find a blue Cn. Otherwise,

we can partition X = XA ∪ XB so that there are only red edges between A and XA

and between B and XB.

Now, we note that |X| ≤ 10ηn. We also have that |A∪B ∪X| = 2n− 1, so one of

the sets A ∪ XA or B ∪ XB, say A ∪ XA, must have size at least n. Choose X ′
A ⊂ XA

such that |A ∪ X ′
A| = n. Since the missing degree of each vertex is at most (n − 3)/2,

all edges inside A and from A to XA are red, and |X ′
A| < 10ηn, the conditions of

Lemma 4.7 are satisfied with room to spare. Therefore, the graph Gr[A ∪ XA] is also

Hamiltonian and we have a red Cn.

Case 2: The coloring of H is of type EC1(4η, 4η, 0).

This means that there are sets C1, C2, C3, C4 ⊂ V (H), each of size (1/4− 4η)t′, such

that

• Hb∗ [C1, C3] and Hb∗ [C2, C4] are 4ηt′-complete bipartite graphs,

• Hr∗ [C1, C2] and Hr∗ [C3, C4] are 4ηt′-complete bipartite graphs,
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• H[C1], H[C2], H[C3] and H[C4] are 4ηt′-complete graphs in which both colors are

allowed, and

• H[C1, C4] and H[C3, C2] are complete bipartite graphs.

Now, we shall use the same type of argument from Cases 2 and 3 of the proof of

Theorem 3.2 to conclude that the coloring of G is of type EC1(15η1/2, 12η1/2, 12η1/2).

We remark that for our original graph, G, all edges receive only one color, so we can

use Gb and Gb∗ interchangeably (as well as Gr and Gr∗).

For 1 ≤ j ≤ 4, let Zj =
⋃

i∈Cj
Vi. We would like to say that Z1, Z2, Z3, Z4 satisfy

the conditions (a)-(d) of EC1(5η
1/2, 12η1/2, 12η1/2). Unfortunately, they may not

satisfy (b) and (c). Nevertheless, we prove that they do satisfy (a) and (d) with room

to spare, and use this to help us to prove that we can remove a few vertices from each

Zi so that the resulting sets do satisfy conditions (b) and (c) and still satisfy

conditions (a) and (d).

First, we note that |Zj| > (1/4 − 5η)(2n − 1). In fact,

|Z1| ≥ |C1|
(1 − ε)(2n − 1)

t
≥
(

1

4
− 4η

)

t′
(1 − ε)(2n − 1)

t
≥
(

1

4
− 5η

)

(2n − 1),

and similarly, we obtain that |Z2|, |Z3|, |Z4| ≥ (1/4− 5η)(2n− 1). Therefore, condition

(a) of EC1(15η1/2, 12η1/2, 12η1/2) is satisfied by {Z1, Z2, Z3, Z4} with room to spare.

Now, we estimate the number of edges in G[Z1, Z4]. Since H[C1, C4] is complete, it

has at least |C1||C4| ≥
(
(1

4
− 4η)t′

)2 ≥ ( 1
16

− 3η)t2 edges. Each of them is a pair {i, j}

for which (Vi, Vj) does not satisfy condition (I) or condition (II) above. Recall that at

most ε
(

t
2

)
< εt2 pairs {i, j} do not satisfy (I). Therefore, at least ( 1

16
− 3η − ε)t2 of

the pairs do not satisfy (II). Now, for each pair (Vi, Vj) that does not satisfy

condition (II), we have that G(Vi, Vj) has density at least (1 − 2ε1/2) = (1 − η/2),

that is, it has at least (1 − η/2)ℓ2 edges. Summing this bound over all those pairs

73



(Vi, Vj) (not satisfying (II)) we obtain that G[Z1, Z4] has at least

(

1 − η

2

)

ℓ2 ·
(

1

16
− 3η − ε

)

t2 ≥
(

1

16
− 5η

)

(2n − 1)2

edges.

Similarly, G[Z2, Z3] has at least ( 1
16

− 5η)(2n − 1)2 edges. But, ∆(G) ≤ (n − 3)/2

implies that the number of edges of G is less than (2n − 1)(n − 3)/4 ≤ (2n − 1)2/8.

This implies that there are at most 10η(2n − 1)2 edges all together in the bipartite

graphs G[Zi, Zj] and G[Zi], where 1 ≤ i, j ≤ 4 and {i, j} /∈ {{1, 4}, {2, 3}}.

Now, we give a bound on the number of edges with ‘wrong color’ in G[Z1, Z3],

G[Z2, Z4], G[Z1, Z2] and G[Z3, Z4]. For example, let us show that there are few red

edges in G[Z1, Z3].

Fix a vertex i ∈ C1. We bound the number of red edges from Vi to Z3 as follows.

Recalling that Z3 =
⋃

j∈C3
Vj, it is enough to bound er(Vi, Vj) for each j ∈ C3. When

ij /∈ Hb∗ , we use the trivial bound |Vi||Vj| for er(Vi, Vj), but notice that, as Hb∗ [C1, C3]

is 4ηt′-complete, there are at most 4ηt′ such j. While for ij ∈ Hb∗ we can conclude

that ij 6∈ Hr, thus, from the definition of Hr, er(Vi, Vj) ≤ ε1/2|Vi||Vj|. Hence,

er(Vi, Z3) ≤
∑

j∈C3

ij 6∈Hb∗

|Vi||Vj| +
∑

j∈C3

ij∈Hb∗

ε1/2|Vi||Vj|

≤ 4ηt′|Vi||Vi| + |C3|(ε1/2)|Vi||Vi|

≤ 4ηt|Vi||Vi| + ε1/2t|Vi||Vi|

≤ 5η|Vi|(2n − 1),

where we have used that for any i, j ≥ 1, we have |Vi| = |Vj|, t′|Vj| ≤ t|Vj| ≤ 2n − 1

and ε1/2 < η. Summing the previous equation for all possible values of i ∈ C1, we have

that

er(Z1, Z3) ≤ 5η(2n − 1)2.
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We conclude that the complement of the blue bipartite graph Gb[Z1, Z3] has at

most 15η(2n − 1)2 edges. Similarly, the same bound holds for the number of edges in

each of the bipartite graphs Gb[Z2, Z4], Gr[Z1, Z2] and Gr[Z3, Z4].

Now, we are able to prove that only a few vertices do not have very low degree in

each of the bipartite graphs Gb[Z1, Z3], Gb[Z2, Z4], Gr[Z1, Z2], Gr[Z3, Z4] and G[Zi]

for 1 ≤ i ≤ 4. We call a vertex bad if its induced degree in any of those graphs is

larger than (15η)1/2(2n − 1). The bound on the number of edges for those graphs

imply that each Zi has most 3(15η)1/2(2n − 1) bad vertices.

