6 research outputs found

    Fast Algorithms for Constructing Maximum Entropy Summary Trees

    Full text link
    Karloff? and Shirley recently proposed summary trees as a new way to visualize large rooted trees (Eurovis 2013) and gave algorithms for generating a maximum-entropy k-node summary tree of an input n-node rooted tree. However, the algorithm generating optimal summary trees was only pseudo-polynomial (and worked only for integral weights); the authors left open existence of a olynomial-time algorithm. In addition, the authors provided an additive approximation algorithm and a greedy heuristic, both working on real weights. This paper shows how to construct maximum entropy k-node summary trees in time O(k^2 n + n log n) for real weights (indeed, as small as the time bound for the greedy heuristic given previously); how to speed up the approximation algorithm so that it runs in time O(n + (k^4/eps?) log(k/eps?)), and how to speed up the greedy algorithm so as to run in time O(kn + n log n). Altogether, these results make summary trees a much more practical tool than before.Comment: 17 pages, 4 figures. Extended version of paper appearing in ICALP 201

    The classical origin of modern mathematics

    Get PDF
    The aim of this paper is to study the historical evolution of mathematical thinking and its spatial spreading. To do so, we have collected and integrated data from different online academic datasets. In its final stage, the database includes a large number (N~200K) of advisor-student relationships, with affiliations and keywords on their research topic, over several centuries, from the 14th century until today. We focus on two different topics, the evolving importance of countries and of the research disciplines over time. Moreover we study the database at three levels, its global statistics, the mesoscale networks connecting countries and disciplines, and the genealogical level

    Information-Balance-Aware Approximated Summarization of Data Provenance

    Get PDF
    corecore