18 research outputs found

    The Online Disjoint Set Cover Problem and its Applications

    Full text link
    Given a universe UU of nn elements and a collection of subsets S\mathcal{S} of UU, the maximum disjoint set cover problem (DSCP) is to partition S\mathcal{S} into as many set covers as possible, where a set cover is defined as a collection of subsets whose union is UU. We consider the online DSCP, in which the subsets arrive one by one (possibly in an order chosen by an adversary), and must be irrevocably assigned to some partition on arrival with the objective of minimizing the competitive ratio. The competitive ratio of an online DSCP algorithm AA is defined as the maximum ratio of the number of disjoint set covers obtained by the optimal offline algorithm to the number of disjoint set covers obtained by AA across all inputs. We propose an online algorithm for solving the DSCP with competitive ratio ln⁥n\ln n. We then show a lower bound of Ω(ln⁥n)\Omega(\sqrt{\ln n}) on the competitive ratio for any online DSCP algorithm. The online disjoint set cover problem has wide ranging applications in practice, including the online crowd-sourcing problem, the online coverage lifetime maximization problem in wireless sensor networks, and in online resource allocation problems.Comment: To appear in IEEE INFOCOM 201

    Determining Distributions of Security Means for WSNs based on the Model of a Neighbourhood Watch

    Full text link
    Neighbourhood watch is a concept that allows a community to distribute a complex security task in between all members. Members of the community carry out individual security tasks to contribute to the overall security of it. It reduces the workload of a particular individual while securing all members and allowing them to carry out a multitude of security tasks. Wireless sensor networks (WSNs) are composed of resource-constraint independent battery driven computers as nodes communicating wirelessly. Security in WSNs is essential. Without sufficient security, an attacker is able to eavesdrop the communication, tamper monitoring results or deny critical nodes providing their service in a way to cut off larger network parts. The resource-constraint nature of sensor nodes prevents them from running full-fledged security protocols. Instead, it is necessary to assess the most significant security threats and implement specialised protocols. A neighbourhood-watch inspired distributed security scheme for WSNs has been introduced by Langend\"orfer. Its goal is to increase the variety of attacks a WSN can fend off. A framework of such complexity has to be designed in multiple steps. Here, we introduce an approach to determine distributions of security means on large-scale static homogeneous WSNs. Therefore, we model WSNs as undirected graphs in which two nodes connected iff they are in transmission range. The framework aims to partition the graph into nn distinct security means resulting in the targeted distribution. The underlying problems turn out to be NP hard and we attempt to solve them using linear programs (LPs). To evaluate the computability of the LPs, we generate large numbers of random {\lambda}-precision unit disk graphs (UDGs) as representation of WSNs. For this purpose, we introduce a novel {\lambda}-precision UDG generator to model WSNs with a minimal distance in between nodes

    Coverage and Connectivity Aware Neural Network Based Energy Efficient Routing in Wireless Sensor Networks

    Full text link
    There are many challenges when designing and deploying wireless sensor networks (WSNs). One of the key challenges is how to make full use of the limited energy to prolong the lifetime of the network, because energy is a valuable resource in WSNs. The status of energy consumption should be continuously monitored after network deployment. In this paper, we propose coverage and connectivity aware neural network based energy efficient routing in WSN with the objective of maximizing the network lifetime. In the proposed scheme, the problem is formulated as linear programming (LP) with coverage and connectivity aware constraints. Cluster head selection is proposed using adaptive learning in neural networks followed by coverage and connectivity aware routing with data transmission. The proposed scheme is compared with existing schemes with respect to the parameters such as number of alive nodes, packet delivery fraction, and node residual energy. The simulation results show that the proposed scheme can be used in wide area of applications in WSNs.Comment: 16 Pages, JGraph-Hoc Journa

    Restricted Strip Covering and the Sensor Cover Problem

    Full text link
    Given a set of objects with durations (jobs) that cover a base region, can we schedule the jobs to maximize the duration the original region remains covered? We call this problem the sensor cover problem. This problem arises in the context of covering a region with sensors. For example, suppose you wish to monitor activity along a fence by sensors placed at various fixed locations. Each sensor has a range and limited battery life. The problem is to schedule when to turn on the sensors so that the fence is fully monitored for as long as possible. This one dimensional problem involves intervals on the real line. Associating a duration to each yields a set of rectangles in space and time, each specified by a pair of fixed horizontal endpoints and a height. The objective is to assign a position to each rectangle to maximize the height at which the spanning interval is fully covered. We call this one dimensional problem restricted strip covering. If we replace the covering constraint by a packing constraint, the problem is identical to dynamic storage allocation, a scheduling problem that is a restricted case of the strip packing problem. We show that the restricted strip covering problem is NP-hard and present an O(log log n)-approximation algorithm. We present better approximations or exact algorithms for some special cases. For the uniform-duration case of restricted strip covering we give a polynomial-time, exact algorithm but prove that the uniform-duration case for higher-dimensional regions is NP-hard. Finally, we consider regions that are arbitrary sets, and we present an O(log n)-approximation algorithm.Comment: 14 pages, 6 figure

    A Dependable Slepian-Wolf Coding Based Clustering Algorithm for Data Aggregation in Wireless Sensor Networks

    Get PDF
    International audienceThis paper considers the Slepian-Wolf coding based data aggregation problem and the corresponding dependable clustering problem in wireless sensor networks (WSNs). A dependable Slepian-Wolf coding based clustering (DSWC) algorithm is proposed to provide dependable clustering against cluster-head failures. The proposed D-SWC algorithm attempts to elect a primary cluster head and a backup cluster head for each cluster member during clustering so that once a failure occurs to the primary cluster head the cluster members within the failed cluster can promptly switchover to the backup cluster head and thus recover the connectivity of the failed cluster to the data sink without waiting for the next-round clustering to be performed. Simulation results show that the DSWC algorithm can effectively increase the amount of data transmitted to the data sink as compared with an existing nondependable clustering algorithm for Slepian-Wolf coding based data aggregation in WSNs

    A dependable Slepian-Wolf coding based clustering algorithm for data aggregation in wireless sensor networks

    Full text link

    Optimisation problems in wireless sensor networks : Local algorithms and local graphs

    Get PDF
    This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating–dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating–dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs – these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating–dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs
    corecore