Finally, we define Wi, 1 ≤ i ≤ 4, as the set obtained from Zi by removing its bad

vertices. We have that

|Wi| ≥ |Zi| − 3(15η)1/2(2n − 1) ≥ (1/4 − 15η1/2)(2n − 1),

that is, condition (a) of EC1(15η1/2, 15η1/2, 15η1/2) is satisfied. Clearly, by the

definition of a bad vertex, conditions (b), (c) and (d) of EC1(15η1/2, 15η1/2, 15η1/2)

are satisfied by {W1,W2,W3,W4} as well. So, the original 2-coloring of G is of type

EC1(15η1/2, 15η1/2, 15η1/2).

Denote by X the union of the set of bad vertices with V0 and with the clusters not

in
⋃

1≤i≤4 Ci. There are at most 12(15η)1/2(2n − 1) ≤ 95η1/2n bad vertices, at most

ε(2n − 1) ≤ η1/2n vertices in V0 and at most 16ηt′ℓ ≤ η1/2n vertices not in
⋃

1≤i≤4 Ci.

Therefore, |X| < 100η1/2n. Clearly, as ∆(G) ≤ (n − 3)/2, each u ∈ X has at least

n/10 (in fact, close to n/4) neighbors in each of at least three of W1, . . . ,W4. In

particular, each u ∈ X has at least n/20 neighbors of the same color in each of at

least three of the sets W1, . . . ,W4. Using this fact, we classify all vertices of X into at

least one of the following types (see Figure 4.3).

v is W
′

1
-type if degR(v,W2) ≥ n/20 and degB(v,W3) ≥ n/20.

v is W
′

2
-type if degR(v,W1) ≥ n/20 and degB(v,W4) ≥ n/20.
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v is W
′

3
-type if degR(v,W4) ≥ n/20 and degB(v,W1) ≥ n/20.

v is W
′

4
-type if degR(v,W3) ≥ n/20 and degB(v,W2) ≥ n/20.

v is R1-type if either degR(v,W1), degR(v,W3) ≥ n/20

or degR(v,W2), degR(v,W4) ≥ n/20;

v is R2-type if either degR(v,W1), degR(v,W4) ≥ n/20

or degR(v,W2), degR(v,W3) ≥ n/20;

v is B1-type if either degB(v,W1), degB(v,W2) ≥ n/20

or degB(v,W3), degB(v,W4) ≥ n/20;

v is B2-type if either degB(v,W1), degB(v,W4) ≥ n/20

or degB(v,W2), degB(v,W3) ≥ n/20;

Note that those classes of vertices are not necessarily disjoint, but one can check

that every vertex in X belongs to at least one of them. We also say that v is W∗-type

if it is W
′

i
-type for some i. We define R∗-type and B∗-type vertices similarly.

We remark that vertices of W
′

i
-type are those who could be added to Wi partially

preserving the global structure of the coloring of G. With that in mind, we define W ′
i

be the set of vertices of W
′

i
-type and let W̃i = Wi ∪ W ′

i .

R1 R1R2R2

W1 W2

W3 W4

B1

B1

B2B2

W1 W2

W3 W4

red

blue

Figure 4.1: Vertices of R∗-type on the left and of B∗-type on the right.
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Now, although there are few (possibly no) edges in G[W̃1, W̃4] and G[W̃2, W̃3], if

there is such an edge we say that it is an edge of Type 1. The reason for this name is

that one edge of Type 1 has a similar effect as a vertex of Type 1 (of the same color

as the edge) toward finding a monochromatic Cn in our next claim.

Claim 4.14. Either G has a monochromatic Cn or all the following facts must hold.

(a) There are no distinct vertices u, v ∈ X such that u is R1-type and v is

R2-type. Also, there is no red edge e and vertex v such that is e is of Type 1

and v is R2-type. The analogous statement for blue types also holds.

(b) If there are two vertices v1, v2 such that both are of type R1 or both of type

R2, then, for all i, all edges inside W̃i \ {v1, v2} are blue. Similarly, if there is a

red edge of Type 1, say e = ab, and a vertex of type R∗, say v1, then all edges

inside W̃i \ {a, b, v1} must be blue. Finally, if there are two independent red

edges of Type 1, say e1 = ab and e2 = cd, then all edges inside W̃i \ {a, b, c, d}

must be blue. The analogous statements for blue also holds.

Proof. The idea of the proof of Claim 4.14 is to use Lemma 3.17 to find paths of

appropriate lengths in Gb[W1,W3], Gb[W2,W4], Gr[W1,W2] and Gr[W3,W4], and use

vertices of suitable types to glue those paths together.

We give the full details for the first case in (a), that is, assuming that there are

distinct u, v ∈ X such that u is R1-type and v is R2-type we aim to find a red Cn in

G. Without loss of generality, assume that degR(u,W1), degR(u,W3) ≥ n/20 and

degR(v,W1), degR(v,W4) ≥ n/20. Clearly, there are red neighbors u′ ∈ W1 and

u′′ ∈ W3 of u and red neighbors v′ ∈ W1, v′′ ∈ W4 of v such that u′, u′′, v′, v′′ are

pairwise distinct.
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It follows from Lemma 3.17, applied to Gr[W1,W2] and Gr[W3,W4], that for any

even number k1 and odd number k2 such that

2 ≤ k1, k2 ≤ 2(min{|W1|, |W2|, |W3|, |W4|} − 24η1/2|V (G)|) − 2,

there exists a (u′, v′)-path P in Gr[W1,W2] of length k1 and a (v′, v′′)-path Q in

Gr[W3,W4] of length k2.

Clearly, the union P ∪ Q ∪ {uu′, uu′′, vv′, vv′′} form a red copy of Ck1+k2+4. Since

2(min{|W1|, |W2|, |W3|, |W4|} − 24η1/2|V (G)|) − 2 ≥ 2((1/4 − 40η1/2)|V (G)|) =

(1/2− 80η1/2)|V (G)|, and as n is odd, we can choose k1 and k2 so that k1 +k2 +4 = n.

The proofs of the other statements in (a) and in (b) are analogous. For the above

argument to work for each statement involving vertices of R∗-type or red edges of

Type 1, one only needs to check the following: in the auxiliary graph of Figure 4.3

there is a red closed walk of odd length containing both edges W1W2 and W3W4.

Now, we consider a few cases according to the type of the vertices of X.

Subcase 3.1: at least three vertices of X are not W∗-type.

This implies that either there are two vertices u and v such that both are R∗-type

or both are B∗-type. Assume, without loss of generality, that the former happens.

