21,073 research outputs found

    Neural Sampling by Irregular Gating Inhibition of Spiking Neurons and Attractor Networks

    Full text link
    A long tradition in theoretical neuroscience casts sensory processing in the brain as the process of inferring the maximally consistent interpretations of imperfect sensory input. Recently it has been shown that Gamma-band inhibition can enable neural attractor networks to approximately carry out such a sampling mechanism. In this paper we propose a novel neural network model based on irregular gating inhibition, show analytically how it implements a Monte-Carlo Markov Chain (MCMC) sampler, and describe how it can be used to model networks of both neural attractors as well as of single spiking neurons. Finally we show how this model applied to spiking neurons gives rise to a new putative mechanism that could be used to implement stochastic synaptic weights in biological neural networks and in neuromorphic hardware

    All-optical switching of photonic entanglement

    Full text link
    Future quantum optical networks will require the ability to route entangled photons at high speeds, with minimal loss and added in-band noise, and---most importantly---without disturbing the photons' quantum state. Here we present an all-optical switch which fulfills these requirements and characterize its performance at the single photon level. It exhibits a 200-ps switching window, 120:1 contrast, 1.5-dB loss, and induces no measurable degradation in the switched photons' entangled-state fidelity (< 0.002). As a proof-of-principle demonstration of its capability, we use the switch to demultiplex a single quantum channel from a dual-channel, time-division-multiplexed entangled photon stream. Furthermore, because this type of switch couples the temporal and spatial degrees of freedom, it provides an important new tool with which to encode multiple-qubit quantum states on a single photon

    Characterizing Pixel and Point Patterns with a Hyperuniformity Disorder Length

    Full text link
    We introduce the concept of a hyperuniformity disorder length that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance hh from the boundary of the window. We first compute special expectations and bounds in dd dimensions, and then illustrate the range of behavior of hh versus window size LL by analyzing three different types of simulated two-dimensional pixel pattern - where particle positions are stored as a binary digital image in which pixels have value zero/one if empty/contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2h=L/2. Next we consider vacancy patterns, where a fraction ff of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d)h=(L/2)(f/d) for small ff. For a hyperuniform system with no long-range density fluctuations, we consider Einstein patterns where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large LL, hh approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to grayscale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L)h(L) versus LL. We call this approach Hyperuniformity Disorder Length Spectroscopy

    Enhancement of synchronization in a hybrid neural circuit by spike timing dependent plasticity

    Get PDF
    Synchronization of neural activity is fundamental for many functions of the brain. We demonstrate that spike-timing dependent plasticity (STDP) enhances synchronization (entrainment) in a hybrid circuit composed of a spike generator, a dynamic clamp emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia abdominal ganglion. Fixed-phase entrainment of the Aplysia neuron to the spike generator is possible for a much wider range of frequency ratios and is more precise and more robust with the plastic synapse than with a nonplastic synapse of comparable strength. Further analysis in a computational model of HodgkinHuxley-type neurons reveals the mechanism behind this significant enhancement in synchronization. The experimentally observed STDP plasticity curve appears to be designed to adjust synaptic strength to a value suitable for stable entrainment of the postsynaptic neuron. One functional role of STDP might therefore be to facilitate synchronization or entrainment of nonidentical neurons

    All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    Get PDF
    A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples
    • …
    corecore