5 research outputs found

    Agnostic Learning of Disjunctions on Symmetric Distributions

    Full text link
    We consider the problem of approximating and learning disjunctions (or equivalently, conjunctions) on symmetric distributions over {0,1}n\{0,1\}^n. Symmetric distributions are distributions whose PDF is invariant under any permutation of the variables. We give a simple proof that for every symmetric distribution D\mathcal{D}, there exists a set of nO(log(1/ϵ))n^{O(\log{(1/\epsilon)})} functions S\mathcal{S}, such that for every disjunction cc, there is function pp, expressible as a linear combination of functions in S\mathcal{S}, such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D} or ExD[c(x)p(x)]ϵ\mathbf{E}_{x \sim \mathcal{D}}[ |c(x)-p(x)|] \leq \epsilon. This directly gives an agnostic learning algorithm for disjunctions on symmetric distributions that runs in time nO(log(1/ϵ))n^{O( \log{(1/\epsilon)})}. The best known previous bound is nO(1/ϵ4)n^{O(1/\epsilon^4)} and follows from approximation of the more general class of halfspaces (Wimmer, 2010). We also show that there exists a symmetric distribution D\mathcal{D}, such that the minimum degree of a polynomial that 1/31/3-approximates the disjunction of all nn variables is 1\ell_1 distance on D\mathcal{D} is Ω(n)\Omega( \sqrt{n}). Therefore the learning result above cannot be achieved via 1\ell_1-regression with a polynomial basis used in most other agnostic learning algorithms. Our technique also gives a simple proof that for any product distribution D\mathcal{D} and every disjunction cc, there exists a polynomial pp of degree O(log(1/ϵ))O(\log{(1/\epsilon)}) such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D}. This was first proved by Blais et al. (2008) via a more involved argument
    corecore