By part (b) of Claim 4.14 we can assume that most edges inside the sets W̃i are

blue. We claim that either there is a red Cn or for every vertex x in X (including u

and v) there exists ix, 1 ≤ ix ≤ 4, such that x has at least n/20 blue neighbors in

Wix . This claim is true, because there are three Wi in which x has n/20 neighbors of

the same color. If such color were red to all three of them, we would have a vertex w

which is both R1 and R2. But there are at least two vertices of R∗-type, so we would

have distinct vertices (say w and one of u or v) such that one is R1-type and the

other is R2-type. This yields a monochromatic Cn by Part (a) of the Claim 4.14.
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Now we simply aim to find a blue Cn in G. Looking at the indices 1 ≤ i ≤ 4

modulo four, we define W ′′
i to be the set of vertices v ∈ X which have n/20 blue

neighbors in Wi+2. By the previous discussion, we can assume that X ⊂ ⋃1≤i≤4 W ′′
i .

Hence, either |W1 ∪ W3 ∪ W ′′
1 ∪ W ′′

3 | ≥ n or |W2 ∪ W4 ∪ W ′′
2 ∪ W ′′

4 | ≥ n. Say the

former holds. So, G[W1 ∪ W3 ∪ W ′′
1 ∪ W ′′

3 ] is an almost complete blue graph. By

Theorem 4.6, applied to any subgraph of G[W1 ∪ W3 ∪ W ′′
1 ∪ W ′′

3 ] of order n, it must

contain a blue Cn.

The case that there are at least two vertices of B∗-type is analogous.

Subcase 3.2: exactly two vertices are not of W∗-type.

Let u and v be two vertices of X which are not W∗-type. If both u and v are

R∗-type or both are B∗-type, we are done by the same argument as in Subcase 3.1.

So, assume that v is R∗-type and u is B∗-type.

Notice that we have |W̃1 ∪ W̃2 ∪ W̃3 ∪ W̃4| = |V (G) \ {u, v}| = 2n − 3. So there

exists i such that |W̃i| ≥ (n − 1)/2. Since ∆(G) ≤ (n − 3)/2, either G[W̃1, W̃3] or

G[W̃2, W̃4] must contain an edge. This means that there is an edge e of Type 1.

Assume, without loss of generality, that e is red. Hence, by Part (b) of the previous

claim, applied to the vertex v and the edge e, we can assume that most edges induced

by the sets W̃i are blue. Now we can finish using the steps of Subcase 3.1.

Subcase 3.3: exactly one vertex, say x ∈ X, is not of W∗-type.

Assume, again without loss of generality, that x is R∗-type. Now, if there is any

red edge of Type 1, part (b) of Claim 4.14 implies that we can assume that most

edges induced by the sets W̃i are blue and we can proceed as in Subcase 3.1.

Therefore we can assume that all Type-1 edges are blue. We claim that there are

at least two independent edges of Type 1. If such claim is true, by part (b) of

Claim 4.14, have that most edges inside the sets W̃i are red and once more we can
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proceed as in Subcase 3.1, this time with the roles of red and blue reversed. So, it

only remains to prove that there are such independent edges of Type 1.

Since |W̃1 ∪ W̃2 ∪ W̃3 ∪ W̃4| ≥ 2n − 2, either there exists i such that

|W̃i| ≥ (n + 1)/2 or for all i we have |W̃i| = (n − 1)/2. In the first case, if

|W̃1| ≥ (n + 1)/2 or |W̃4| ≥ (n + 1)/2, we can easily find two independent edges in

G[W̃1, W̃4]; if |W̃2| ≥ (n + 1)/2 or |W̃3| ≥ (n + 1)/2, we can find two independent

edges in G[W̃2, W̃3]. Finally, in the latter case, where |W̃i| = (n − 1)/2, there must be

at least one edge in G[W̃1, W̃4] and another one in G[W̃2, W̃3].

Subcase 3.4: every vertex of X is W∗-type.

Once again, our goal is to find at least two independent edges of Type 1, in which

case we are done. Assume, without loss of generality, that W̃1 = max{W̃1, . . . , W̃4}.

Clearly
⋃

1≤i≤4 W̃i = 2n − 1, so |W̃1| ≥ (n + 1)/2.

Consider first the case where |W̃1| ≥ (n + 3)/2. Since ∆(G) ≤ (n − 3)/2, there are

at least three independent edges from W̃1 to W̃4, two of which must be of the same

color and we are done. The other possibility is that |W̃1| = (n + 1)/2. Here we must

have at least two independent edges in G[W̃1, W̃4] (not necessarily of the same color).

But, since |W̃4| ≤ |W̃1| = (n + 1)/2, we must have that either W̃2 or W̃3 has at least

(n − 1)/2 vertices. This implies that G[W̃2, W̃3] has at least one edge. We conclude

that we have at least three edges of Type 1. Therefore, two of them must be of the

same color and we are done.

4.4 Open problems

There are many natural and interesting open problem, the first one being to solve

Conjecture 4.1 completely. We refer to a recent survey article of Schelp [36] for a list

of conjectures related to the following problem. Given a graph H and a constant c,
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with 0 < c ≤ 1, consider the property P (H, c) that “if G is a graph of order equal to

the Ramsey number R(H) and minimum degree bigger than c|V (G)|, then any

2-coloring of G contains a monochromatic copy of H”. Then define

c(H) = inf{c : P (H, c) holds}.

By Theorem 4.2, we have that c(Cn) = 3/4 when n is odd. So, the most natural

question is to determine the value of c(Cn) for n even. We conjecture that this value

is approximately equal to 2/3.

One should also consider the analogous questions related to the multi-colored

Ramsey numbers. For example, given n, is there a constant 0 < c < 1, such that if G

is a graph of order equal to R(Cn, Cn, Cn) and minimum degree at least c|V (G)| then

any 3-coloring of G must contain a monochromatic Cn?
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Chapter 5

Slowly percolating sets

5.1 Introduction

In this chapter we study the slowly growing 2-neighbor bootstrap percolating sets

in the grid [n]2, a concept that we shall soon make precise. Bootstrap percolation is a

particular type of cellular automaton, a concept studied, for example, by von

Neumann [32].

Given a (finite) graph G, bootstrap percolation on G is a particular class of

models that describe an ‘infection’ spreading over the set of vertices of G. In the

context of percolation, vertices of G are commonly called sites and edges of G are

called bonds. For each v ∈ V (G) we consider the set of neighbors of v, denoted N(v),

and let Sv be the family of all subsets of N(v). For each site v ∈ V (G), we select one

of two initial states for v, say ‘infected ’ or ‘healthy ’, and we let A be the set of sites

whose initial state is ‘infected’. We are also given an update function

fv : Sv → {‘safe’, ‘susceptible’}. The infection process is defined as follows: set

A0 = A and, for t ∈ N, set

At = At−1 ∪ {v ∈ V (G) : fv(At−1 ∩ N(v)) = ‘susceptible’}.
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In this process, we think of t as time and At as the set of sites whose state at time

t is ‘infected’, so that At ∩N(v) is the set of neighbors of v which are infected at time

t, and fv determines if v will becomes infected at time t based on which of its

neighbors are infected at time t − 1. We call A the set of ‘initially infected sites’. We

note that, in bootstrap percolation, once a site is infected it never becomes healthy.

