42,421 research outputs found

    Maximizing the Diversity of Exposure in a Social Network

    Full text link
    Social-media platforms have created new ways for citizens to stay informed and participate in public debates. However, to enable a healthy environment for information sharing, social deliberation, and opinion formation, citizens need to be exposed to sufficiently diverse viewpoints that challenge their assumptions, instead of being trapped inside filter bubbles. In this paper, we take a step in this direction and propose a novel approach to maximize the diversity of exposure in a social network. We formulate the problem in the context of information propagation, as a task of recommending a small number of news articles to selected users. We propose a realistic setting where we take into account content and user leanings, and the probability of further sharing an article. This setting allows us to capture the balance between maximizing the spread of information and ensuring the exposure of users to diverse viewpoints. The resulting problem can be cast as maximizing a monotone and submodular function subject to a matroid constraint on the allocation of articles to users. It is a challenging generalization of the influence maximization problem. Yet, we are able to devise scalable approximation algorithms by introducing a novel extension to the notion of random reverse-reachable sets. We experimentally demonstrate the efficiency and scalability of our algorithm on several real-world datasets

    Beyond Personalization: Research Directions in Multistakeholder Recommendation

    Get PDF
    Recommender systems are personalized information access applications; they are ubiquitous in today's online environment, and effective at finding items that meet user needs and tastes. As the reach of recommender systems has extended, it has become apparent that the single-minded focus on the user common to academic research has obscured other important aspects of recommendation outcomes. Properties such as fairness, balance, profitability, and reciprocity are not captured by typical metrics for recommender system evaluation. The concept of multistakeholder recommendation has emerged as a unifying framework for describing and understanding recommendation settings where the end user is not the sole focus. This article describes the origins of multistakeholder recommendation, and the landscape of system designs. It provides illustrative examples of current research, as well as outlining open questions and research directions for the field.Comment: 64 page

    Improving Sequential Determinantal Point Processes for Supervised Video Summarization

    Full text link
    It is now much easier than ever before to produce videos. While the ubiquitous video data is a great source for information discovery and extraction, the computational challenges are unparalleled. Automatically summarizing the videos has become a substantial need for browsing, searching, and indexing visual content. This paper is in the vein of supervised video summarization using sequential determinantal point process (SeqDPP), which models diversity by a probabilistic distribution. We improve this model in two folds. In terms of learning, we propose a large-margin algorithm to address the exposure bias problem in SeqDPP. In terms of modeling, we design a new probabilistic distribution such that, when it is integrated into SeqDPP, the resulting model accepts user input about the expected length of the summary. Moreover, we also significantly extend a popular video summarization dataset by 1) more egocentric videos, 2) dense user annotations, and 3) a refined evaluation scheme. We conduct extensive experiments on this dataset (about 60 hours of videos in total) and compare our approach to several competitive baselines

    An Empirical Evaluation Of Social Influence Metrics

    Full text link
    Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This paper examines the perfor- mance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly. We study the probability of an individual becoming influenced based on measurements derived from neigh- borhood (i.e. number of influencers, personal network exposure), structural diversity, locality, temporal measures, cascade mea- sures, and metadata. We also examine the ability to predict influence based on choice of classifier and how the ratio of positive to negative samples in both training and testing affect prediction results - further enabling practical use of these concepts for social influence applications.Comment: 8 pages, 5 figure

    Faculty Research in Progress, 2018-2019

    Get PDF
    The production of scholarly research continues to be one of the primary missions of the ILR School. During a typical academic year, ILR faculty members published or had accepted for publication over 25 books, edited volumes, and monographs, 170 articles and chapters in edited volumes, numerous book reviews. In addition, a large number of manuscripts were submitted for publication, presented at professional association meetings, or circulated in working paper form. Our faculty\u27s research continues to find its way into the very best industrial relations, social science and statistics journal

    Potential Maximization and Coalition Government Formation

    Get PDF
    A model of coalition government formation is presented in which inefficient, non-minimal winning coalitions may form in Nash equilibrium. Predictions for five games are presented and tested experimentally. The experimental data support potential maximization as a refinement of Nash equilibrium. In particular, the data support the prediction that non-minimal winning coalitions occur when the distance between policy positions of the parties is small relative to the value of forming the government. These conditions hold in games 1, 3, 4 and 5, where subjects played their unique potential-maximizing strategies 91, 52, 82 and 84 percent of the time, respectively. In the remaining game (Game 2) experimental data support the prediction of a minimal winning coalition. Players A and B played their unique potential-maximizing strategies 84 and 86 percent of the time, respectively, and the predicted minimal-winning government formed 92 percent of the time (all strategy choices for player C conform with potential maximization in Game 2). In Games 1, 2, 4 and 5 over 98 percent of the observed Nash equilibrium outcomes were those predicted by potential maximization. Other solution concepts including iterated elimination of dominated strategies and strong/coalition proof Nash equilibrium are also tested.Coalition formation, Potential maximization, Nash equilibrium refinements, Experimental study, Minimal winning
    • 

    corecore