
ABSTRACT

Title of dissertation: LEARNING BINARY CODE
REPRESENTATIONS FOR EFFECTIVE
AND EFFICIENT IMAGE RETRIEVAL

Bahadir Ozdemir, Doctor of Philosophy, 2016

Dissertation directed by: Professor Larry S. Davis
Department of Computer Science

The size of online image datasets is constantly increasing. Considering an im-

age dataset with millions of images, image retrieval becomes a seemingly intractable

problem for exhaustive similarity search algorithms. Hashing methods, which en-

codes high-dimensional descriptors into compact binary strings, have become very

popular because of their high efficiency in search and storage capacity.

In the first part, we propose a multimodal retrieval method based on latent

feature models. The procedure consists of a nonparametric Bayesian framework

for learning underlying semantically meaningful abstract features in a multimodal

dataset, a probabilistic retrieval model that allows cross-modal queries and an ex-

tension model for relevance feedback.

In the second part, we focus on supervised hashing with kernels. We describe

a flexible hashing procedure that treats binary codes and pairwise semantic similar-

ity as latent and observed variables, respectively, in a probabilistic model based on

Gaussian processes for binary classification. We present a scalable inference algo-

rithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed

computing.

In the last part, we define an incremental hashing strategy for dynamic databases

where new images are added to the databases frequently. The method is based on

a two-stage classification framework using binary and multi-class SVMs. The pro-

posed method also enforces balance in binary codes by an imbalance penalty to

obtain higher quality binary codes. We learn hash functions by an efficient algo-

rithm where the NP-hard problem of finding optimal binary codes is solved via cyclic

coordinate descent and SVMs are trained in a parallelized incremental manner. For

modifications like adding images from an unseen class, we propose an incremental

procedure for effective and efficient updates to the previous hash functions. Experi-

ments on three large-scale image datasets demonstrate that the incremental strategy

is capable of efficiently updating hash functions to the same retrieval performance

as hashing from scratch.

LEARNING BINARY CODE REPRESENTATIONS
FOR EFFECTIVE AND EFFICIENT IMAGE RETRIEVAL

by

Bahadir Ozdemir

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Şennur Ulukuş, Dean’s Representative
Professor Ramani Duraiswami
Professor Hal Daumé III
Professor Héctor Corrada Bravo

c© Copyright by
Bahadir Ozdemir

2016

Acknowledgments

I would like to express my sincere thanks to my advisor, Larry Davis, for his

guidance, suggestions, and support throughout the development of this thesis. He

encouraged me to develop and explore my research ideas for the image retrieval

problem while helping each step with his great vision and breadth of knowledge.

Whenever I got stuck in details, he provided me a different viewpoint. Working

with him has been a valuable experience for me.

I would like to extend my thanks to the dissertation committee members –

Şennur Ulukuş, Ramani Duraiswami, Hal Daumé III and Héctor Corrada Bravo –

for agreeing to serve on my dissertation committee and reviewing this thesis despite

their busy schedules.

My special thanks must be sent to Fatoş Tünay Yarman-Vural who introduced

me to computer vision and my previous advisor Selim Aksoy who introduced me to

the world of research. I would like to thank Hal Daumé III, Jordan Boyd-Graber

and Naomi Feldman who introduced me Bayesian nonparametrics, which have been

studied in this dissertation.

I would like to thank my mentors in the bioinformatics project as part of the

NCI-UMD partnership program, Wael Abd-Almageed, Stephanie Roessler and Xin

Wei Wang. Developing myself in the field of machine learning during that project

led to the development of advanced probabilistic models in this thesis. I would also

like to thank Lúıs Sarmento for mentoring me during my internship at Amazon.

During the internship, I was exposed to challenging real world retrieval system

ii

problems. It was a fruitful experience for me to learn optimization algorithms and

high-performance computing which I benefit from for the development of inference

algorithms in this dissertation.

I am very grateful to my friends outside the lab with whom I was having nice

days during my Ph.D. – Yunus, Adil, Tuğrul, Şimal, Ferhan, Elif, Nilsu, Besim – and

my labmates with whom I had several interesting discussions – Sonya, Guangxiao,

Varun, Sravanthi, Philip, Choi, Mohammad and Mahyar.

Lastly but most importantly, I would like to express my deepest gratitude to

my family, always standing by me, for their endless support and understanding.

This thesis is dedicated to them.

Bahadır Özdemir, May 5, 2016

College Park, Maryland

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Problem Definition . 3
1.4 Datasets . 5

1.4.1 Pascal-Sentence Dataset . 5
1.4.2 SUN-Attribute Dataset . 6
1.4.3 CIFAR-10 Dataset . 8
1.4.4 MNIST Dataset . 10
1.4.5 NUS-WIDE Dataset . 10

1.5 Summary of Contributions . 10
1.6 Organization of the Thesis . 14

2 Literature Review 15
2.1 Overview . 15

2.1.1 Unsupervised Hashing . 15
2.1.2 Supervised Hashing . 17

3 Unsupervised Multimodal Retrieval 19
3.1 Overview . 19
3.2 Latent Feature Model for Multimodal Retrieval 21

3.2.1 Integrative Latent Feature Model 21
3.2.2 Retrieval Model . 24
3.2.3 Relevance Feedback Model . 27

3.3 Experiments . 29
3.3.1 Experimental Setup . 30
3.3.2 Experimental Results . 31

3.4 Conclusion . 38

iv

4 Supervised Hashing 40
4.1 Overview . 40
4.2 Gaussian Process Hashing . 41

4.2.1 Problem Definition . 41
4.2.2 A Probabilistic Approach . 42
4.2.3 The Gaussian Process Model for Binary Classification 42
4.2.4 Predictions for Queries . 44
4.2.5 Sparse Approximation . 46

4.3 Inference . 47
4.3.1 Inference for the Full GPC Model 50

4.4 Experiments . 52
4.4.1 Datasets and Experimental Setup 53
4.4.2 Experimental Results . 55

4.5 Conclusion . 61

5 Dynamic Hashing 63
5.1 Overview . 63
5.2 Incremental Hashing . 64

5.2.1 Learning Hash Functions for Dynamic Databases 64
5.2.2 Supervised Discrete Hashing 66
5.2.3 SVM-based Hashing . 67
5.2.4 Training SVMs . 69
5.2.5 Learning Binary Codes . 70
5.2.6 Incremental Updates on Hash Functions 71

5.3 Experiments . 73
5.3.1 Datasets and Experimental Setup 73
5.3.2 Effects of Training and Anchor Set Size 75
5.3.3 Retrieval Performance Analysis 75
5.3.4 Retrieval Performance Analysis for Dynamic Datasets 82

5.4 Conclusion . 83

6 Conclusions and Future Work 90
6.1 Conclusions . 90
6.2 Future Work . 91

v

List of Tables

4.1 Our method (GPH) is compared in terms of the mean of precision
(%) at the Hamming radius r = 2. 58

4.2 Our method (GPH) is compared in terms of the mean of recall (%)
at the Hamming radius r = 2. 59

4.3 Results in mean average precision (mAP), mean of precision at Ham-
ming radius r = 2, training and test time for 16-bit hash codes on the
CIFAR-10 dataset. For our method (GPH), the number of inducing
samples varies from 300 to 3,0000. The experiments were performed
on a machine with an Intel quad-core processor. 62

5.1 Results in mean average precision (mAP), mean of precision at Ham-
ming radius r = 2, training and test time for 32-bit hash codes on
CIFAR-10 dataset. For our method (SVM-Hash), the number of
training samples varies from 300 to 1,0000. The experiments were
performed on a machine with an Intel quad-core processor. 76

5.2 Our method (SVM-Hash) is compared in terms of the mean of preci-
sion (%) at the Hamming radius r = 2. 80

5.3 Our method (SVM-Hash) is compared in terms of the mean of recall
(%) at the Hamming radius r = 2. 81

vi

List of Figures

1.1 Each row shows an image from one class in the Pascal-Sentence
dataset and its description sentences by Amazon Turk workers. 7

1.2 Sample images from the SUN-Attribute dataset are visualized on a
two-dimensional space which is constructed by the projection of its
102-dimensional attribute feature vector onto two dimensions (This
figure is taken from [1]). 8

1.3 Each row shows sample images from one class in the CIFAR-10 dataset. 9
1.4 Each row shows sample images from one class in the MNIST dataset. 11
1.5 The number images associated with the most frequent 21 concepts in

the NUS-WIDE dataset. 12

3.1 Schematic overview of our retrieval algorithm. The flow chart il-
lustrates discovery of abstract features from multimodal data, the
retrieval system for cross-view queries and user relevance feedback. . . 20

3.2 The latent abstract feature model proposes that visual data Xv is a
product of Z and Av with some noise; and similarly the textual data
Xτ is a product of Z and Aτ with some noise. 22

3.3 Graphical model for the integrative IBP approach where circles in-
dicate random variables, shaded circles denote observed values, and
the blue square boxes are hyperparameters. 23

3.4 Graphical model for the feedback query model. Circles indicate ran-
dom variables, shaded circles denote observed values. Hyperparame-
ters are omitted for clarity. Note that Z is considered as an observed
variable in the retrieval part. 29

3.5 The result of category retrieval for all query types (image-to-image
and text-to-image queries). Our method (iIBP) is compared with
the-state-of-the-art methods. 33

3.6 The result of category retrieval for text-to-image queries. Our method
(iIBP) is compared with the-state-of-the-art methods. 34

3.7 The result of category retrieval for image-to-image queries. Our
method (iIBP) is compared with the-state-of-the-art methods. 35

vii

3.8 The result of stability analysis for text and image queries. Our
method (iIBP) is applied on the PASCAL-Sentence dataset for 50
times. The curves represent the average level of mean precisions.
Error bars indicate the range of mean precisions observed at each
standard recall level. 36

3.9 The result of parameter effect analysis. Our method (iIBP) is applied
on the PASCAL-Sentence dataset for different values of I, the sample
size in the Monte Carlo estimation. 36

3.10 Sample images retrieved from the PASCAL-Sentence dataset by our
method (iIBP). 37

3.11 The result of category retrieval by our approach (iIBP) with relevance
feedback for text and image queries. Revised retrieval with relevance
feedback is compared with initial retrieval. 39

4.1 Graphical model for the Gaussian Process Hashing where circles in-
dicate random variables, shaded circles denote observed values. The
thick vertical bars represent a set of fully connected nodes. 47

4.2 From left to right and top to bottom; a sample dataset of 4 classes
indicated by color and shape X , inducing points marked with red
circles X̄ , the predictive probability distribution for the first binary
encoding p(y∗1|D,x∗) and for the second encoding p(y∗2|D,x∗). The
binary codes Y by the Gibbs sampler are indicated by filled and
emptied shapes for +1 and −1, respectively. 49

4.3 Our method (GPH) is compared with the state-of-the-art methods on
the CIFAR-10, MNIST and NUS-WIDE datasets in terms of mean
average precision (mAP), respectively. 56

4.4 Our method (GPH) is compared with the state-of-the-art methods
on the CIFAR-10 datasets by precision-recall curves for 8, 16, 32 and
64 bit hash codes. 57

5.1 Our method (SVM-Hash) is compared with the state-of-the-art meth-
ods on the CIFAR-10, MNIST and NUS-WIDE datasets in terms of
mean average precision (mAP). Dashed line represents SVM-Hash
without imbalance penalty. 78

5.2 Our method (SVM-Hash) is compared with the state-of-the-art meth-
ods on the CIFAR-10, MNIST and NUS-WIDE datasets by precision-
recall curves for 32-bit length hash codes. Dashed line represents
SVM-Hash without imbalance penalty. 79

5.3 Adding new classes : Incremental hashing is compared with the from-
scratch and passive hashing for adding different number of new classes
to the CIFAR-10, MNIST and NUS-WIDE datasets in terms of mean
average precision (mAP) at 32-bits. 84

viii

5.4 Adding new classes : Incremental hashing is compared with the from-
scratch and passive hashing for adding different number of new classes
to the CIFAR-10, MNIST and NUS-WIDE datasets in terms of train-
ing time at 32-bits. 85

5.5 Adding new images : Incremental hashing is compared with the from-
scratch and passive hashing for adding different number of new images
to existing classes to the CIFAR-10, MNIST and NUS-WIDE datasets
in terms of mean average precision (mAP) at 32-bits. 86

5.6 Adding new images : Incremental hashing is compared with the from-
scratch and passive hashing for adding different number of new images
to existing classes to the CIFAR-10, MNIST and NUS-WIDE datasets
in terms of training time at 32-bits. 87

5.7 Deleting existing classes : Incremental hashing is compared with the
from-scratch and passive hashing for deleting different number of ex-
isting classes from the CIFAR-10, MNIST and NUS-WIDE datasets
in terms of mean average precision (mAP) at 32-bits. 88

5.8 Deleting existing classes : Incremental hashing is compared with the
from-scratch and passive hashing for deleting different number of ex-
isting classes from the CIFAR-10, MNIST and NUS-WIDE datasets
in terms of training time at 32-bits. 89

ix

Chapter 1: Introduction

First, writing a thesis should be fun.