The closure of A ⊂ V (G) is the set 〈A〉 =
⋃∞

t=0 At of all sites that are eventually

infected. We say that the set A percolates if eventually all sites are infected, that is,

if 〈A〉 = V (G). Furthermore, we say that A takes time T to percolate if 〈A〉 = V (G)

and T is the smallest natural number such that AT = V (G).

The r-neighbor bootstrap percolation on G is the particular case where we have

fv(S) = ‘susceptible’ if and only if |S| ≥ r. This means that sites of G become

infected if they have at least r infected neighbors. Hence,

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1| ≥ r}.

We are interested in a particular case where, for some natural number n, the

graph G above is the grid [n]2 defined as follows: the set of sites of G is

V (G) = {(i, j) : 1 ≤ i, j ≤ n}, which we represent by an n by n square-grid where

each site is a unit square whose center has coordinates (i, j) in the Cartesian plane;

and two sites are adjacent if the corresponding squares share an edge. This particular

model was introduced in 1979 by Chalupa, Leith and Reich [14], and rediscovered by

many authors. Aizenman and Lebowitz [1] considered the problem where the set of

originally infected sites is chosen by selecting sites independently at random with

uniform probability p. They tried to determine for what values of p the set A

percolates with high probability. The first sharp result was given by Holroyd [25] in

2003. Many sharper results were obtained by Balogh, Bollobás and Morris [2, 3, 4] for

the same problem and also for various other graphs G and values of the threshold r.
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However, here instead of choosing A at random, we consider the (deterministic)

extremal problem of finding a set A for which the percolation time is the largest

possible, assuming that A does percolate. We shall make this question more precise

later. Throughout this chapter all the results concern 2-neighbor bootstrap

percolation on [n]2. All the results are in collaboration with Michal Przykucki [8].

5.2 Preliminaries

Given integers k, ℓ and n with 1 ≤ k, ℓ ≤ n, a k by ℓ rectangle is a subset of N2 of

the form {a, a + 1, . . . , a + k − 1} × {b, b + 1, . . . , b + ℓ− 1} for some choice of a and b.

Given a subset R of [n]2, we will write R = Rec(k, ℓ) to say that R is a k by ℓ

rectangle. We say that a rectangle R is internally spanned by a given set of infected

sites A if 〈A ∩ R〉 = R.

Definition 5.1. Given a finite set A ⊂ N2, we represent a site (i, j) ∈ A as a shaded

unit square on the grid, (say so that the center has coordinates (i, j) in the Cartesian

Plane). The boundary of A is the set of bonds of N2 such that exactly one of its

endpoints is in A, which in our pictures shall be represented by the sides shared

between a shaded and a non-shaded unit square. The perimeter of A is the number of

bonds in its boundary. Its semi-perimeter is half of the perimeter and is denoted by

Φ(A). In particular, if R = Rec(k, ℓ) ⊂ N2 is a k by ℓ rectangle, its semi-perimeter is

Φ(R) = k + ℓ.

Now, let us define the distance between sites and rectangles.

Definition 5.2. The distance between a pair of sites, (i1, j1) and (i2, j2), is given by

|i1 − i2| + |j1 − j2|. The distance between two rectangles R′ and R′′ is the minimal

distance between a site (i1, j1) ∈ R′ and a site (i2, j2) ∈ R′′ and is denoted by

dist(R′, R′′).
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Remark. This coincides with the length of the shortest path from A to B when

viewing [n]2 as a graph. Two sets are at distance zero from each other if they

intersect and at distance one if their boundaries share at least one edge.

Fact 5.3. For any two finite sets A,B ⊂ N2, we have Φ(A) + Φ(B) ≥ Φ(A ∪ B) and

equality occurs if and only if dist(A,B) ≥ 2, that is, A and B have disjoint

boundaries.

Proposition 5.4. Let K be a set of infected sites and let 〈K〉 be its closure. Then

Φ(〈K〉) ≤ Φ(K).

Proof. Let K0 = K and let Kt be the set of infected sites at time t. A healthy site

becomes infected at time t + 1 if at least two of its neighbors are in Kt. As a result,

for every v ∈ Kt+1 \ Kt, there are at least two bonds adjacent to v which are in the

boundary of Kt but not in the boundary of Kt+1. In addition, for any two sites

v, w ∈ Kt+1 \ Kt the pairs of bonds determined by each of them are disjoint.

Furthermore, for each v ∈ Kt+1 \ Kt at most two new edges are in the boundary

of Kt+1 but not in the boundary of Kt. Thus the perimeter cannot grow during the

infection process.

Corollary 5.5. Given k, ℓ ∈ N and a rectangle R = Rec(k, ℓ), if A ⊂ R is a set that

internally spans R then |A| ≥ ⌈Φ(R)/2⌉ =
⌈

k+ℓ
2

⌉
. In particular, if n ∈ N and A ⊂ [n]2

percolates, then |A| ≥ n.

As we mentioned before, we are interested in finding sets that do percolate but do

so in the maximum possible time. Now, we define specific functions to make this

notion precise.

Definition 5.6. Given a natural number n, for 0 ≤ s ≤ n2 − n, we define Ts(n) to be

the maximum time t for which there exists a set A ⊆ [n]2 of order |A| = n + s which

percolates in time t.
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It is worth remarking that for a fixed n, the sequence T0(n), T1(n), . . . , Tn2−n(n) is

not be monotone (though we do not give a proof for that here). In this chapter we

determine the exact value of T0(n). The idea of the proof is simple and relies on

building a family of set that percolate on a particular way, proving that one of the

sets in this family maximizes the percolation time and then determining such set. In

order to do so, we shall need to use induction. Then it is natural to extend the

definition of T0(n) for percolation on rectangles.

Definition 5.7. Given natural numbers k and ℓ, for 0 ≤ s ≤ kℓ −
⌈

k+ℓ
2

⌉
, we define

Ts(k, ℓ) to be the maximal time t for which there exists a set A ⊆ [k] × [ℓ] of order

|A| =
⌈

k+ℓ
2

⌉
+ s which percolates the rectangle [k] × [ℓ] in time t. For a rectangle

R = Rec(k, ℓ) we shall let Ts(R) be the maximum time in which a set internally spans

R. Of course, Ts(R) is just another notation for Ts(k, ℓ).

Before trying to compute bounds for T0(n), we should also understand how the

infection happens on a broader scale. The first simple but important observation is

the following.

