5 research outputs found

    A Routing Algorithm for Extending Mobile Sensor Network’s Lifetime using Connectivity and Target Coverage

    Get PDF
    In this paper, we propose an approach to improving the network lifetime by enhancing Network CONnectivity (NCON) and Target COVerage (TCOV) in randomly deployed Mobile Sensor Network (MSN). Generally, MSN refers to the collection of independent and scattered sensors with the capability of being mobile, if need be. Target coverage, network connectivity, and network lifetime are the three most critical issues of MSN. Any MSN formed with a set of randomly distributed sensors should be able to select and successfully activate some subsets of nodes so that they completely monitor or cover the entire Area of Interest (AOI). Network connectivity, on the other hand ensures that the nodes are connected for the full lifetime of the network so that collection and reporting of data to the sink node are kept uninterrupted through the sensor nodes. Keeping these three critical aspects into consideration, here we propose Socratic Random Algorithm (SRA) that ensures efficient target coverage and network connectivity alongside extending the lifetime of the network. The proposed method has been experimentally compared with other existing alternative mechanisms taking appropriate performance metrics into consideration. Our simulation results and analysis show that SRA performs significantly better than the existing schemes in the recent literature

    Energy efficient intelligent routing in WSN using dominant genetic algorithm

    Get PDF
    In the current era of wireless sensor network development, among the various challenging issues, the life enhancement has obtained the prime interest. Reason is clear and straight: the battery operated sensors do have limited period of life hence to keep the network active as much as possible, life of network should be larger. To enhance the life of the network, at different level different approaches has been applied, broadly defining the proper scheduling of sensors and defining the energy efficient communication. In this paper heuristic based energy efficient communication approch has applied. A new development in the Genetic algorithm has presented and called as Dominant Genetic algorithm to determine the optimum energy efficient routing path between sensor nodes and to define the optimal energy efficient trajectory for mobile data gathering node. Dominancy of high fitness solution has included in the Genetic algorithm because of its natural existence. The proposed solution has applied the connection oriented crossover and mutation operator to maintain the feasibility of generated solution. The proposed solution has applied with various simulation experiments under two different scenarios: in first case energy efficient routes among the sensors have explored to deliver the information from source sensor to the sink node and in second case, energy efficient route among all local data hubs for mobile data gathering node has obtained. The proposed solution performances have been analyzed quantitatively and analytically. It has observed with various experimental results that proposed method not only has delivered the better solution but also has faster convergence and high level of reliability in compared to conventional form of Genetic algorithm

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Applications of Prediction Approaches in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) collect data and continuously monitor ambient data such as temperature, humidity and light. The continuous data transmission of energy constrained sensor nodes is a challenge to the lifetime and performance of WSNs. The type of deployment environment is also and the network topology also contributes to the depletion of nodes which threatens the lifetime and the also the performance of the network. To overcome these challenges, a number of approaches have been proposed and implemented. Of these approaches are routing, clustering, prediction, and duty cycling. Prediction approaches may be used to schedule the sleep periods of nodes to improve the lifetime. The chapter discusses WSN deployment environment, energy conservation techniques, mobility in WSN, prediction approaches and their applications in scheduling the sleep/wake-up periods of sensor nodes

    Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy Consumption, and Security Challenges

    Get PDF
    Wireless body area networks (WBANs) are a new advance utilized in recent years to increase the quality of human life by monitoring the conditions of patients inside and outside hospitals, the activities of athletes, military applications, and multimedia. WBANs consist of intelligent micro- or nano-sensors capable of processing and sending information to the base station (BS). Sensors embedded in the bodies of individuals can enable vital information exchange over wireless communication. Network forming of these sensors envisages long-term medical care without restricting patients’ normal daily activities as part of diagnosing or caring for a patient with a chronic illness or monitoring the patient after surgery to manage emergencies. This paper reviews WBAN, its security challenges, body sensor network architecture and functions, and communication technologies. The work reported in this paper investigates a significant security-level challenge existing in WBAN. Lastly, it highlights various mechanisms for increasing security and decreasing energy consumption
    corecore