“How to Write a Thesis” – Umberto Eco

1.1 Overview

As the size of online image datasets like Flickr is constantly increasing due

to rapid advances in digital camera technology, image processing tools, and photo

sharing platforms, the problem of image retrieval has attracted more attention from

researchers in computer vision, machine learning, and information retrieval. Mas-

sive amounts of information lead to the requirement of efficient search algorithms.

Considering an image dataset with millions of images, image retrieval becomes a

seemingly intractable problem for exhaustive similarity search algorithms due to

their linear time complexity. Although k-d trees are useful data structures for low-

dimensional nearest neighbor search, they are not as applicable to high-dimensional

image descriptors. We can reduce the linear time complexity of exhaustive similarity

search to sublinear time complexity for approximate nearest neighbor search with the

help of discretization [2]. Therefore, encoding high-dimensional descriptors into com-

pact binary strings has become a very popular representation for images because of

1

their high efficiency in query processing and storage capacity [2, 3, 4, 5]. Similarity-

preserving binary codes have received significant attention for image search and

retrieval in large-scale image collections [6, 7].

In this thesis, we state that utilizing text or label data in an incremental learn-

ing strategy makes binary codes effective and efficient representations for image re-

trieval.

1.2 Motivation

Despite the increasing amount of multimodal data, especially in multimedia

domains e.g. images with captions or tags, most existing hashing techniques, unfor-

tunately, focus on unimodal data. Hence, they inevitably suffer from the semantic

gap, which is defined in [8] as the lack of coincidence between low-level visual fea-

tures and high-level semantic interpretation of an image. A holistic approach that

strives the integration of information from various input modalities into computa-

tional models contributes towards improved search and retrieval capabilities. How-

ever, it also poses challenges associated with handling cross-view similarities and

interactions.

Other alternatives for bridging the semantic gap are supervised hashing meth-

ods that use semantic class labels in learning hash functions. However, overfitting

to training data and long training time are two common problems with those meth-

ods. Bayesian models with model choice or averaging are promising approaches to

prevent overfitting when a scalable inference algorithm is available. On the other

2

hand, considering online image databases where new images are added steadily ev-

ery day, hash functions need to be updated as the database becomes larger with

new pictures. Besides, those changes may emerge new semantic classes. As a result,

existing hashing methods should be trained on the final data from scratch. In this

aspect, a hashing approach that learns binary codes incrementally offers an efficient

solution to dynamic image datasets.

1.3 Problem Definition

In the first part, we focus on unsupervised multimodal retrieval and processing

user feedback [9]. Although many hashing approaches rely on supervised informa-

tion like semantic class labels, class memberships are not available for many image

datasets. Also, many supervised methods cannot be generalized to unseen classes

that are not used during training [10]. Besides, every user’s need is different and

time-varying [11]. Therefore, user judgments indicating the relevance of an im-

age retrieved for a query are utilized to achieve better retrieval performance in the

revised ranking of images [12]. Development of an efficient retrieval system that

embeds information from multiple domains into short binary codes and takes rele-

vance feedback into account is quite challenging. We consider some hidden common

causes explain the dependency among modalities. We propose a multimodal im-

age retrieval procedure by integrating visual features with tags or descriptive texts.

The process first identifies underlying semantically meaningful abstract elements in

a multimodal dataset using a nonparametric Bayesian framework based on a la-

3

tent feature model. In retrieval phase, these abstract features are employed in a

probabilistic model that allows cross-modal queries. Finally, we use an extension

model for relevance feedback to achieve better retrieval performance by utilizing

user relevance judgments.

In the second part, we deal with the problem of supervised hashing [13]. Over-

fitting is a general issue of this type of hashing methods. Despite different formula-

tions, many supervised hashing methods in practice find one binary string pattern

for each class and the same binary hash code is assigned to all images in that class.

We use a fully probabilistic approach with model averaging for learning binary codes

from data. We utilize the Gaussian process classification (GPC) model [14] for su-

pervised hashing in a Bayesian framework. In our model, the variables corresponding

to the binary classes in the original GPC model become latent variables and a new

level of variables that correspond to the pairwise similarity between data points is

integrated into the design. Averaging over nonlinear classification models by Gaus-

sian processes is our motivation behind the GPH model to overcome the overfitting

problem of supervised hashing. Unfortunately, Gaussian processes are computation-

ally heavy models with O(n3) time complexity. Therefore, we developed a scalable

inference algorithm based on a sparse approximation with distributed computing

and scalable expectation propagation in a stochastic fashion.

In the last part, we address the dynamic hashing problem [15]. Despite the

fact that new images are added to online image datasets every day, to best of our

knowledge, no supervised hashing method learns hash functions incrementally for

newly added images. Efficiently updating hash functions concerning new images

4

is a challenging task. In addition, some of the new images will possibly not be-

long to existing classes i.e. forming new semantic classes, that makes this task even

more challenging. Existing supervised hashing methods cannot be easily general-

ized to unseen classes. Such modifications to a database require recomputation of

hash functions from scratch whenever a change occurs in a dynamic dataset, which is

computationally intractable. We propose an incremental supervised hashing method

with kernels based on binary and multi-class SVMs, and we adopt the incremental

learning fashion of support vector machines (SVM) in a hashing framework. Con-

sequently, the proposed hashing method can be easily extended to unseen classes

incrementally.

1.4 Datasets

In this study, we used five different image datasets in total, namely the Pascal-

Sentence, SUN-Attribute, CIFAR-10, MNIST and NUS-WIDE datasets. Each dataset

is explained in a separate section as follows.

1.4.1 Pascal-Sentence Dataset

The PASCAL-Sentence 2008 dataset is formed from the PASCAL 2008 images

by randomly selecting 50 images belonging to each of the 20 categories [16]. In

the experiments, we used the precomputed visual and textual features provided by

Rastegari et al. [17]. Amazon Mechanical Turk workers annotate five sentences for

each of the 1000 images. Each image is labeled by a triplet of <object, action,

5

scene> representing the semantics of the picture from these sentences. For each

image, the semantic similarity between each word in its triplet and all words in a

dictionary constructed from the entire dataset is computed by the Lin similarity

measure [18] using the WordNet hierarchy. The textual features of an image are

the sum of all similarity vectors for the words in its triplet. Visual features are

built from various object detectors, image classifiers and scene classifiers. These

features contain the coordinates and confidence values that object detectors fire and

the responses of image and scene classifiers trained on low-level image descriptors.

Figure 1.1 presents sample images and corresponding image descriptions by Amazon

Turk workers.

1.4.2 SUN-Attribute Dataset

The SUN-Attribute dataset [19], a large-scale dataset of attribute-labeled

scenes, is built on top of the existing SUN categorical dataset [20]. The dataset

contains 102 attribute labels annotated by three Amazon Mechanical Turk workers

for each of the 14,340 images from 717 categories. Each class has 20 annotated

images. The precomputed visual features [19, 20] include gist, 2×2 histogram of

oriented gradient, self-similarity measure, and geometric context color histograms.

The attribute features are computed by averaging the binary labels from multiple

annotators where each image is annotated with attributes from five types: materials,

surface properties, functions or affordances, spatial envelope attributes and object

presence. Sample images are visualized on a projected two-dimensional semantic

6

• A green and gray plane is taking off from the runway.
• A green and white cargo plane taking of from an airport.
• A green and white jet taking off.
• A Jade Cargo jet in green and white taking off from an airport.
• White and green commercial airliner taking off of runway.

• A man on a mountain bike going down an incline.
• A mountain biker riding over a small stone ridge.
• A person on a bicycle rides on a rocky path.
• Man on mountain bike coming off of small rocky ledge.
• This is a man riding a mountain bike over rocks on a clear day.

• A bird carrying a branch over the water.
• A bird flies over water carrying a branch in its talons.
• A large bird flying across the water.
• An osprey flies over water with a stick.
• The hawk is flying with a stick in his talons.

• A cruiseliner docked at a port
• A cruise ship is in front of a docking area.
• A docked cruise ship.
• The cruise ship docks to possibly load new passengers.
• White cruise ship floating on the water.

• A 4-H booth with posters, television, and three people presenting near a laptop.
• A presenting being interviewed
• People pose with a microphone in front of a display.
• The people are in front of the 4-H display.
• Vendors work their booth at the trade show.

• A closet door stands open next to a marble-top counter.
• A kitchen sink and countertop with bowls on shelves.
• A kitchen with granite countertops and tiled flooring.
• A small kitchen with items stacked on the shelves and on the counter.
• A small tiled kitchen area.

• A large white "Victory Liner" bus with red and yellow trim is in a parking lot.
• A side view of a passenger bus.
• A Victory Liner bus is white with red and gold stripes.
• A white tour bus with red, orange and yellow stripes.
• The bus has a red, orange and yellow design on it.

• A group of cows in a field with yellow tags in their ears.
• Group of several cows standing close together.
• The tagged black cows gather for a group picture.
• Three cows looking at the screen with one cow in the background.
• Three cows staring forward and one in the background.

Figure 1.1: Each row shows an image from one class in the Pascal-Sentence dataset

and its description sentences by Amazon Turk workers.

7

Figure 1.2: Sample images from the SUN-Attribute dataset are visualized on a

two-dimensional space which is constructed by the projection of its 102-dimensional

attribute feature vector onto two dimensions (This figure is taken from [1]).

space in Figure 1.2.

1.4.3 CIFAR-10 Dataset

The CIFAR-10 dataset [21], which is a labeled subset of the 80M tiny images

dataset, has 60,0000 images from 10 classes of vehicles and animals such as airplane,

bird, frog, and truck. There are 50,000 training and 10,000 test images in the dataset.

We used a GIST descriptor [22] of 512 dimensions to represent each image. Random

images from each class in the CIFAR-10 dataset are shown in Figure 1.3.

8

Figure 1.3: Each row shows sample images from one class in the CIFAR-10 dataset.

9

1.4.4 MNIST Dataset

The MNIST dataset [23] consists of 28×28 pixel images of handwritten digits

from ‘0’ to ‘9’. The dataset is split into a training set of 60,000 examples and a test

set of 10,000 examples. We used the pixel data in our experiments. Random images

from each class in the CIFAR-10 dataset can be seen in Figure 1.4.

1.4.5 NUS-WIDE Dataset

The NUS-WIDE dataset [24] includes 269,648 images and associated semantic

labels of 81 concepts from Flickr such as dog, flower, street, and dancing. The

dataset is split into 161,789 training images and 107,859 test images. Each image

is associated with zero or more labels. The distribution of concepts among images

has a long tail. The numbers of images related to the most frequent 21 concepts

are demonstrated by Figure 1.5. A 500-dimensional bag-of-words vector is used to

represent each image in our experiments where the codebook is generated from SIFT

descriptors.

1.5 Summary of Contributions

Our contributions to image retrieval can be grouped into three categories:

Unsupervised multimodal retrieval, supervised hashing, and dynamic hashing. Our

contributions are summarized as follows:

1. Unsupervised multimodal retrieval :

10

Figure 1.4: Each row shows sample images from one class in the MNIST dataset.