Fact 5.8. Given any set K of infected sites, 〈K〉 is a union of rectangles such that

any distinct pair of them are at distance at least 3.

This fact is clearly true by the following argument. The set K can be viewed as a

union of 1 by 1 rectangles and any two fully infected rectangles within distance at

most 2 do span a larger rectangle containing both. The next proposition from

Holroyd [25] is a much more precise result in this direction.

Proposition 5.9. Let R be a rectangle with area at least 2. Suppose that R is

internally spanned by a set of sites K. Then there exist disjoint subsets of K, say K ′

and K ′′, and rectangles R′ and R′′ such that:

(a) the strict inclusions R′ ( R and R′′ ( R hold,
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(b) R′ is internally spanned by sites in K ′ and

R′′ is internally spanned by sites in K ′′,

(c) 〈R′ ∪ R′′〉 = R. In particular, dist(R′, R′′) ≤ 2.

Remark. Note that in Proposition 5.9 we cannot require the rectangles R′ and R′′ to

be disjoint (see Figure 5.1).

R′

R′′

Figure 5.1: An example where rectangles R′ and R′′ are uniquely determined by the
initially infected sites and do overlap.

Remark. Although Proposition 5.9 is sharp, it does not describe the percolation

process in a step by step fashion (i.e., as the time t increases by one). In fact, it may

happen that for a particular time t some sites in R \ (R′ ∪ R′′) become infected while

some of R′ ∪ R′′ are still healthy. Even though the problem we study is intrinsically

time related, we are able to make heavy use of Proposition 5.9.

5.3 Slowly percolating sets with the minimum

number of sites

In this section our aim is to compute the exact value of T0(n) for every n ∈ N. We

start by defining a family which percolates rectangles in a particular way.

Definition 5.10. Given positive integers k, ℓ, let Rk,ℓ be the family of sets

A ⊂ [k] × [ℓ] where |A| = ⌈(k + ℓ)/2⌉ and such that A percolates [k] × [ℓ] in the
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following way. There exists an integer r and a nested sequence of rectangles

R0 ⊂ R1 ⊂ . . . ⊂ Rr = [k] × [ℓ] such that denoting Ri = Rec(si, ti) the following

conditions hold:

(a) either s0 ≤ 2 or t0 ≤ 2 or s0 = t0 = 3; and s1, t1 ≥ 3 and (s1, t1) 6= (3, 3);

(b) among the sites in R0 the last one to be infected is one of its corners;

(c) for every 0 ≤ i ≤ r − 1 we have Φ(Ri+1) = Φ(Ri) + 2;

(d) Ri is internally spanned and there exists a site vi ∈ A such that Ri ∪ {vi}

internally spans Ri+1; and vi is at distance exactly two from the last site to

become infected in Ri (as in Figure 5.2 or in Figure 5.3).

We remark that for every A ∈ Rk,ℓ, the last site to become infected is one of the

sites (1, 1), (1, ℓ), (k, 1), (k, ℓ).

Definition 5.11. For A ∈ Rk,ℓ, we say that the sequence R0 ⊂ R1 ⊂ . . . ⊂ Rr

satisfying the conditions above is the configuration associated with A. We also say

that we have used Option A at moment i (to construct Ri+1) if

Ri+1 = Rec(si + 1, ti + 1) and we have used Option B at moment i if either

Ri+1 = Rec(si + 2, ti) or Ri+1 = Rec(si, ti + 2). Finally, for a natural number n, we let

Rn = Rn,n.

si

ti

Figure 5.2: Option A at moment i.

si

ti

1
2

Figure 5.3: Option B at moment i.

We shall prove a recursion formula for T0(k, ℓ) that works for all values k and ℓ

such that k + ℓ is even. Furthermore, when min{k, ℓ} ≥ 2 we prove that there is an
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element of Rk,ℓ whose time to percolate [k] × [ℓ] is T0(k, ℓ) (but this is not necessarily

true for all elements of Rk,ℓ). In the next lemma, we compute T0(2, ℓ) for all values of

ℓ and later we use that lemma as one of the base cases for the recursion.

Lemma 5.12. For any ℓ even we have that T0(2, ℓ) = 3ℓ−4
2

. Furthemore, there is a

set A0(2, ℓ) which percolates [2] × [ℓ] in time T0(2, ℓ) in a way that one of the four

corners of T0(2, ℓ) gets infected last.

Proof. We define A0(2, ℓ) as the set of shaded sites in Figure 5.4. Clearly A0(2, ℓ)

percolates [2] × [ℓ] in time 3ℓ−4
2

and the last infected site in the infection process

initiated by A0(2, ℓ) is either (2, ℓ) or (1, ℓ).

We have that T0(2, ℓ) ≥ 3ℓ−4
2

for any ℓ even. Now we prove by induction on ℓ that

for any ℓ even we have T0(2, ℓ) ≤ 3ℓ−4
2

. Clearly, T0(2, 2) = 1. Assume that we are

given ℓ ≥ 4, ℓ even, and suppose that T0(2, ℓ − 2) = 3ℓ−6
2

. Let A be any set that

percolates [2] × [ℓ]. Since A percolates, any two consecutive columns of [2] × [ℓ]

contain at least one site of A. In particular, each of the 2 by 2 squares of the form

{1, 2} × {2i − 1, 2i}, 1 ≤ i ≤ ℓ/2, must contain at least one site of A. But

|A| = (ℓ/2) + 1, so only one of such squares can contain two sites of A. Therefore,

either {1, 2} × {1, 2} or {1, 2} × {ℓ − 1, ℓ} contains exactly one site of A. Assume

without loss of generality that the later holds. Since A percolates, either (1, ℓ) or

(2, ℓ) must be the originally infected site. Again without loss of generality we may

assume that the later happens. In this setting, it is trivial to check that A must

internally span [2]× [ℓ− 2]. Therefore, A takes time at most T0(2, ℓ− 2) + 3 = 3ℓ−4
2

to

percolate.

1
1

. . .
. . . . . .

ℓ

Figure 5.4: A set of initially infected sites which gives the maximum percolation time
on [2] × [ℓ] when ℓ is even.
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Since Ts(k, ℓ) = Ts(ℓ, k), in the statement of the next lemma we omit some cases

where k > ℓ.

Lemma 5.13. We have T0(1, 1) = 0; T0(1, ℓ) = 1 for all odd ℓ ≥ 3; T0(2, ℓ) = 3ℓ−4
2

for

all even ℓ ≥ 2; and T0(3, 3) = 4. For k, ℓ ≥ 3 such that (k, ℓ) 6= (3, 3) and k + ℓ is

even, we have

T0(k, ℓ) = max







T0(k − 1, ℓ − 1) + max{k − 1, ℓ − 1},

T0(k, ℓ − 2) + k + 1,

T0(k − 2, ℓ) + ℓ + 1.

