2,507 research outputs found

    PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners

    Full text link
    Multiclass neural networks are a common tool in modern unsupervised domain adaptation, yet an appropriate theoretical description for their non-uniform sample complexity is lacking in the adaptation literature. To fill this gap, we propose the first PAC-Bayesian adaptation bounds for multiclass learners. We facilitate practical use of our bounds by also proposing the first approximation techniques for the multiclass distribution divergences we consider. For divergences dependent on a Gibbs predictor, we propose additional PAC-Bayesian adaptation bounds which remove the need for inefficient Monte-Carlo estimation. Empirically, we test the efficacy of our proposed approximation techniques as well as some novel design-concepts which we include in our bounds. Finally, we apply our bounds to analyze a common adaptation algorithm that uses neural networks

    Learning Binary Code Representations for Effective and Efficient Image Retrieval

    Get PDF
    The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch
    • …
    corecore