11

an
im

al
be

ac
h

bu
ild

ing
s

clo
ud

s
flo

wers
gra

ss lak
e

mou
nta

in
oc

ea
n

pe
rso

n
pla

nts
ref

lec
tio

n
roa

d
roc

ks sk
y

sn
ow

su
ns

et
tre

e
ve

hic
le

wate
r

wind
ow

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
um

be
r o

f I
m

ag
es

× 104 NUS-WIDE Concepts
Training Test

Figure 1.5: The number images associated with the most frequent 21 concepts in

the NUS-WIDE dataset.

• We propose a Bayesian nonparametric framework based on the Indian

Buffet Process (IBP) [25] for integrating multimodal data in a latent

space. Since the IBP is a nonparametric prior in an infinite latent feature

model, the proposed method offers a flexible way to determine the number

of underlying abstract features in a dataset.

• We develop a retrieval system that can respond to cross-modal queries

by introducing new random variables indicating relevance to a query. We

present a Markov chain Monte Carlo (MCMC) algorithm for inference of

the relevance of data.

• We formulate relevance feedback as pseudo-images to alter the distribu-

tion of images in the latent space so that user preferences influence the

12

ranking of images for a query.

2. Supervised hashing :

• We propose a flexible Bayesian nonparametric model based on binary

Gaussian process classification (GPC) for supervised learning of binary

codes with better generalization.

• We utilize the GPC predictive distribution to define a hash function

through hyperplanes with kernels.

• We developed a scalable parallel inference algorithm for the proposed

model using a sparse approximation to the GPC model via a hybrid

approach combining MCMC and message passing.

3. Dynamic hashing :

• We propose a supervised hashing approach based on a two-stage classifi-

cation framework that provides better generalization with regularizations

and maximizes the entropy by balancing binary codes. We formulate our

hashing objectives in a single optimization task.

• We describe an algorithm that solves the optimization problem efficiently

by an incremental strategy for training SVMs and an approximation to

the solution of an NP-hard problem.

• We define an incremental algorithm for the proposed hashing method

that takes the earlier hashing functions and the final state of the database

13

as its input and efficiently computes new hashing functions which per-

form similarly to those computed from scratch on the final state of the

database.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents an overview

of related works in the literature. In Chapter 3, we explain our multimodal image

retrieval framework that allows cross-view queries and utilizes user relevance feed-

back. Chapter 4 introduces our supervised hashing method namely Gaussian process

hashing and its inference algorithm. Chapter 5 describes our strategy for hashing

on dynamic datasets. Experimental results are delivered separately in Chapters 3-5.

Chapter 6 provides conclusions and future work.

14

Chapter 2: Literature Review

Our knowledge can be only finite,

while our ignorance must necessarily be infinite.

“Conjectures and Refutations” – Karl Popper

2.1 Overview

In this chapter, we give a brief review of the previous studies on hashing.

Several hashing approaches have been proposed to discretize the feature space to

for searching. Methods for learning binary codes can be roughly grouped into two

learning schemes: Unsupervised hashing where binary codes are designed to pre-

serve similarity in the original feature space; and supervised hashing where binary

codes are constructed to capture semantic similarity between images. Representa-

tive methods for each category are given in the following sections.

2.1.1 Unsupervised Hashing

Unsupervised hashing techniques can be categorized as data independent and

dependent schemes. Locality Sensitive Hashing (LSH) [2], is the most well-known

data-independent hashing technique that uses random projections. The main draw-

15

back of LSH and its variants [26, 3, 27] is that their hash functions are independent

of the data. This independence results in lower performance for shorter binary codes

(256 bits or fewer). On the other hand, usage of longer binary codes to achieve good

performance comes with an additional computational cost. Several methods have

been proposed to learn hash functions from a training set representing the data at

hand. Spectral Hashing [7] and graph-based methods [28, 29, 30, 31] try to con-

struct compact binary codes by preserving the notion of similarity in the underlying

manifold of the data. Quantization-based approaches [5, 32, 33, 34] focus on re-

ducing the quantization error. Random Maximum Margin Hashing [35] replaces

hash functions with support vector machines and train them on random splits of

the data to obtain better generalization. Binary reconstructive embedding (BRE)

[36] and bi-linear hyperplane hashing [37] learn hash functions by minimizing the

difference between pairwise distances in the original space and the Hamming space.

Unfortunately, unsupervised hashing methods unavoidably suffer from the semantic

gap when they are employed for retrieval purposes where the relevance to a query

is usually defined regarding semantic similarity rather than visual similarity.

Most recent unsupervised methods focus on multimodal data to bridge this

gap by utilizing both textual and visual features. Bronstein et al. proposed cross-

modality similarity learning via a boosting procedure [38]. Kumar and Udupa

presented a cross-view similarity search [39] by generalizing spectral hashing [7]

for multi-view data objects. Zhen and Yeung described two recent methods: Co-

regularized hashing [40] based on a boosted co-regularization framework and a prob-

abilistic generative approach called multimodal latent binary embedding [41] based

16

on binary latent factors. Nitish and Salakhutdinov proposed a deep Boltzmann ma-

chine for multimodal data [42]. Recently, Rastegari et al. proposed a predictable

dual-view hashing [17] that aims to minimize the Hamming distance between bi-

nary codes obtained from two different views by utilizing multiple SVMs. Most of

the multimodal hashing techniques are computationally expensive, especially when

dealing with large-scale data. High computational and storage complexity restricts

their scalability.

2.1.2 Supervised Hashing

Supervised hashing methods usually rely on pairwise labels, where +1 and −1

indicate that two points are similar and dissimilar, respectively. Furthermore, some

methods use 0 for points which are neighbors in the metric space without being se-

mantically related. Several supervised methods have been proposed as extensions to

unsupervised techniques by making them aware of the label information. Iterative

Quantization (ITQ) is used for both unsupervised and supervised hashing in con-

junction with principal component analysis (PCA) and canonical correlation analysis

(CCA), respectively [5]. Some methods focus on not only semantic similarity but

also the similarity in the feature space. Semi-supervised hashing (SSH) [43, 44] and

LDAHash [45] extends the spectral hashing framework to the supervised case. A su-

pervised version of BRE was proposed by Kulis and Darrell [36]. Supervised hashing

with kernels (KSH) [46] tries to minimize the Hamming distances between similar

pairs and simultaneously maximize them for dissimilar pairs using inner products

17

of binary codes. Discriminative binary coding methods [47, 48], like Random Max-

imum Margin Hashing approach, try to improve generalization by using SVMs to

preserve the semantic structure in the Hamming space. Lin et al. propose FastHash

[49] that employs decision trees as hash functions and a GraphCut based method

for the same type of optimization problem. Minimal loss hashing (MLH) [50] uses

a structured SVM framework to generate binary codes. Supervised hashing with

latent factor models (LFH) [51] uses latent factors for learning binary codes in a

probabilistic framework. Recently proposed supervised discrete hashing (SDH) [52]

employs a linear support vector machine (SVM) to capture the similarity in the se-

mantic space. In most of the supervised hashing methods, each class is, in practice,

associated with a binary string pattern. The methods aim to learn a hash function

that maps all data points belonging to one class to the corresponding binary string.

Consequently, overfitting to the training data becomes the most common problem

for supervised hashing methods.

18

Chapter 3: Unsupervised Multimodal Retrieval

Photography, as a powerful medium of expression and communications,

offers an infinite variety of perception, interpretation, and execution.

Ansel Adams

3.1 Overview

In this chapter, we propose a multimodal retrieval method based on latent

features. A probabilistic approach is employed for learning binary codes, and also

for modeling relevance and user preferences in image retrieval. Our model is built on

the assumption that each image can be explained by a set of semantically meaningful

abstract features which have both visual and textual components. For example, if a

picture in the dataset contains a side view of a car, the words “car”, “automobile”

or “vehicle” will probably appear in the description; also, an object detector trained

for vehicles will detect the vehicle in the image. Therefore, each image can be

represented as a binary vector, with entries indicating the presence or absence of

each abstract feature. Figure 3.1 shows the schematic overview of our retrieval

algorithm.

19

A child sitting
in a room

 A caravel towing a �berglass boat.
 A large boat pulling a small white
boat.
 An old fashioned wooden sailing ship
in the ocean.
 Sail boat sailing through the water on
the ocean.
 The ship is sailing in the ocean.

 Brown and white cows are looking
ahead.
 Several cows looking at a camera.
 Three cows in a stable are lined up
and looking at the camera.
 Three cows standing in a row in a
barn.
 Three cows with white faces in a barn.

 A baby secured in a chair
 A baby with blue eyes and a green
shirt is sitting in a chair.
 A baby with his �ngers in his mouth
being held in a highchair by a red scarf.
 A small child holds its �ngers in its
mouth.
 Baby wearing green shirt tied into
chair by a red shirt.

 A couple of gals chat over a bottle of
wine.
 Two girls looking at each other over a
bottle of wine.
 Two women having a conversation
with a wine bottle in the foreground.
 Two women sit at a table with a wine
bottle and look at each other.
 Two women staring at each other.

Integrative
Indian Bu�et Process

Retrieval System

User
 Evaluation

TRAINING RETRIEVAL
Images Descriptions

Rel
ev

an
ce

 F
ee

db
ac

k

Abstr
act

Features

Image Query Text Query

or

Textual
Visual

Textual
Visual

Textual
Visual

Textual
Visual

Textual
Visual Textual

Visual

Textual
Visual

Textual
Visual

Textual
Visual

Textual
Visual

Textual
Visual

Textual
Visual

Figure 3.1: Schematic overview of our retrieval algorithm. The flow chart illustrates

discovery of abstract features from multimodal data, the retrieval system for cross-

view queries and user relevance feedback.

20

3.2 Latent Feature Model for Multimodal Retrieval

In our data model, each image has both textual and visual components. To

facilitate the discussion, we assume that the dataset is composed of two full matrices;

our approach can easily handle images with only one component, and it can be

generalized to more than two modalities as well. We denote the data in the textual

and visual space by Xτ and Xv, respectively. X∗ is an N ×D∗ matrix whose rows

corresponds to images in either space where ∗ is a placeholder used for either v or

τ . The values in each column of X∗ are centered by subtracting the sample mean

of that column. The dimensionality of the textual space Dτ and the dimensionality

of the visual space Dv can be different. We use X to represent the set {Xτ ,Xv}.

3.2.1 Integrative Latent Feature Model

We focus on how textual and visual values of an image are generated by a

linear-Gaussian model and its extension for retrieval systems. Given a multimodal

image dataset, the textual and visual data matrices, Xτ and Xv, can be approxi-

mated by ZAτ and ZAv, respectively. Z is an N×K binary matrix where Znk equals

to one if abstract feature k is present in image n and zero otherwise. A∗ is a K×D∗

matrix where the textual and visual values for abstract feature k are stored in row

k of Aτ and Av, respectively (See Figure 3.2 for an illustration). The set {Aτ ,Av}

is denoted by A.

Our initial goal is to learn abstract features present in the dataset. Given X ,

21

Abstract features
 for image

Unobserved Observed
 Visual features
 for image

visual

textual

 Textual features
 for image

Figure 3.2: The latent abstract feature model proposes that visual data Xv is a

product of Z and Av with some noise; and similarly the textual data Xτ is a product

of Z and Aτ with some noise.

we wish to compute the posterior distribution of Z and A using Bayes’ rule

p(Z,A|X) ∝ p(Xτ |Z,Aτ)p(Aτ)p(Xv|Z,Av)p(Av)p(Z) (3.1)

where Z, Aτ and Av are assumed to be a priori independent. In our model, the

vectors for textual and visual properties of an image are generated from Gaussian

distributions with covariance matrix (σ∗x)
2I and expectation E[X∗] equal to ZA∗.

Similarly, a prior on A∗ is defined to be Gaussian with zero mean vector and covari-

ance matrix (σ∗a)
2I. Since we do not know the exact number of abstract features

present in the dataset, we employ the Indian Buffet Process (IBP) to generate Z,

which provides a flexible prior that allows K to be determined at inference time

(See [25] for details). The graphical model of our integrative approach is shown in

Figure 3.3. The same integrative model first proposed by Yildirim and Jacobs in

the cognitive science area [53].

22

Figure 3.3: Graphical model for the integrative IBP approach where circles indicate

random variables, shaded circles denote observed values, and the blue square boxes

are hyperparameters.