(5.1)

Furthermore, if min{k, ℓ} ≥ 2, then there exists a set A0(k, ℓ) ∈ Rk,ℓ that percolates

in time T0(k, ℓ).

Proof. We prove Lemma 5.13 by induction on k + ℓ. Our aim is to define a set

A0(k, ℓ) ⊂ [k] × [ℓ] satisfying the conditions of the Lemma 5.13.

We leave the trivial cases where k = 1 or k = ℓ = 3 to the reader. The case where

k = 2 and ℓ even follows from Lemma 5.12. We note also that the set A0(2, ℓ) of

shaded sites in Figure 5.4 triviarly satisfies A0(2, ℓ) ∈ Rk,ℓ.

Now, assume that we are given k, ℓ ≥ 3 such that (k, ℓ) 6= (3, 3) and k + ℓ is even.

Our induction hypothesis is that for any k′, ℓ′ such that k′ + ℓ′ is even, k′ + ℓ′ < k + ℓ

and min{k′, ℓ′} ≥ 2, there exists A0(k′, ℓ′) ∈ Rk′,ℓ′ which percolates in time T0(k
′, ℓ′),

as in the statement of Lemma 5.13. We can further assume, by considering

symmetries of A0(k′, ℓ′), that in the infection started by A0(k′, ℓ′) the site (k′, ℓ′) is

infected the latest, that is, at time T0(k
′, ℓ′).

Assume without loss of generality that k ≤ ℓ. We shall first prove that the

following holds.
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T0(k, ℓ) ≥ max







T0(k − 1, ℓ − 1) + ℓ − 1,

T0(k, ℓ − 2) + k + 1,

T0(k − 2, ℓ) + ℓ + 1.

(5.2)

Consider the following three particular ways of infecting [k] × [ℓ] (see Figures 5.2

and 5.3).

(a) Let A0(k − 1, ℓ − 1) ∈ Rk−1,ℓ−1, such that it spans [k − 1] × [ℓ − 1] in time

T0(k − 1, ℓ− 1) and |A0(k − 1, ℓ− 1)| = (k + ℓ− 2)/2. Also, assume that the site

(k − 1, ℓ − 1) becomes infected at time T0(k − 1, ℓ − 1). Note that such

A0(k − 1, ℓ − 1) exists by induction hypothesis. Let

A′ = A0(k − 1, ℓ − 1) ∪ {(k, ℓ)}. We have that A′ takes time

T0(k − 1, ℓ − 1) + ℓ − 1 to percolate. In addition, the corner site (k, 1) becomes

infected only at the last time step.

(b) Let A0(k, ℓ− 2) ∈ Rk,ℓ−2, such that it spans [k]× [ℓ− 2] in time T0(k, ℓ− 2) and

|A0(k, ℓ − 2)| = (k + ℓ − 2)/2. Also, assume that the site (k, ℓ − 2) becomes

infected at time T0(k, ℓ − 2). Note that such A0(k, ℓ − 2) exists by induction

hypothesis. Let A′′ = A0(k, ℓ − 2) ∪ {(k, ℓ)}. We have that A′′ takes time

T0(k, ℓ − 2) + k + 1 to percolate. In addition, the corner site (1, ℓ) becomes

infected only at the last time step.

(c) When k ≥ 4, so that k − 2, ℓ ≥ 2, we can also select A0(k − 2, ℓ) ∈ Rk−2,ℓ, such

that it spans [k − 2] × [ℓ] in time T0(k − 2, ℓ) and |A0(k − 2, ℓ)| = (k + ℓ − 2)/2.

Also, assume that the site (k − 2, ℓ) becomes infected at time T0(k − 2, ℓ). Note

that A0(k − 2, ℓ) exists by induction hypothesis. Let

A′′′ = A0(k − 2, ℓ) ∪ {(k, ℓ)}. We have that A′′′ takes time T0(k − 2, ℓ) + ℓ + 1 to

percolate. In addition, the corner site (k, 1) becomes infected only at the last

time step.
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Note that, for k, ℓ ≥ 4, all three sets A′, A′′ and A′′′ above are well defined. Hence,

inequality (5.2) holds in this case. For k = 3 and ℓ ≥ 4 only A′ and A′′ are well

defined. However, for k = 3 and ℓ ≥ 4, the condition that 3 + ℓ is even imply that

ℓ ≥ 5. So we have T0(2, ℓ − 1) + ℓ − 1 ≥ T0(1, ℓ) + ℓ + 1. Hence, inequality (5.2) also

holds in this case. So, the lower bound on T0(k, ℓ) is proved and is attained by a set

in Rk,ℓ.

Now, we only need to give a analogous upper bound on T0(k, ℓ), that is,

T0(k, ℓ) ≤ max







T0(k − 1, ℓ − 1) + ℓ − 1,

T0(k, ℓ − 2) + k + 1,

T0(k − 2, ℓ) + ℓ + 1.

(5.3)

Consider any set K which internally spans the rectangle R = [k] × [ℓ] in time

T0(k, ℓ), and is such that |K| = (k + ℓ)/2. By Proposition 5.9, there exist disjoint

subsets of K, say K ′ and K ′′, and two rectangles R′ and R′′ satisfying conditions

(a)-(c) of Proposition 5.9. By Proposition 5.4 and condition (c), we have that

Φ(R′ ∪ R′′) ≥ Φ(〈R′ ∪ R′′〉) = Φ(R) = k + ℓ.

By Fact 5.3, condition (b) and Corolary 5.5,

Φ(R′ ∪ R′′) ≤ Φ(R′) + Φ(R′′) ≤ 2|K ′| + 2|K ′′| ≤ 2|K| = k + ℓ.

Therefore, each of the above inequalities must be an equality. In particular,

Φ(R′ ∪ R′′) = Φ(R′) + Φ(R′′). Fact 5.3 implies that dist(R′, R′′) ≥ 2, which together

with condition (c) gives that R′ and R′′ must be at distance exactly 2. Also, we must

have Φ(R′) = 2|K ′| and Φ(R′′) = 2|K ′′|, therefore, both Φ(R′) and Φ(R′′) are even.
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Let s1, t1, s2, t2 be such that R′ = Rec(s1, t1) and R′′ = Rec(s2, t2). We have

Φ(R′) + Φ(R′′) = Φ(R), so s1 + s2 + t1 + t2 = k + ℓ. Since R′ and R′′ must be at

distance exactly 2, the values for s1, t1, s2, t2 and the positions of R′ and R′′ inside R,

must satisfy exactly one of the following conditions.

