62,467 research outputs found

    Influence Maximization with Bandits

    Full text link
    We consider the problem of \emph{influence maximization}, the problem of maximizing the number of people that become aware of a product by finding the `best' set of `seed' users to expose the product to. Most prior work on this topic assumes that we know the probability of each user influencing each other user, or we have data that lets us estimate these influences. However, this information is typically not initially available or is difficult to obtain. To avoid this assumption, we adopt a combinatorial multi-armed bandit paradigm that estimates the influence probabilities as we sequentially try different seed sets. We establish bounds on the performance of this procedure under the existing edge-level feedback as well as a novel and more realistic node-level feedback. Beyond our theoretical results, we describe a practical implementation and experimentally demonstrate its efficiency and effectiveness on four real datasets.Comment: 12 page

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies

    Online Influence Maximization in Non-Stationary Social Networks

    Full text link
    Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample products; in this way, the advertiser hopes to increase the popularity of the product in the users' friend circles by the world-of-mouth effect, and thus maximizes the number of users that information of the production can reach. There has been a body of literature studying the influence maximization problem. Nevertheless, the existing studies mostly investigate the problem on a one-off basis, assuming fixed known influence probabilities among users, or the knowledge of the exact social network topology. In practice, the social network topology and the influence probabilities are typically unknown to the advertiser, which can be varying over time, i.e., in cases of newly established, strengthened or weakened social ties. In this paper, we focus on a dynamic non-stationary social network and design a randomized algorithm, RSB, based on multi-armed bandit optimization, to maximize influence propagation over time. The algorithm produces a sequence of online decisions and calibrates its explore-exploit strategy utilizing outcomes of previous decisions. It is rigorously proven to achieve an upper-bounded regret in reward and applicable to large-scale social networks. Practical effectiveness of the algorithm is evaluated using both synthetic and real-world datasets, which demonstrates that our algorithm outperforms previous stationary methods under non-stationary conditions.Comment: 10 pages. To appear in IEEE/ACM IWQoS 2016. Full versio

    Revealing networks from dynamics: an introduction

    Full text link
    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.Comment: Topical review, 48 pages, 7 figure

    A Multi-phase Approach for Improving Information Diffusion in Social Networks

    Full text link
    For maximizing influence spread in a social network, given a certain budget on the number of seed nodes, we investigate the effects of selecting and activating the seed nodes in multiple phases. In particular, we formulate an appropriate objective function for two-phase influence maximization under the independent cascade model, investigate its properties, and propose algorithms for determining the seed nodes in the two phases. We also study the problem of determining an optimal budget-split and delay between the two phases.Comment: To appear in Proceedings of The 14th International Conference on Autonomous Agents & Multiagent Systems (AAMAS), 201
    corecore