The exchangeability property of the IBP leads directly to a Gibbs sampler

which takes image n as the last customer to have entered the buffet. Then, we can

sample Znk for all initialized features k via

p(Znk = 1|Z−nk,X) ∝ p(Znk = 1|Z−nk)p(X|Z). (3.2)

where Z−nk denotes entries of Z other than Znk. In the finite latent feature model

(where K is fixed), the conditional distribution for any Znk is given by

p(Znk = 1|Z−nk) =
m−n,k + α

K

N + α
K

(3.3)

where m−n,k is the number of images possessing abstract feature k apart from image

n. In the infinite case like the IBP, we obtain p(Znk = 1|Z−nk) =
m−n,k

N
for any k such

that m−n,k > 0. We also need to draw new features associated with image n from

Poisson
(
α
N

)
, and the likelihood term is now conditioned on Z with new additional

23

columns set to one for image n.

For the linear-Gaussian model, the collapsed likelihood function p(X|Z) =

p(Xτ |Z)p(Xv|Z) can be computed using

p(X∗|Z) =

∫
p(X∗|Z,A∗)p(A∗) dA∗ =

exp
{
− 1

2(σ∗x)2
tr
(
X∗T (I− ZMZT)X∗

)}
(2π)

ND∗
2 (σ∗x)

(N−K)D∗(σ∗a)
KD∗|M|−D∗

2

(3.4)

where M =
(
ZTZ + (σ∗x)2

(σ∗a)2
I
)−1

and tr(·) is the trace of a matrix [25]. To reduce

the computational complexity, Doshi-Velez and Ghahramani proposed an acceler-

ated sampling in [54] by maintaining the posterior distribution of A∗ conditioned

on partial X∗ and Z. We use this approach to learn binary codes, i.e. the feature-

assignment matrix Z, for multimodal data. Unlike the hashing methods that learn

optimal hyperplanes from training data [5, 34, 17], we only sample Z without speci-

fying the length of binary codes in this process. Therefore, the binary codes can be

updated efficiently if new images are added in a long run of the retrieval system.

3.2.2 Retrieval Model

We extend the integrative IBP model for image retrieval. Given a query, we

need to sort the images in the dataset concerning their relevance to the query. A

query can be comprised of textual and visual data, or either component can be

absent. Let qτ be a Dτ -dimensional vector for the textual values and qv be a Dv-

dimensional vector for the visual values of the query. We can write Q = {qτ ,qv}.

As for the images in X , we consider a query to be generated by the same model

described in the previous section except the prior on abstract features. In the

retrieval part, we consider Z as a known quantity, and we fix the number abstract

24

features to K. Therefore, the feature assignments for the dataset are not affected

by queries. Besides, queries are explained by known abstract features only.

We extend the Indian restaurant metaphor to construct the retrieval model.

A query corresponds to the (N + 1)th customer to enter the buffet. The previous

customers are divided into two classes as friends and non-friends based on their

relevance to the new customer. The new customer now samples from at most K

dishes in proportion to their popularity among friends and also their unpopularity

among non-friends. Consequently, the dishes sampled by the new customer are

expected to be similar to those of friends and dissimilar to those of non-friends. Let

r be an N -dimensional vector where rn equals to one if customer n is a friend of

the new customer and zero otherwise. For this finitely long buffet, the sampling

probability of dish k by the new customer can be written as
m′k+α/K

N+1+α/K
where m′k =∑N

n=1(Znk)
rn(1−Znk)1−rn , that is the total number of friends who tried dish k and

non-friends who did not sample dish k. Let z′ be a K-dimensional vector where z′k

records if the new customer (query) sampled dish k. We place a prior over rn as

Bernoulli(θ). Then, we can sample z′k from

p(z′k = 1|z′−k,Q,Z,X) ∝ p(z′k = 1|Z)p(Q|z′,Z,X). (3.5)

The probability p(z′k = 1|Z) can be computed efficiently for k = 1, . . . , K by

marginalizing over r as below:

p(z′k = 1|Z) =
∑

r∈{0,1}N
p(z′k = 1|r,Z)p(r) =

θmk + (1− θ)(N −mk) + α
K

N + 1 + α
K

. (3.6)

The collapsed likelihood of the query, p(Q|z′,Z,X), is given by the product of

textual and visual likelihood values, p(qτ |z′,Z,Xτ)p(qv|z′,Z,Xv). If either textual

25

or visual component is missing, we can simply integrate out the missing one by

omitting the corresponding term from the equation. The likelihood of each part can

be calculated as follows:

p(q∗|z′,Z,X∗) =

∫
p(q∗|z′,A∗)p(A∗|Z,X∗) dA∗ = N (q∗;µ∗q,Σ

∗
q). (3.7)

where the mean and covariance matrix of the normal distribution are given by

µ∗q = z′MZTX∗ and Σ∗q = (σ∗x)
2(z′Mz′T + I), akin to the update equation in [54]

(Refer to (3.4) for M).

Finally, we use the conditional expectation of r to rank images in the dataset

with respect to their relevance to the given query. Calculating the expectation

E[r|Q,Z,X] is computationally expensive; however, it can be empirically estimated

using the Monte Carlo method as follows:

Ê[rn|Q,Z,X] =
1

I

I∑
i=1

p(rn = 1|z′(i),Z) =
θ

I

I∑
i=1

K∏
k=1

p
(
z
′(i)
k |rn = 1,Z

)
p
(
z
′(i)
k |Z

) (3.8)

where z′(i) represents i.i.d. samples from (3.5) for i = 1, . . . , I. The last equation

required for computing (3.8) is

p(z′k = 1|rn = 1,Z) =
Znk + θm−n,k + (1− θ)(N − 1−m−n,k) + α

K

N + 1 + α
K

. (3.9)

The retrieval system returns a set of top ranked images to the user. Note that

we compute the expectation of relevance vector instead of sampling directly since

binary values indicating the relevance are less stable and they hinder the ranking of

images.

26

3.2.3 Relevance Feedback Model

In our data model, user preferences can be described over abstract features.

For instance, if abstract feature k is present in the most of the positive samples

i.e. images judged as relevant by the user and it is absent in the irrelevant ones,

then we can say that the user is more interested in the semantic subspace represented

by abstract feature k. In the revised query, the images having abstract feature k

are expected to be ranked in higher positions in comparison to the initial query. We

can achieve this desirable property from query-specific alterations to the sampling

probability in (3.5) for the corresponding abstract features. Our approach is to

add pseudo-images to the feature assignment matrix Z before the computations of

the revised query. For the Indian restaurant analogy, pseudo-images correspond

to some additional friends of the new customer (query), who do not exist in the

restaurant. The distribution of dishes sampled by those imaginary customers reflects

user relevance feedback. Thus, the updated expectation of the relevance vector has

a bias towards user preferences.

Let Zu be an Nu×K feature-assignment matrix for pseudo-images only; then

the number of pseudo-images, Nu, determines the influence of relevance feedback.

Therefore, we set an upper limit on Nu as the number of real images, N , by placing

a prior distribution as Nu ∼ Binomial(γ,N) where γ is a parameter that controls the

weight of feedback. Let mu,k be the number of pseudo-images containing abstract

feature k; then this number has an upper bound Nu by definition. For abstract

feature k, a prior distribution conditioned on Nu can be defined as mu,k|Nu ∼

27

Binomial(φk, Nu) where φk is a parameter that can be tuned by relevance judgments.

Let z′′ be a K-dimensional feature-assignment vector for the revised query;

then we can sample each z′′k via

p(z′′k = 1|z′′−k,Q,Z,X) ∝ p(z′′k = 1|Z)p(Q|z′′,Z,X) (3.10)

where the computation of the collapsed likelihood is already shown in (3.7). Note

that we do not actually generate all entries of Zu but only the sum of its columns

mu and number of rows Nu for computing the sampling probability. We can write

the first term as:

p(z′′k = 1|Z) =
N∑

Nu=0

p(Nu)
Nu∑

mu,k=0

p(mu,k|Nu)
∑

r∈{0,1}N
p(z′′k = 1|r,Zu,Z)p(r)

=
N∑
j=0

(
N

j

)
γj(1− γ)N−j

θmk + (1− θ)(N −mk) + α
K

+ φkj

N + 1 + α
K

+ j

(3.11)

Unfortunately, this expression has no compact analytic form; however, it can be

efficiently computed numerically by contemporary scientific computing software even

for large values of N . In this equation, one can alternatively fix rn to 1 if the user

marks observation n as relevant or 0 if it is indicated to be irrelevant. Finally, the

expectation of r is updated using (3.8) with new i.i.d. samples z′′(i) from (3.10)

and the system constructs the revised set of images. Figure 3.4 demonstrates the

graphical model of the relevance feedback model. Note that this model becomes

equivalent to the query model when γ = 0.

28

Figure 3.4: Graphical model for the feedback query model. Circles indicate random

variables, shaded circles denote observed values. Hyperparameters are omitted for

clarity. Note that Z is considered as an observed variable in the retrieval part.

3.3 Experiments

The experiments were performed in two phases. We first compared the per-

formance of our method in category retrieval with several state-of-the-art hashing

techniques. Next, we evaluated the improvement in the performance of our method

with relevance feedback. We used the same multimodal datasets as [17], namely

PASCAL-Sentence 2008 dataset [55] and the SUN-Attribute dataset [19]. In the

quantitative analysis, we used the mean of the interpolated precision at standard

recall levels for comparing the retrieval performance. In the qualitative analysis,

we present the images retrieved by our proposed method for a set of text-to-image

and image-to-image queries. All experiments were performed in the Matlab envi-

ronment1.

1Our code is available at http://www.cs.umd.edu/∼ozdemir/iibp

29

http://www.cs.umd.edu/~ozdemir/iibp

3.3.1 Experimental Setup

Firstly, all features were centered to zero and normalized to unit variance; also,

duplicate features were removed from the data. We reduced the dimensionality of

visual features in the SUN dataset from 19,080 to 1,000 by random feature selection,

which is preferable to PCA for preserving the variance among visual features. The

Gibbs sampler was initialized with a randomly sampled feature assignment matrix

Z from an IBP prior. We set α = 1 in all experiments to keep binary codes short.

The other hyperparameters σ∗a and σ∗x were determined by adding Metropolis steps

to the MCMC algorithm to prevent one modality from dominating the inference

process.

In the retrieval part, the relevance probability θ was set to 0.5 so that all

abstract features have equal prior probability from (3.6). Feature assignments of

a query were initialized with all zero bits. For relevance feedback analysis, we set

γ = 1 (equal significance for the data and feedback) and we decide each φk as follows:

Let z̄′k = 1
I

∑I
i=1 z

′(i)
k where each z′(i) is drawn from (3.5) for a given query; and

ẑ′k = 1
T

∑T
t=1(Ztk)

rt(1 − Ztk)1−rt where t represents the index of each image judged

by the user and T is the size of relevance feedback. The difference between these

two quantities, δk = z̄′k − ẑ′k, controls φk which is defined by a logistic function as

φk =
1

1 + e−(cδk+β0,k)
(3.12)

where c is a constant and β0,k = ln
p(z′k=1|Z)

p(z′k=0|Z)
(refer to (3.6) for p(z′k|Z)). We set c = 5

in our experiments. Note that φk = p(z′k = 1|Z) when z̄′k is equal to ẑ′k.

30

3.3.2 Experimental Results

We compared our method, called integrative IBP (iIBP), with several hash-

ing methods including locality sensitive hashing (LSH) [2], spectral hashing (SH)

[7], spherical hashing (SpH) [34], iterative quantization (ITQ) [5], multimodal deep

Boltzmann machine (mDBM) [42] and predictable dual-view hashing (PDH) [17].

We divided each dataset into two equal sized train and test segments. The train

segment was first used for learning the feature assignment matrix Z by iIBP. Then,

the other binary code methods were trained with the same code length K. We used

supervised ITQ coupled with CCA [56] and took the dual-view approach [17] to

construct basis vectors in a common subspace. However, LSH, SH, and SpH were

applied on single-view data since they do not support cross-view queries.

All images in the test segment were used as both image and text queries.