Condition A: Either s1 + s2 = k + 1, t1 + t2 = ℓ − 1 and the rectangles align like in

Figure 5.5 (A), or s1 + s2 = k − 1 and t1 + t2 = ℓ + 1 and we have an

analogous picture.

Condition B: We have s1 + s2 = k, t1 + t2 = ℓ and the rectangles align like in

Figure 5.5 (B).

Condition C: Either s1 = k, s2 = 1, t1 + t2 = ℓ − 1 and there is an 0 ≤ m ≤ k − 1 so

that the rectangles align as in Figure 5.5 (C), or s1 + s2 = k − 1, t1 = ℓ

and t2 = 1 and we have an analogous picture.

s1

s2

t1

t2
(A)

s1

s2

t1

t2
(B)

s1

s2 = 1

m

t1

t2
(C)

Figure 5.5: Three possible Rectangles alignments.

Additionally, the rectangles R′ and R′′ are non-degenerate and must be internally

spanned by s1+t1
2

and s2+t2
2

sites respectively.

93



Note that, if Condition A or Condition B holds, we can assume without loss of

generality that T0(R
′) ≥ T0(R

′′). If Condition C holds, then the roles of R′ and R′′

are not interchangeable, but we have T0(R
′′) ≤ 1, so we also have T0(R

′) ≥ T0(R
′′).

Later it will be convenient to assume that T (R′) ≥ 2, so we consider now the case

where T0(R
′) = T0(R

′′) = 1. If this happens, both R′ must have a side of length one.

Considering that min{k, ℓ} ≥ 3 and max{k, ℓ} ≥ 4, a small case analysis shows that if

T0(R
′) = T0(R

′′) = 1, the percolation time for K is at most equal to the lower bound

given by inequality (5.2). From now on, we assume that s1, t1 ≥ 2.

We can bound from above the time that K takes to percolate [k] × [ℓ] by the

maximum time to internally span R′ plus the time to grow from R′ to R, that is, to

infect all sites in R \ (R′ ∪ R′′) given that all sites in R′ and R′′ are infected.

Therefore, the time that K takes to percolate is at most







T0(R
′) + max{s1 + t2, s2 + t1}, if Condition A holds,

T0(R
′) + max{s1 + t2 − 1, s2 + t1 − 1}, if Condition B holds,

T0(R
′) + max{m + t2 + 1, s1 − m − s2 + t2 + 1}, if Condition C holds.

(5.4)

Now, fix 0 ≤ i, j ≤ 2 such that i + j = 2, s1 + i ≤ k, t1 + j ≤ ℓ, s2 − i > 0 and

t2 − j > 0. Next, we show that each of the above bounds does not decrease when we

replace (s1, t1, s2, t2) by (s1 + i, t1 + j, s2 − i, t2 − j) and T0(R
′) by T0(s1 + i, t1 + j).

This implies that the weakest, i.e., largest, upper bound on the percolation time of K

is attained when Rec′ has semi-perimeter k + ℓ − 2 and Rec′′ is a single site.

Firstly, define

MA
s1,t1,s2,t2

= max{s1 + t2, s2 + t1},

MB
s1,t1,s2,t2

= max{s1 + t2 − 1, s2 + t1 − 1},

MC
m,s1,t1,s2,t2

= max{m + t2 + 1, s1 − m − s2 + t2 + 1}.
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Note that for any 0 ≤ m ≤ s1 − s2 we have MC
m,s1,t1,s2,t2

≤ MC
0,s1,t1,s2,t2

so let

MC
s1,t1,s2,t2

= MC
0,s1,t1,s2,t2

. Therefore for any Q ∈ {A,B,C} we have

MQ
s1+i,t1+j,s2−i,t2−j ≥ MQ

s1,t1,s2,t2 − 2. (5.5)

Secondly, we also give a lower bound on the growth of T (s1, t1) as follows.

Claim 5.14. We have that T0(s1 + i, t1 + j) ≥ T0(s1, t1) + 2.

Proof of Claim 5.14. We consider the three possible values for (i, j).

Case 1: (i, j) = (2, 0). We have that s1 + 2 ≤ k and t1 ≤ ℓ. So, if in addition we

had min{s1 + 2, t1} ≥ 3 and max{s1 + 2, t1} ≥ 4, we could use inequality (5.2) to

obtain

T0(s1 + 2, t1) − T0(s1, t1) ≥ t1 + 1 ≥ 2.

Since s1 ≥ 2, if t1 ≥ 3 we are done as above. If t1 = 2, as s1 + t1 is even, we have

that T0(s1 + 2, 2) − T0(s1, 2) = 3 follows from Lemma 5.12.

Case 2: (i, j) = (0, 2). An analogous argument to the previous case works.

Case 3: (i, j) = (1, 1). We have that s1 + 1 ≤ k and t1 + 1 ≤ ℓ. So, if in addition

we had min{s1 + 1, t1 + 1} ≥ 3 and max{s1 + 1, t1 + 1} ≥ 4, we could use

inequality (5.2) to obtain

T0(s1 + 1, t1 + 1) − T0(s1, t1) ≥ max{t1, s1} ≥ 2.

Assume, without loss of generality, that t1 ≤ s1. If t1 ≥ 3 or if t1 = 2 and s1 ≥ 3, we

are done. If t1 = 2 and s1 = 2, we just need to check that

T0(3, 3) − T0(2, 2) = 3 > 2.
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Applying Claim 5.14 together with inequality (5.5) several times we conclude the

following. If R′, R′′ satisfies either Condition A or C, then

max{T0(k, ℓ − 2) + k + 1, T0(k − 2, ℓ) + ℓ + 1} is an upper bound on the time that the

K takes to percolate. If R′, R′′ satisfies Condition B then T0(k − 1, ℓ− 1) + ℓ− 1 is an

upper bound for the time that K takes to percolate. Since one of the three conditions

must hold, we have that

max{T0(k − 1, ℓ − 1) + ℓ − 1, T0(k, ℓ − 2) + k + 1, T0(k − 2, ℓ) + ℓ + 1}

is a general upper bound for the percolation time of K. Since K was arbitrary, it is

also an upper bound for T0(k, ℓ). This completes the proof.

In the next theorem we shall give the precise value of T0(n) for n ≥ 4. In its

statement we use {a|b} to denote the indicator

{a|b} =







1, if b is a multiple of a

0, otherwise.

(5.6)

Theorem 5.15. Let n ≥ 4 and let m =
⌊

n
2
− 5

2

⌋
+ {4|n−1} + {4|n}. Then

T0(n) =
n2 + n(m + 2) − (m2 + 5m + 6)

2
. (5.7)

Proof. Let, n ≥ 4 be given. By Lemma 5.13, there exists a set A0(n, n) ∈ Rn,n which

percolates [n]2 in the maximum time T0(n). So, it is enough to determine which set in

Rn,n takes the longest to percolate and compute how long it takes to do so. Assume

that K ∈ Rn is a set that percolates in time T0(n) and let R0 ⊂ R1 ⊂ . . . ⊂ Rr = [n]2

be the configuration associated with K. It is easy to check that for every i, with

1 ≤ i ≤ r, the sites K ∩ Ri must internally span Ri in the maximum possible time,

i.e., in time T0(Ri).
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First, we treat a number of small cases to exclude some, a priori possible, values

for the numbers s0 and t0.

