12,727 research outputs found

    Maximizing Benefit of Classifications Using Feature Intervals

    Full text link

    Maximizing benefit of classifications using feature intervals

    Get PDF
    There is a great need for classification methods that can properly handle asymmetric cost and benefit constraints of classifications. In this study, we aim to emphasize the importance of classification benefits by means of a new classification algorithm, Benefit-Maximizing classifier with Feature Intervals (BMFI) that uses feature projection based knowledge representation. Empirical results show that BMFI has promising performance compared to recent cost-sensitive algorithms in terms of the benefit gained

    Road Friction Estimation for Connected Vehicles using Supervised Machine Learning

    Full text link
    In this paper, the problem of road friction prediction from a fleet of connected vehicles is investigated. A framework is proposed to predict the road friction level using both historical friction data from the connected cars and data from weather stations, and comparative results from different methods are presented. The problem is formulated as a classification task where the available data is used to train three machine learning models including logistic regression, support vector machine, and neural networks to predict the friction class (slippery or non-slippery) in the future for specific road segments. In addition to the friction values, which are measured by moving vehicles, additional parameters such as humidity, temperature, and rainfall are used to obtain a set of descriptive feature vectors as input to the classification methods. The proposed prediction models are evaluated for different prediction horizons (0 to 120 minutes in the future) where the evaluation shows that the neural networks method leads to more stable results in different conditions.Comment: Published at IV 201

    Diagnosis of gastric carcinoma by classification on feature projections

    Get PDF
    Cataloged from PDF version of article.A new classification algorithm, called benefit maximizing classifier on feature projections (BCFP), is developed and applied to the problem of diagnosis of gastric carcinoma. The domain contains records of patients with known diagnosis through gastroscopy results. Given a training set of such records, the BCFP classifier learns how to differentiate a new case in the domain. BCFP represents a concept in the form of feature projections on each feature dimension separately. Classification in the BCFP algorithm is based on a voting among the individual predictions made on each feature. In the gastric carcinoma domain, a lesion can be an indicator of one of nine different Levels of gastric carcinoma, from early to late stages. The benefit of correct classification of early levels is much more than that of late cases. Also, the costs of wrong classifications are not symmetric. In the training phase, the BCFP algorithm learns classification rules that maximize the benefit of classification. In the querying phase, using these rules, the BCFP algorithm tries to make a prediction maximizing the benefit. A genetic algorithm is applied to select the relevant features. The performance of the BCFP algorithm is evaluated in terms of accuracy and running time. The rules induced are verified by experts of the domain. (C) 2004 Elsevier B.V. All rights reserved

    Learning recurrent representations for hierarchical behavior modeling

    Get PDF
    We propose a framework for detecting action patterns from motion sequences and modeling the sensory-motor relationship of animals, using a generative recurrent neural network. The network has a discriminative part (classifying actions) and a generative part (predicting motion), whose recurrent cells are laterally connected, allowing higher levels of the network to represent high level phenomena. We test our framework on two types of data, fruit fly behavior and online handwriting. Our results show that 1) taking advantage of unlabeled sequences, by predicting future motion, significantly improves action detection performance when training labels are scarce, 2) the network learns to represent high level phenomena such as writer identity and fly gender, without supervision, and 3) simulated motion trajectories, generated by treating motion prediction as input to the network, look realistic and may be used to qualitatively evaluate whether the model has learnt generative control rules

    Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy

    Get PDF
    Astrophysics and cosmology are rich with data. The advent of wide-area digital cameras on large aperture telescopes has led to ever more ambitious surveys of the sky. Data volumes of entire surveys a decade ago can now be acquired in a single night and real-time analysis is often desired. Thus, modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing with label and measurement noise. We argue that this makes astronomy a great domain for computer science research, as it pushes the boundaries of data analysis. In the following, we will present this exciting application area for data scientists. We will focus on exemplary results, discuss main challenges, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications

    Identification of Hazardous Rural Highway Locations

    Get PDF
    An effective procedure was determined for identifying hazardous rural highway locations based on accident statistics. Multiple indicators of accident experience that are necessary include the number of fatal accidents, the total number of accidents, the number of effective-property-damage-only accidents, and the accident rate. Critical levels of these four indicators should vary from state to state depending on the nature of the local safety improvement program as well as local traffic and roadway conditions and prevailing attitudes toward highway safety. Specific recommendations are given for use in Kentucky. Critical accident rates are established using quality control procedures. To identify hazardous highway locations, it is necessary to distinguish between short highway segments (spots) and large segments (sections) and to further classify spots as intersection and non-intersection locations. Intersection spots should include a distance of 0.15 mile (0.24 km) along all approaches; non-intersection spots should be 0.3-mile (0.48-km), floating segments; and sections should be 3-mile (4.8-km), floating segments. Both spots and sections should be classified by highway type and location. The use of dual time intervals of 1 and 2 years for accumulating and evaluating accident statistics was found to be desirable
    corecore