Given a query, images in the train set were ranked by iIBP with (3.8). For all other

methods, we use Hamming distance between binary codes in the nearest-neighbor

search. Mean precision curves are presented in Figure 3.5 for both datasets. Unlike

the experiments in [17] performed in a supervised manner, the performance on the

SUN-Attribute dataset is very low due to the small number of positive samples

compared to the number of categories (Figure 3.5b). There are only ten relevant

images among 7,170 training images. Therefore, we also used Euclidean neighbor

ground truth labels computed from visual data as in [5] (Figure 3.5c). As seen in

the figure, our method (iIBP) outperforms all other methods. Although unimodal

hashing methods perform well on text queries, they suffer badly on image queries

31

because the semantic similarity to the query does not necessarily require visual

similarity. By the joint analysis of visual and textual spaces, our approach improves

the performance of image queries by bridging the semantic gap [8]. Mean precision

curves are presented in Figures 3.6 and 3.7 for text and image queries, respectively.

The curves given in Figure 3.5c are the averages of these two types of queries.

Also, we analyzed the stability of our Gibbs sampler in retrieval from the PASCAL-

Sentence dataset by running each query for 50 times. Figure 3.8 shows the range of

mean precisions in trials by error bars for text and image queries. The error bars

are tiny at all recall levels for both query types. Hence, the image set retrieved

by our method for a given query is very stable. Figure 3.9 shows the effect of

sample size in the Monte Carlo estimation, I of (3.8), on the retrieval performance

for the PASCAL-Sentence dataset. The precision curves start to overlap at I = 5.

Therefore, one can use a small sample set to estimate the expectation of relevance

vector r for faster processing of the query at a similar precision level.

For qualitative analysis, Figure 3.10a shows the top-5 retrieved images from

the PASCAL-Sentence 2008 dataset for image queries. Thanks to the integrative

approach, the retrieved images share remarkable semantic similarity with the query

images. Similarly, most of the retrieved images for the text-to-image queries in

Figure 3.10b comprise the semantic structure in the query sentences.

In the second phase of analyzes, we utilized the rankings in the first step to

deciding relevance feedback parameters independently for each query. We picked

the top two relevant images as positive samples and top two irrelevant images as

negative samples. We set each φk by (3.12) and reordered the images using the rel-

32

iIBP mDBM PDH ITQ SpH SH LSH

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) PASCAL-Sentence Dataset

(K = 23)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(b) SUN Dataset – Class label ground

truth (K = 45)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) SUN Dataset – Euclidean ground

truth (K = 45)

Figure 3.5: The result of category retrieval for all query types (image-to-image and

text-to-image queries). Our method (iIBP) is compared with the-state-of-the-art

methods.

33

iIBP mDBM PDH ITQ SpH SH LSH

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) PASCAL-Sentence Dataset

(K = 23)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) SUN Dataset – Class label ground

truth (K = 45)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) SUN Dataset – Euclidean ground

truth (K = 45)

Figure 3.6: The result of category retrieval for text-to-image queries. Our method

(iIBP) is compared with the-state-of-the-art methods.

34

iIBP mDBM PDH ITQ SpH SH LSH

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a) PASCAL-Sentence Dataset

(K = 23)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) SUN Dataset – Class label ground

truth (K = 45)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) SUN Dataset – Euclidean ground

truth (K = 45)

Figure 3.7: The result of category retrieval for image-to-image queries. Our method

(iIBP) is compared with the-state-of-the-art methods.

35

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Text Query
Image Query

Figure 3.8: The result of stability analysis for text and image queries. Our method

(iIBP) is applied on the PASCAL-Sentence dataset for 50 times. The curves rep-

resent the average level of mean precisions. Error bars indicate the range of mean

precisions observed at each standard recall level.

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
I = 1
I = 2
I = 5
I = 50
I = 250

Figure 3.9: The result of parameter effect analysis. Our method (iIBP) is applied

on the PASCAL-Sentence dataset for different values of I, the sample size in the

Monte Carlo estimation.

36

Query Retrieval Set

(a) Image-to-image queries

 A �ower pot placed in a house

A furniture located in a room

A child sitting in a room

A boat sailing along a river

A bird perching on a tree

(b) Text-to-image queries

Figure 3.10: Sample images retrieved from the PASCAL-Sentence dataset by our

method (iIBP).

37

evance feedback model excluding the ones used as user relevance judgments. Those

images were omitted from precision-recall calculations as well. Figure 3.11 illus-

trates that relevance feedback slightly boosts the retrieval performance, especially

for the PASCAL-Sentence dataset.

The computational complexity of an iteration is O(K2 +KD∗) for a query and

O(N(K2 + KDτ + KDv)) for training [54]. The feature assignment vector z′ of a

query usually converges in a few iterations. A typical query took less than 1 second

in our experiments for I = 50 with our optimized Matlab code.

3.4 Conclusion

We proposed a novel retrieval scheme based on latent binary features for mul-

timodal data. We also describe how to utilize relevance feedback for better retrieval

performance. The experimental results on real-world data demonstrate that our

method outperforms state-of-the-art hashing techniques.

38

Text Query w/ feedback
Text Query w/o feedback

Image Query w/ feedback
Image Query w/o feedback

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) PASCAL-Sentence Dataset

(K = 23)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(b) SUN Dataset – Class label ground

truth (K = 45)

Recall
0 0.2 0.4 0.6 0.8 1

M
ea

n
Pr

ec
is

io
n

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(c) SUN Dataset – Euclidean ground

truth (K = 45)

Figure 3.11: The result of category retrieval by our approach (iIBP) with relevance

feedback for text and image queries. Revised retrieval with relevance feedback is

compared with initial retrieval.

39

Chapter 4: Supervised Hashing

All stable processes we shall predict.

All unstable processes we shall control.

John von Neumann

4.1 Overview

The Gaussian process is an elegant model based on Bayesian nonparametrics

for nonlinear regression and classification. Similar to SVM, which is employed in

[17, 50], binary Gaussian process classification (GPC) model [14] can be utilized for

hashing in a Bayesian framework. In contrast to SVM, the GPC model provides an

error bar for its prediction via an estimate of prediction variance. In this chapter,

we propose a supervised hashing method with kernels based on the GPC model, so

we call the proposed approach Gaussian Process Hashing (GPH). We use a fully

probabilistic approach for learning binary codes from data. In the GPH model, the

variables corresponding to the binary classes in the original GPC model become

latent variables and a new level of variables that correspond to a pairwise similarity

between data points is integrated into the model. Averaging over nonlinear classi-

fication models by Gaussian processes is our motivation behind the GPH model to

40

overcome the overfitting problem of supervised hashing.

4.2 Gaussian Process Hashing

4.2.1 Problem Definition

Given a set of data points X = {x1, . . . ,xn}, each xi ∈ Rd, the goal of hashing

is to find a function H that maps data points from Rd to m-dimensional Hamming

space with respect to some optimization criteria. Let S = {sil} denote the set of

similarity labels for pairs of data points where sil = +1 if xi and xl are similar

and sil = −1 otherwise, then a desirable hash function yields a smaller Hamming

distance between H(xi) and H(xl) when sil = +1 and a larger one when sil = −1.

Many techniques [2, 5, 46, 3] construct such a hash function H : Rd → {−1,+1}m

by combining m independent binary encoding functions h1(x), . . . , hm(x) such that

hj(x) = sgn(w>j x + bj) where wj ∈ Rd is a hyperplane, bj ∈ R is an intercept for

j = 1, . . . ,m and

sgn(v) =

+1 if v ≥ 0,

−1 otherwise.

Some hashing methods [3, 46] employ a kernel function k : Rd × Rd → R such that

each binary encoding hash function has the form hj(x) = sgn(w>j k + bj) where

k = [k(x, x̄1), . . . , k(x, x̄r)]
> and {x̄1, . . . , x̄r} ⊆ X .

41

4.2.2 A Probabilistic Approach

The hash function H can be modeled as a latent function that builds a bridge

between X and S, i.e. the observed data D = {X ,S}. Let Y be a random binary

matrix of size n×m where Yij = hj(xi) and yj is the jth column of Y, i.e. shorthand

for the values of the hash function. Then using Bayes’ rule we can write

p(Y|D) =
p(S|Y)p(Y|X)

p(S|X)
. (4.1)

Given the binary codes Y, the similarity labels S are assumed to be independent

Bernoulli variables. Let V = YY>, i.e. Vil is the inner product of binary codes for

sample i and sample l; then the joint likelihood factorizes as

p(S|Y) =
∏
(i,l)

p(sil|Vil) =
n−1∏
i=2

n∏
l=i+1

p(sil|Vil). (4.2)

We use the probit model to define p(sil = +1|Vil) = Φ(σyVil) where Φ denotes the

cumulative distribution function of the standard normal distribution and σy > 0 is

a scaling parameter. The individual likelihood terms can be written as p(sil|Vil) =

Φ(σysilVil) due to the symmetry of Φ around zero. Note that p(S|Y) is maximized

when the columns of Y are orthogonal and images of the same semantic class have

the same binary embeddings. The prior term of (4.1) can be designed as a Gaussian

process model for binary classification as described in the following section.

4.2.3 The Gaussian Process Model for Binary Classification

In this section we briefly describe Gaussian Process Classification (GPC); for

more details see [14, 57, 58]. The GPC model is a discriminative Bayesian classifier

42

that models p(y|x) as a Bernoulli distribution for a given data point x. The class

membership probability is characterized by an underlying latent function f(x). The

value of the latent function is mapped into the unit interval by a sigmoid function

σ : R → [0, 1] such that the probability p(y = +1 |x) becomes σ(f(x)). We again

prefer the probit model p(y = +1 |x) = Φ(f(x)) due to analytical convenience of

the inference algorithm.

In GPH, there exist m latent functions, one for each bit j in H, which are

assumed to be a priori independent. Let F be a random real-valued matrix of size

n×m where Fij = fj(xi) and fj be the jth column of F i.e. shorthand for the values

of the latent functions; then the binary codes Y are independent Bernoulli variables

conditioned on F, so the joint likelihood factorizes as

p(Y|F) =
m∏
j=1

p(yj|fj) =
m∏
j=1

n∏
i=1

Φ(YijFij) (4.3)

We place a zero mean Gaussian process prior on each latent function fj to

obtain p(yj = +1 |x) = 1
2

for j = 1, . . . ,m [14]. Note that the probability for each

similarity label p(sil = +1|xi,xl) eventually becomes 1
2

as well.

Through this stochastic process, each data point xi is associated with m ran-

dom variables {fj(xi)}mj=1. Considering the entire dataset X , we therefore have m

independent multivariate Gaussian distributions. The joint distribution of latent

function values for the jth bit is p(fj|X) = N (fj|0,K) where the covariance matrix

is constructed from a kernel function Kil = k(xi,xl) that depends on a set of kernel

hyperparameters θ. In our experiments, we use the squared exponential covariance

43

function with the isotropic distance measure of the form:

k(x,x′) = σ2
f exp

(
− 1

2`2
‖x− x′‖2

)
such that θ = {σf , `} where σ2

f and ` are referred as the signal variance and the

characteristic length-scale, respectively.

Given Θ = {σy,θ}, we can compute the posterior distribution over the latent

function values using the likelihood (4.3) and Bayes’ rule as

p(F|D) =
p(S|F)p(F|X)

p(D)
=

∑
Y p(S|Y)p(Y|F)p(F|X)

p(D)
. (4.4)

Unfortunately, neither the posterior p(F|D) nor the marginal likelihood p(D) can

be computed analytically. Therefore, we approximate the posterior p(F|D) by joint

Gaussian distributions q(F) =
∏m

j=1N (fj|mj,Aj). Note that the approximate pos-

terior distribution for each bit is independent of other bits. The details of the

Gaussian approximation are presented in Section 4.3.

4.2.4 Predictions for Queries

The main purpose of hashing models is to predict binary codes for queries.