Suppose, for a contradiction, that R0 = Rec(1, t). Since R1 = Rec(s1, t1) where

s1, t1 ≥ 3 and max{s1, t1} ≥ 4, we must have R1 = Rec(3, t) with t ≥ 5. Since we

have T0(2, t − 1) ≥ 4, we obtain T0(3, t) ≥ t − 1 + 4 = t + 3. However, R0 = Rec(1, t)

and R1 = Rec(3, t), so, in the infection process defined by K, it takes time at most

t + 1 to infect all sites of R1. This contradicts the fact the time that K takes to

percolates in maximum.

Suppose now that R0 = Rec(3, 3). Note that either R1 = Rec(4, 4) or

R = Rec(3, 5). In the first case, it takes time 3 to infect R1 after R0 has been fully

infected. Since T0(3) = 4, this procedure takes time at most 4 + 3 = 7 to infect R1.

However, T0(4) = T0(2, 4) + 4 + 1 = 9. So, we have a contradiction like is the previous

paragraph. In the second case, where R1 = Rec(3, 5), it takes at most time 4 to grow

from R0 to R1, resulting in R1 being fully infected at time at most T0(3) + 4 = 8.

However, T0(3, 5) = T0(2, 4) + 4 = 8. Although, this does not contradict the

maximality of K, we can replace K by a set K ′ whose infection process starts with a

Rec(2, 4) and expands to R1, so that K ′ takes the same time to percolate [n]2 as K.

Because of that, we may as well assume that R0 6= Rec(3, 3). Therefore we assume

that R0 = Rec(2, t) for some even t ≥ 4.

The following two observations are crucial to determine the precise value of T0(n).

In fact, with those observations and equation (5.1), we shall be able to find a

percolating set which takes time exactly T0(n) to percolate.

Observation 5.16. For any i ≥ 1, no matter weather one uses Option A or Option B

at moment i (to infect the rectangle Ri+1), at each time step after Ri is fully infected

and until all sites of Ri+1 are infected we have that at most two sites become infected.
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Observation 5.17. For any i ≥ 1, the following statements hold.

(a) If we use Option A at moment i, there are exactly |si − ti| time steps after Ri is

fully infected and until all sites of Ri+1 are infected where only one new site

becomes infected.

(b) If si, ti ≥ 2 and we use Option B at moment i, then there are exactly 3 time

steps after Ri is fully infected and until all sites of Ri+1 are infected where only

one new site becomes infected.

By Observation 5.16 and because the number of initially infected sites is constant,

a set from Rn that maximizes the percolation time, must also maximize the number

of time steps in which only one new site becomes infected. Let Sn
m ⊂ Rn be the

subfamily of sets for which in its infection process the Option B is used exactly m

times. (Note that when n and m have opposite parities we have Sn
m = ∅).

By Observation 5.17, for a fixed m, the configuration associated with a set in Sn
m

which maximizes the percolation time among those in Sn
m, can be described as follows:

(a) Phase 1: start with R0 = Rec(2, n − m), where n − m ≥ 4.

(b) Phase 2: use Option A m times in order to get a rectangle Rm = Rec(2 + m,n).

(c) Phase 3: use Option B n−2−m
2

times, finally percolating the whole [n]2 grid.

Let the configuration satisfying the above description be denoted by Cn
m. For

example, Figure 5.6 shows the set of initially infected sites whose associated

configuration is C12
4 .

Now, we notice that for every n ≥ 4 and 0 ≤ m ≤ n − 4 for which m and n have

the same parity, the percolation time for Cn
m can be given explicitly as follows:

(a) Phase 1 takes time T0(2, n − m) =
⌊

3(n−m−1)
2

⌋

= 3(n−m)
2

− 2;
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m = 4

n − m = 8

Figure 5.6: Configuration C12
4 .

(b) Phase 2 takes time
∑m−1

i=0 (n − m + i) = mn − m2 + m(m−1)
2

= mn − m(m+1)
2

;

(c) Phase 3 takes time n−m−2
2

(n + 1) = n2−n−mn−m−2
2

.

Letting f(n,m) denote the percolation time for Cn
m, by the above calculations we have

f(n,m) =
n2 + n(m + 2) − (m2 + 5m + 6)

2
.

For a given n, the function fn(m) = f(n,m) is a quadratic function in m with

maximum value at m = n−5
2

. As we are interested in maximizing fn(m) subject to

m ∈ N and m having the same parity of n, its maximum value is obtained for

m =

⌊
n

2
− 5

2

⌋

+ {4|n−1} + {4|n},

That ends the proof.

From (5.7) we obtain the following corollary.

Corollary 5.18. We have

lim
n→∞

T0(n)

n2
=

5

8
.

The most natural open problem would be to compute Tm(n) for all suitable values

of m. First, we generalize the definition of the family Rk,ℓ.
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Definition 5.19. Given positive integers m, k, ℓ, let Rk,ℓ
m be the family of sets

A ⊂ [k] × [ℓ] where |A| = ⌈(k + ℓ)/2⌉ + m and such that A percolates [k] × [ℓ] in the

following way. There exists an integer r and a nested sequence of rectangles

R0 ⊂ R1 ⊂ . . . ⊂ Rr = [k] × [ℓ] such that denoting Ri = Rec(si, ti) the following

conditions hold:

(a) either s0 ≤ 2 or t0 ≤ 2 or s0 = t0 = 3; and s1, t1 ≥ 3 and (s1, t1) 6= (3, 3);

(b) For at most 2m possible values of i, with 0 ≤ i ≤ r − 1, we have

Φ(Ri+1) = Φ(Ri)+1; for the remaining values of i we have Φ(Ri+1) = Φ(Ri)+2.

(c) Ri is internally spanned and there exists a site vi ∈ A such that Ri ∪ {vi}

internally spans Ri+1.

We remark that Rk,ℓ
0 = Rk,ℓ. We conjecture that there is a set A in Rk,ℓ

m which

percolates in time Tm(n). One can also aim to compute directly the quantity

M(n) = max{Ts(n) : 0 ≤ s ≤ n2 − n}. We have an example which comes from solving

a recursion for a lower bound on M(n) and that percolates in time approximately

13n2/18. We hope to prove in a short-coming article that this example is optimal,

that is, M(n) is approximately 13n2/18.
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