Prediction at a query input x∗ is made by marginalizing out over F in the joint

distribution p(F,F∗|D,x∗). This can be done separately for each bit j similar to

[14] because of the independence in the approximate posterior distribution:

q(f∗j |D,x∗) =

∫
p(f∗j |fj,X ,x∗)q(fj|D) dfj = N (f∗j |µ∗j, σ2

∗j) (4.5)

44

with mean and variance:

µ∗j = k>∗K−1mj (4.6a)

σ2
∗j = k(x∗,x∗)− k>∗ (K−1 −K−1AjK

−1) k∗ (4.6b)

where k∗ = [k(x1,x∗), . . . , k(xn,x∗)]
> is a vector of prior covariances between the

query input x∗ and training inputs X . Finally, the approximate predictive distribu-

tion for each binary encoding is given as follows [57]:

q(y∗j |D,x∗) =

∫
p(y∗j |f∗j) q(f∗j |D,x∗) df∗j

=

∫
Φ(y∗jf∗j)N (f∗j |µ∗j, σ2

∗j) df∗j

= Φ

(
y∗jµ∗j√
1 + σ2

∗j

)
.

(4.7)

This probability is maximized for each binary encoding by

ŷ∗j = arg max
y∗j∈{±1}

q(y∗j|D,x∗) = sgn(µ∗j) (4.8)

As a result, we introduce our hash function in the form of binary encodings using

(4.6a):

hj(x∗) = sgn(w>j k∗) (4.9)

where wj = K−1mj, for j = 1, . . . ,m. Our has function consists of only mul-

tiplication between weight matrix W = [w1, . . . ,wm] and query kernel vector k∗,

and then sign operation. Consequently, our hash function do not contain the costly

cumulative distribution function Φ.

45

4.2.5 Sparse Approximation

To accelerate training and query times, we employ a sparse approximation

to the full Gaussian process known as the fully independent training conditional

(FITC) approximation [59, 60]. Let X̄ = {x̄1, . . . , x̄r}, each x̄i ∈ Rd, which might

be a subset of X , and associated latent function values U, analogous to F. Then

we obtain the FITC approximation for each bit j as below:

p(fj, f∗j |X , X̄ ,x∗) =

∫
p(fj, f∗j |uj,X ,x∗)p(uj|X̄) duj

≈
∫
q(fj |uj,X)q(f∗j|uj,x∗)p(uj|X̄) duj

(4.10)

where p(uj|X̄) = N (uj |0,Kuu). Marginalizing over the exact prior on uj in the

final expression yields

q(fj|X) = N
(
fj |0,Qff + diag(Kff −Qff)

)
(4.11)

where Qab = KauK−1
uuKub for j = 1, . . . ,m. The computations of the FITC ap-

proximation for binary classification are explained thoroughly in [61]. We can define

binary encodings similar to those of (4.9) for the FITC model as well. However,

the hyperplanes wj ∈ Rr and k∗ will be defined between the query input x∗ and

inducing inputs X̄ since training data and queries are conditionally independent

given U in the FITC approximation. Therefore, the communication between them

is established through the bottleneck of inducing inputs [61]. Similarly, we employ

a sparse set in place of all pairwise similarities, S, in (4.2). We randomly sample

t images, called representatives, from the dataset and use the pairwise similarities

only between those representatives and the entire dataset. The sparse similarity

46

Inducing
Points

InputsGaussian Field Latent Functions SimilarityBinary Codes

training
query

Figure 4.1: Graphical model for the Gaussian Process Hashing where circles indicate

random variables, shaded circles denote observed values. The thick vertical bars

represent a set of fully connected nodes.

set is denoted by S̄. By these sparsity changes, the time complexity of Gaussian

process hashing is reduced from O(n3m) to O
(
nm(r2 + t)

)
. The graphical model of

our hashing approach with sparse approximation is shown in Figure 4.1.

4.3 Inference

We follow the inference approach from [62], which is a hybrid of message

passing and Gibbs sampling. This method has some advantages over a compound

inference regarding convergence and efficiency. Our inference algorithm alternates

between two phases:

• Updating site parameters of the approximate distribution by Expectation

Propagation (EP) [63] for each bit j in parallel, and

47

• Sampling each entry of Y by Gibbs sampling.

The main idea behind the EP algorithm is to minimize the Kullback-Leibler

(KL) divergence, which is achieved by matching of moments, at each step by adjust-

ing site parameters. The details of EP are presented broadly by Gelman et al. [64].

In the first phase of our inference algorithm, the problem is reduced to Gaussian

process classification since we know the values of the binary matrix Y thanks to

the Gibbs sampler. Therefore, we adopt the scalable inference scheme of [65], which

is defined in a distributed and stochastic fashion, for the FITC model. We apply

that scalable EP algorithm in a serial and stochastic setting for a full update of site

parameters for each bit j in parallel.

In the second phase, we sample each Yij bit-by-bit using (4.2) via

p(Yij |Y−ij,D) ∝ p(Yij |Y−ij)p(S̄|Y) ≈ q\ij(Yij)p(S̄|Y) (4.12)

where Y−ij denotes entries of Y other than Yij and q\ij(Yij) denotes a tilted distribu-

tion for approximating the posterior from the FITC model. The probability q\ij(Yij)

has the form Φ(γijYij) where γij is a site parameter computed by the scalable EP

algorithm (See [65] for details).

Our hashing method is illustrated in Figure 4.2 for m = 2 on a two-dimensional

sample dataset of 200 points with four equal-sized classes and 30 inducing points

randomly selected from the dataset. To make our inference algorithm clearer, we

provide the details for the full GPC model as [14], which is equivalent to X̄ = X , in

the following section.

48

0.05
0.05

0.25

0.25

0.5

0.5

0.75

0.75

0.95

0.95

0.05

0.05

0.25

0.25

0.25
0.5

0.5

0.5 0.75
0.75

0.95

0.95

0.0
5

0.75

Figure 4.2: From left to right and top to bottom; a sample dataset of 4 classes

indicated by color and shape X , inducing points marked with red circles X̄ , the

predictive probability distribution for the first binary encoding p(y∗1|D,x∗) and for

the second encoding p(y∗2|D,x∗). The binary codes Y by the Gibbs sampler are

indicated by filled and emptied shapes for +1 and −1, respectively.

49

4.3.1 Inference for the Full GPC Model

We start deriving Gaussian approximations for (4.4) by replacing each p(Yij|Fij) =

Φ(YijFij) by a site function tij(Yij, Fij) = ZijΦ(γijYij)N (Fij |µij, σ2
ij) where Zij is

a normalizing constant and {µij, σ2
ij, γij} are site parameters. Given D, the latent

function values F and binary codes Y become independent by means of site func-

tions. The messages between them must pass through the site parameters. Let

q(Y) =
∏m

j=1

∏n
i=1 Φ(γijYij), then we can find an approximation to the joint poste-

rior distribution of latent variables as follows:

p(Y,F|D) ≈
p(S|Y)

(∏m
j=1

∏n
i=1 tij(Yij, Fij)

)
p(F|X)

q(D)

=
p(S|Y)q(Y)

q(D)

m∏
j=1

N (fj|mj,Aj)

= q(Y|D)q(F)

(4.13)

where q(D) =
∑

Y p(S|Y)q(Y) can be computed using the Poisson binomial dis-

tribution. The Gaussian approximations q(fj) = N (fj |mj,Aj) have mean and

covariance:

mj = AjΣ
−1
j µj and Aj = (K−1 + Σj)

−1 (4.14)

where µj = (µ1j, . . . , µnj)
> and Σj = diag(σ2

1j, . . . , σ
2
nj) collect site parameters.

In the first phase, EP finds Gaussian approximations q(fj) = N (fj|mj,Aj) to

the conditional distribution p(fj|Y) by moment matching of approximate marginal

distributions [14], for j = 1, . . . ,m in parallel, thanks to their conditional indepen-

50

dence. In the second phase, we sample Yij using (4.2) via

q(Yij |Y−ij,D) ∝ Φ(γijYij)p(S|Y). (4.15)

We update the site parameters iteratively on each processor j so that the first and

second moments of the following expressions on both sides are matched given Y:

q−ij(Fij)p(Yij|Fij) ' q−ij(Fij)tij(Yij, Fij) (4.16)

where q−ij(Fij), which is referred to as an approximate cavity distribution, is defined

as

q−ij(Fij) =

∫
p(F|X)

∏
j′ 6=j

∏
i′ 6=i

ti′j′(Yi′j′ , Fi′j′) dF−ij ∝ N (mj,i, Aj,ii) (4.17)

with cavity parameters are

σ2
−ij =

(
(Aj,ii)

−1 − σ−2
ij

)−1
, (4.18a)

µ−ij = σ2
−ij

(
mj,i

Aj,ii
− µij
σ2
ij

)
. (4.18b)

Let zij = Yijµ−ij/
√

1 + σ2
−ij, then the first and the second moments of the left hand

side of (4.16) are given by

m1 = µ−ij +
Yijσ

2
−ij N (zij |0, 1)

Φ(zij)
√

1 + σ2
−ij

(4.19a)

m2 = 2µ−ijm1 − µ2
−ij + σ2

−ij −
zijσ

4
−ij N (zij |0, 1)

Φ(zij) (1 + σ2
−ij)

. (4.19b)

To obtain the same moments for the right hand side of (4.16), we update the site

51

parameters as below:

γij =
µ−ij√

1 + σ2
−ij
, (4.20a)

σ2
ij =

(
(m2 −m2

1)−1 − σ−2
−ij
)−1

, (4.20b)

µij = m1 + σ2
ijσ
−2
−ij(m1 − µ−ij), (4.20c)

Zij =
√

2π(σ2
−ij + σ2

ij) exp

(
(µ−ij − µij)2

2
(
σ2
−ij + σ2

ij

)). (4.20d)

Finally, the approximate log marginal likelihood can be calculated from (4.2)

and (4.13) as

log q(D,Y) =
n−1∑
i=2

n∑
l=i+1

log Φ(σyVil)−
nm

2
log(2π)

+
m∑
j=1

(
n∑
i=1

log
(
ZijΦ(γijYij)

)
− 1

2
log |K + Σj| −

1

2
µ>j (K + Σj)µj

)

(4.21)

The computational complexity of the serial hybrid approach is O(n3) for the full

GPC model.

4.4 Experiments

We compared the retrieval performance of our hashing method with several

state-of-the-art supervised hashing techniques including CCA-ITQ [5], KSH [46],

FastHash [49] and SDH [52]. We use the public code provided by the authors

with their suggested parameters unless otherwise specified. The experiments were

performed on three image datasets, namely, CIFAR-10, MNIST and NUS-WIDE

datasets in the MATLAB environment on a machine with a 2.8 GHz Intel Core i7

CPU and 16GB RAM.

52

4.4.1 Datasets and Experimental Setup

For the NUS-WIDE dataset only, we consider two images as semantically sim-

ilar if there exists at least one common associated concept as [52]. All datasets were

first centered at zero and then each point vector was normalized to unit length. For

NUS-WIDE, we constructed a reduced test set by sampling 10,000 images associated

with any of the most frequent 21 labels for all methods. For the KSH method, we

used reduced datasets of 5,000 images uniformly sampled from the training sets of

each dataset because the computational complexity of this approach does not allow

it to be trained on the entire datasets as we do with other methods (Table 4.3). Sim-

ilarly, the tree depth of FastHash was set to 2 due to its longer test time (Table 4.3).

FastHash was not trained on that dataset due to its large memory requirements.

GPH and KSH were used on pairwise similarities on the NUS-WIDE dataset while

SDH and CCA-ITQ were trained on label information on that dataset. The `2-loss

version of SDH was employed in our experiments since there exist no predefined

classes for the NUS-WIDE dataset. We uniformly sampled 1000 inducing points

(anchor points) from the training set of each dataset. These points were shared

by all hashing methods with kernels (GPH, KSH, and SDH) in training. All these

methods used an RBF kernel with a kernel width ` adjusted specifically for each

dataset by cross-validation for each method with a kernel.

Hash functions learned from a subset of a large-scale image dataset can be

used for computing the binary codes for the entire dataset. Next, these binary

codes can be utilized for efficient large-scale image search in the Hamming space [2].

53

Therefore, generalization ability of supervised hashing techniques is critical for the

retrieval performance.

For GPH, we adjusted the hyperparameters σf and σy by cross-validation on

the training set. However, the performance is usually maximized at σy = 2/m. For

all datasets, 5,000 representative images were randomly selected for S̄. The scalable

EP algorithm was run in a stochastic fashion with a block size of 1,000 images.

The binary codes Y were initialized randomly. The GPH inference algorithm was

executed until convergence or at most 50 sweeps. In learning hash functions by

the GPH model, we observe that the Gibbs sampler for Y rapidly converges after

assigning discriminative binary codes to all classes. The rest of the inference algo-

rithm focuses on training GPs with the scalable EP algorithm on these fixed binary

codes. A pattern of binary codes emerges even for most values of σy although some

bit assignments might change during the inference algorithm.

After learning hash functions from training data, we computed binary codes

for images in the test sets where each dataset contains 10,000 images. Retrieval per-

formance was evaluated by leave-one-out validation on these pictures only. Each test

image was used once as a query while the remaining test images were turned into a

retrieval set. As overfitting is a common issue for supervised hashing, this method-

ology was employed to assess generalization performance of the hashing methods on

images that were not used in training, analogous to new images being added to a

database or a vast dataset from which only a subset of images can be employed for

learning hash functions.

54

4.4.2 Experimental Results

For each query, images were ranked concerning Hamming distances between

their binary codes and that of the given query. Ground truth labels were defined

by semantic similarity from either class labels or associated tag information. For

quantitative analysis, we report retrieval performance in mean average precision

(mAP) for all datasets in Figure 4.3. Precision-recall curves of all methods on the

CIFAR-10 datasets are demonstrated in Figure 4.4 for a different length of hash

codes. The mean of precision and recall (%) at the Hamming radius r = 2 are

shown for all methods on three different datasets in Tables 4.1 and 4.2, respectively.

Precision and recall values for 64 and 128 bits were not evaluated because this

evaluation is impractical for longer binary codes. Note that we used a zero score

in the calculation of mean precision for queries for which no image exists inside the

Hamming ball with radius 2.

Our method GPH outperforms the state-of-the-art supervised hashing meth-

ods regarding mAP and mean precision at Hamming distance 2 for smaller binary

codes (32-bits or shorter) on all datasets. Some methods perform better than GPH

in some cases on the training set (data not shown). However, GPH outperforms on

the independent set due to the better generalization as a result of averaging over

nonlinear classifiers. Although SDH performs well on the CIFAR-10 and MNIST

datasets, its performance on the NUS-WIDE dataset where there are no predefined

classes is poor. On the other hand, GPH performs the best on that dataset with a

large margin. As the number of bits increases, the approximation error due to our

55

GPH SDH FastHash KSH CCA-ITQ

8 16 32 64 128
0.2

0.25

0.3

0.35

0.4

0.45

Number of Bits

m
AP

CIFAR-10

Number of Bits
m

AP

MNIST

8 16 32 64 128
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

8 16 32 64 128
0.4

0.42

0.44

0.46

0.48

0.5

Number of Bits

m
AP

NUS-WIDE

Figure 4.3: Our method (GPH) is compared with the state-of-the-art methods on

the CIFAR-10, MNIST and NUS-WIDE datasets in terms of mean average precision

(mAP), respectively.

56

GPH SDH FastHash KSH CCA-ITQ

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Recall

M
ea

n
Pr

ec
is

io
n

8 Bits

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

M
ea

n
Pr

ec
is

io
n

16 Bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

M
ea

n
Pr

ec
is

io
n

32 Bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

M
ea

n
Pr

ec
is

io
n

64 Bits

Figure 4.4: Our method (GPH) is compared with the state-of-the-art methods on

the CIFAR-10 datasets by precision-recall curves for 8, 16, 32 and 64 bit hash codes.

57

T
ab

le
4.

1:
O

u
r

m
et

h
o
d

(G
P

H
)

is
co

m
p
ar

ed
in

te
rm

s
of

th
e

m
ea

n
of

p
re

ci
si

on
(%

)
at

th
e

H
am

m
in

g
ra

d
iu

s
r

=
2.

M
e
th

o
d

C
IF

A
R

-1
0

M
N

IS
T

N
U

S
-W

ID
E

8-
b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s

G
P

H
3
0
.8

9
4
6
.1

5
46

.0
3

8
3
.4

9
93

.3
7

9
2
.0

9
4
4
.4

6
48

.2
6

47
.5

2

S
D

H
15

.3
5

42
.2

8
4
8
.0

9
28

.4
5

82
.6

7
83

.4
2

40
.8

9
45

.9
5

4
8
.4

0

F
as

tH
as

h
25

.4
4

44
.0

0
26

.6
5

77
.4

2
9
3
.6

5
87

.4
5

-
-

-

K
S
H

25
.9

9
40

.7
3

31
.6

8
70

.6
8

89
.2

7
87

.0
6

42
.9

9
46

.7
6

26
.8

9

C
C

A
-I

T
Q

25
.2

0
38

.9
3

41
.3

6
56

.3
6

81
.6

3
81

.8
3

44
.0

7
4
8
.4

8
25

.8
4

58

T
ab

le
4.

2:
O

u
r

m
et

h
o
d

(G
P

H
)

is
co

m
p
ar

ed
in

te
rm

s
of

th
e

m
ea

n
of

re
ca

ll
(%

)
at

th
e

H
am

m
in

g
ra

d
iu

s
r

=
2.

M
e
th

o
d

C
IF

A
R

-1
0

M
N

IS
T

N
U

S
-W

ID
E

8-
b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s

G
P

H
48

.9
0

21
.0

1
11

.0
8

9
1
.3

6
8
3
.8

0
7
7
.6

2
47

.8
6

2
9
.0

1
2
1
.0

0

S
D

H
7
1
.9

6
3
0
.5

4
1
4
.6

2
86

.1
9

78
.2

8
73

.1
0

5
7
.6

0
24

.8
3

4.
03

F
as

tH
as

h
41

.6
1

9.
11

2.
07

90
.3

1
76

.1
3

59
.0

9
-

-
-

K
S
H

42
.9

8
10

.0
6

2.
02

88
.4

8
71

.2
9

55
.2

1
29

.2
1

6.
03

0.
98

C
C

A
-I

T
Q

43
.7

1
13

.5
6

4.
01

77
.5

2
51

.4
9

34
.2

9
27

.5
0

4.
43

0.
57

59

assumption of conditional independence between GPs is growing as well. Therefore,

the improvement in retrieval performance by longer codes for the GPH is moderate.

For precision and recall at Hamming radius 2, our method and SDH shares the best

performances on most cases.

Table 4.3 shows the comparative retrieval performance of our method with

different training and anchor set sizes along with the state-of-the-art methods on

the CIFAR-10 dataset for 16-bit hash codes regarding mAP and mean precision at

Hamming radius 2. We also report the execution time for learning hashing functions

as training time and the time needed for computing binary code of a single query

using the learned hashing functions as test time. As expected, larger training and

inducing sets provide better performance with longer execution time. The number

of inducing points has a greater influence on retrieval performance than training

size. Note that the scale of the inducing set also affects the test time. Our method

outperforms other methods in retrieval performance. Note that Table 4.3 shows the

training time on a four-core machine and our method learns its hash function by a

parallel algorithm. The training time in Table 4.3 can be improved by a computer

with a larger number of nodes. Therefore, GPH is more efficient and effective in

retrieval when binary codes are short. The most efficient method in the experiments

is CCA-ITQ; however, it performs poorly in retrieval. On the other hand, SDH is the

second most efficient method with relatively good retrieval performance. For testing,

all kernel methods (GPH, SDH, and KSH) have a similar number of operations:

Kernel vector computation, multiplication by weight matrix and kernel vector and

finally sign operation. Therefore, they have similar test time per query. ITQ, which

60

has no kernel computation, has faster test time. On the other hand, FastHash has

longer test time due to its computations based on decision trees.

4.5 Conclusion

We proposed a supervised retrieval scheme based on Gaussian processes for

classification. We developed an efficient inference algorithm for the proposed model.

The experimental results on three real-world image datasets show that our method

produces the best retrieval performance for smaller binary codes by preventing over-

fitting to training data. Also, it provides a predictive probability distribution for

each bit.

61

Table 4.3: Results in mean average precision (mAP), mean of precision at Hamming

radius r = 2, training and test time for 16-bit hash codes on the CIFAR-10 dataset.

For our method (GPH), the number of inducing samples varies from 300 to 3,0000.

The experiments were performed on a machine with an Intel quad-core processor.

Method
Training Inducing

mAP
Precision Training Test

Set Size Set Size at r = 2 Time (s) Time (µs)

GPH

5,000 300 0.279 0.365 26.5 7.7

5,000 500 0.304 0.387 37.6 12.3

5,000 1,000 0.309 0.395 78.5 21.6

5,000 3,000 0.338 0.416 456.1 44.7

50,000 300 0.311 0.403 177.4 7.6

50,000 1,000 0.395 0.466 497.9 18.9

SDH
5,000 1,000 0.306 0.373 0.9 17.1

50,000 1,000 0.372 0.423 7.5 16.5

Fasthash
5,000 - 0.240 0.357 24.6 47.5

50,000 - 0.311 0.440 355.5 68.0

KSH 5,000 1,000 0.305 0.408 1,461.6 25.0

CCA-ITQ
5,000 - 0.262 0.353 0.1 0.2

50,000 - 0.304 0.389 0.3 0.2

62

Chapter 5: Dynamic Hashing

Nothing endures but change.

Heraclitus of Ephesus

5.1 Overview

In this chapter, we propose an incremental supervised hashing method with

kernels based on binary and multi-class SVMs, which we refer to as SVM-based

Hashing (SVM-Hash). We adopt the incremental learning fashion of SVMs in a

hashing framework. Consequently, the proposed hashing method can be easily ex-

tended to unseen classes incrementally. We identified three main issues that limit

the performance of Supervised Discrete Hashing (SDH) [52] – as not being incre-

mental and parallelizable, overfitting to training data and imbalance of −1/+1 in

learned binary codes. The significance of balanced binary codes has been studied

in the hashing literature [7, 3, 30, 29] and its absence leads to ineffective codes,

especially when the code length is small and/or the sizes of semantic classes are

unbalanced. To overcome these issues, we reformulated the supervised hashing task

as a two-stage classification framework. In the first stage of classification, we use

a binary SVM for each bit. The feature space is the input space of SVMs while

63

binary codes are considered as class labels. In the second stage, the binary codes

become the input space of a single multi-class SVM, and the semantic space is the

output space of the SVM. Besides, we penalize imbalance in binary codes in our

optimization formulation. We define an incremental strategy to learn SVMs and a

discrete cyclic coordinate descent (DCC) algorithm, similar to the one of SDH, to

learn binary codes bit by bit as an approximate solution to the NP-hard discrete op-

timization problem. Finally, we describe an incremental procedure for modifications

to the database.

5.2 Incremental Hashing

5.2.1 Learning Hash Functions for Dynamic Databases

Modifications to an image database consist of adding new images to the

database and deleting images from the database. Considering a database with class

information, we say that there are four types of modifications:

1. Adding new classes,

2. Adding images to existing classes,

3. Deleting existing classes,

4. Deleting images from existing classes.

In this chapter, we focus on the first three types of modifications. From a hash-

ing perspective, the last type of modifications is the least interesting one because

64

it technically results in reducing the training size. For some cases like biometric

databases, in which each class corresponds to a single person, deleting images may

aim to change the class structure. For learning hash functions, such cases can be

interpreted as deleting that class completely; and then adding the rest of them as

a new class. Among the other modification types, deleting existing classes is the

easiest case because we have already learned binary codes for all images in the final

database. In contrast, adding new classes is the hardest case since we have no prior

information about the new classes.

We define three hashing strategies for dynamic datasets:

1. Passive strategy : Continuing to use the hash functions learned from an earlier

state of the database i.e. ignoring the changes in training data.

2. From-scratch strategy : Learning hash functions on the final state of the database

from scratch whenever a change occurs in the database.

3. Incremental strategy : Learning hash functions on the last state of the database

incrementally from the previous hash functions.

The incremental strategy can be considered as effective and efficient if its retrieval

performance is similar to that of the from-scratch strategy and its training time

is shorter than that of the from-scratch strategy. We first describe our supervised

hashing method; next, we provide an incremental hashing strategy on that method

in the following sections.

65

5.2.2 Supervised Discrete Hashing

Shen et al. [52] recently introduced the SDH method that utilizes binary codes

as input data in a linear classification framework. The SDH method searches for

optimal set of binary codes {bi}ni=1 where bi = [bi1, . . . , bim]> corresponds to the ith

data point in the training set. Let Y denote the set of ground truth semantic classes

and yi ∈ Y denote the class label of the ith data point; then SDH defines a multi-class

SVM model that maps binary codes to semantic classes i.e. bi 7→ yi for i = 1, . . . , n.

SDH simultaneously approximates bi by a nonlinear embedding F (xi) = P>ϕ(xi)

where P ∈ Rs×m. Finally, the hash function is defined by H(x) = sign(F (x)).

The optimization is formulated as a combination of the multi-class linear SVM by

Crammer and Singer [66] and least squares for the nonlinear embedding as follows:

min
B,W,F,ξ

λ
∑
k∈Y

‖wk‖2 +
n∑
i=1

ξi + ν
n∑
i=1

‖bi − F (xi)‖2

s.t. ∀(i, k) (wyi −wk)
>bi ≥ 1[yi 6= k]− ξi,

bi ∈ {−1,+1}m

(5.1)

where λ and ν are regularization parameters, ξi is a slack variable corresponding to

the hinge loss for data point i and 1[·] is an indicator function. This optimization

problem is solved by an iterative algorithm that fixes all but one variable at each

step.

The SDH approach outperforms the state-of-the-art hashing methods in most

cases [52]. However, it has two main drawbacks. Many unsupervised hashing tech-

niques [5, 7] are designed to yield balanced bits such that the number of +1 and

66

−1 is equal or closer, as this results in better retrieval performance. Unfortunately,

SDH lacks a control mechanism for the distribution of −1 and +1 over the data

points of each bit. We observe that SDH performs poorly due to imbalanced bits

when binary codes are shorter e.g. smaller than 32-bits or some classes are enor-

mous in size while some classes are tiny. The other drawback is overfitting to the

optimal binary codes {bi}ni=1 in the nonlinear embedding F (x). Also, each bit of

F (x) cannot be distributed among different cores in a machine. Furthermore, no

strategy is presented for updating F (x) to unseen classes.

5.2.3 SVM-based Hashing

To overcome the issues described in the previous section, we define a new

optimization task that replaces the approximation loss in (5.1) with m independent

binary SVMs as [47]. Let B ∈ {−1,+1}n×m be a matrix that collects binary codes

where the ith row of B is equal to b>i . We can then define a binary SVM model

treating {ϕ(xi)}ni=1 as input data and column j of B as binary class labels for

j = 1, . . . ,m. In addition, we add a new term that penalizes imbalanced assignments

67

of −1/+1 in binary codes. Our formulation for supervised hashing is given by

min
B,W,Ξ

λ

(
1

2

∑
k∈Y

‖wb
k‖2 + Cb

n∑
i=1

ξbi

)
+

m∑
j=1

(
1

2
‖wx

j ‖2 + Cx

n∑
i=1

ξxij

)
+ γ

m∑
j=1

∣∣∣∣ n∑
i=1

bij

∣∣∣∣
s.t. ∀(i, k) (wb

yi
−wb

k)
>bi ≥ 1[yi 6= k]− ξbi ,

∀(i, j) bij (wx
j)>ϕ(xi) ≥ 1− ξxij,

∀(i, j) ξxij ≥ 0,

bi ∈ {−1,+1}m

(5.2)

where λ and γ are scaling parameters, Cx and Cb are soft margin parameters of

the SVMs. Note that the sum of column j in B is equal to zero when bit j is

balanced. There will be no penalty for bit j in this case. This imbalance penalty

is also important for the performance of the binary SVMs with the fixed parameter

Cx since they are sensitive to imbalance in the datasets [67]. We can add an extra

element 1 to the vectors of all data points and binary codes in order to add a

bias term to the loss function of SVMs. Finally, our hash function is defined as

H(x) = sign
(
(Wx)>ϕ(x)

)
where the jth column of Wx ∈ Rd×m is equal to wx

j for

j = 1, . . . ,m. Similarly, we define another weight matrix Wb ∈ Rd×m such that its

jth column is equal to wb
k for k = 1, . . . , |Y|.

This optimization task can be solved by an iterative algorithm that consists

of two main steps: Training SVMs and learning binary codes as follows.

68

5.2.4 Training SVMs

If we fix all binary codes B, the optimization problem (5.2) will be reduced tom

separate binary SVM and one multi-class linear SVM problems. These (m+1) SVMs

can be trained in parallel since they are conditionally independent on binary codes.

Our formulation has a disadvantage of computational cost in comparison with the

SDH because we need to train (m + 1) SVMs at each iteration until convergence.

Therefore, we employ an efficient large-scale SVM learning technique called the

Optimized Cutting Plane Algorithm for SVMs (OCAS) [68]. The OCAS algorithm

is based on approximating the original convex loss function of an SVM by a piecewise

linear function defined as the maximum over a set of linear under-estimators called

cutting planes. At each step, a new cutting plane is added to the set with a cost of

O(nd) complexity. Each under-estimator is a rank-one Taylor approximation to the

loss function of the SVM at a weight point w′. The method also has a multi-class

counterpart called OCAM.

During the execution of our algorithm, changes in binary codes B from one

iteration to the next one are usually small. Therefore, we take advantage of the

pre-computed SVMs from the previous iteration in an incremental approach. We

employ a warm start strategy for training SVMs similar to the one in [69]. We

initialized the best-so-far solution wb in the OCAS algorithm with the solution to

the SVM in the previous iteration instead of a zero vector for each bit. Hence, the

number of iterations in the OCAS computation is reduced with fewer cutting planes.

If there exists no change in column j of B between iteration (t− 1) and iteration t,

69

then we do not train the corresponding SVM again. Similarly, the same approach

is used for the multi-class linear SVM using the OCAM algorithm. Our hashing

method converges when the entire matrix B remains unchanged.

5.2.5 Learning Binary Codes

In the process of learning binary codes B, we fix all the SVM weights {wx
j }mj=1

and {wb
k}k∈Y in (5.2). This results in an integer programming problem and is

therefore NP-hard. As a result, we take an approach akin to the discrete cyclic

coordinate descent algorithm in [52]. We learn binary codes column by column in

B iteratively based on the rest of the binary codes until convergence. For updating

bit j in bi for i = 1, . . . , n, we reduce (5.2) to the following optimization problem:

min
{bij}ni=1

n∑
i=1

L(bij, i, j) + γ

∣∣∣∣ n∑
i=1

bij

∣∣∣∣
s.t. ∀i bij ∈ {−1,+1}

(5.3)

where L(b, i, j) represents the total hinge losses depending specifically on data point

i when the corresponding bit j is equal to b ∈ {−1,+1}, specifically:

L(b, i, j) = β Cb max
k∈Y

(
1[yi 6= k] + b (wbk,j − wbyi,j) + θijk

)
+ Cx max

(
0, 1− b (wx

j)>ϕ(xi)
)

where θijk =
∑

u6=j biu(w
b
k,u−wbyi,u) is a bias term that depends on the binary codes

excluding bit j. In case of no penalty for imbalance (γ = 0), the closed-form solution

is bij = arg minb∈{−1,+1} L(b, i, j) for i = 1, . . . , n. In our case, we need to consider

the trade-off between the hinge losses and the imbalance penalty. Therefore, we sort

the data points with respect to the difference δij = L(−1, i, j)−L(+1, i, j) and find

70

a cutting location between −1/+1 assignments as follows. Let I contain the indices

of data points in ascending order, then the cutting location is determined by

cut = arg min
l∈{0,...,n}

(
γ|2l − n|+

l∑
i=1

L
(
−1, I[i], j

)
+

n∑
i=l+1

L
(
+1, I[i], j

))
. (5.4)

Next, we assign −1 to bit j of data points from I[1] to I[cut] and +1 for data points

from I[cut + 1] to I[n]. Note that the first sum in (5.4) represents the cumulative

hinge losses for the assignments of −1 and the second one represents the same for +1

assignments. We repeat these column updates for j = 1, . . . ,m until B converges;

that typically requires fewer than 10 full updates of B after being initialized with

all +1’s. The proposed SVM-based Hashing (SVM-Hash) method is summarized in

Algorithm 5.1.

5.2.6 Incremental Updates on Hash Functions

Our method can be efficiently updated whenever the training set has a mod-

ification. We describe the initialization of our incremental learning strategy from

the easiest to the hardest type of modifications as follows:

1. Deleting existing classes : Let Yd be the set of deleted class labels, then we

remove wy
k for k ∈ Yd from the multi-class SVM {wb

k}k∈Y and we remove the

rows of B that correspond to images associated with any class in Yd.

2. Adding images to existing classes : For each class, we find the most frequent

binary string pattern from B. Next, each new image is initialized with the

corresponding binary code according to its class.

71

Algorithm 5.1 SVM-based Hashing

Input: Training data {(xi, yi)}ni=1, code length m, number of anchor points r, max-

imum iteration number max iter, parameters Cx, Cb, λ and γ.

Output: Binary codes B, hash function H(x) = sign
(
(Wx)>x

)
.

1: Randomly select r anchor points {ai}si=1 from the training data and compute

the kernel function ϕ(xi) for i = 1, . . . , n.

2: Initialize binary codes B(0) with a random string in {−1,+1}m for each class.

3: for t← 1 to max iter or until convergence do

4: for j ← 1 to m in parallel do

5: if column j of B(t−1) 6= column j of B(t), then

6: Train binary SVM for bit j using the OCAS algorithm where the data is{(
ϕ(xi), b

(t−1)
ij

)}n
i=1

.

7: end if

8: end for

9: Train linear multiclass SVM on the data
{(

b
(t−1)
i , yi

)}n
i=1

.

10: Initialize B(t) with {+1}n×m.

11: repeat

12: for j from 1 to m do

13: Compute cut in (5.4)

14: Update column j in B(t) according to cut and I.

15: end for

16: until B(t) convergences

17: end for

72

3. Adding new classes : We add new rows to B corresponding to new images,

and we initialize each new class with a random binary string. Since we do not

have multi-class SVM trained on the new classes, we only train the multi-class

SVM {wb
k}k∈Yf on Bf from scratch where the subscript f denotes the final

version.

Next, we repeat the loop in Algorithm 5.1 with one of these initializations and with

the previous SVMs {wx
j }mj=1 and {wb

k}k∈Yf in an incremental fashion.

5.3 Experiments

We conducted extensive experiments to assess the effectiveness and efficiency

of the proposed method, SVM-Hash, compared to the state-of-the-art supervised

hashing techniques including CCA-ITQ [5], KSH [46], FastHash [49] and SDH [52].

The performance of the methods was analyzed regarding search accuracy and train-

ing/testing time on three large-scale datasets - CIFAR-10, MNIST, and NUS-WIDE.

All experiments were performed in the MATLAB environment on a machine with a

2.8 GHz Intel Core i7 CPU and 16GB RAM using the public code provided by the

authors with their suggested parameters unless otherwise specified.

5.3.1 Datasets and Experimental Setup

For the NUS-WIDE dataset only, we used the training images that are asso-

ciated with exactly one of the most frequent 21 tags. The resultant dataset has a

training set of 40,141 images with 21 classes. Similarly, we constructed a query set

73

of 26,585 images among the test images associated with only one of those tags. All

datasets were first centered at zero and then each point vector was normalized to

unit length.

For the KSH method, we used reduced datasets of 5,000 images uniformly

sampled from the training sets of each dataset because the computational complexity

of this approach does not allow it to be trained on the entire datasets as we do with

other methods (Table 5.1). The tree depth parameter of FastHash is set to 2 due

to its higher computational complexity. 1,000 images uniformly sampled from the

training sets were used as anchor points {al}sl=1. All the hashing methods with

kernels (SVM-Hash, KSH, and SDH) share the same anchor points in training. All

these kernel methods used an RBF kernel ϕ(x, a) = exp
(
−‖x − a‖2/2σ2

)
with a

kernel width σ which is adjusted for each dataset.

For SVM-Hash, we adjusted the soft margin parameters of the SVMs and the

kernel width based on cross-validation on some binary codes obtained from other

hashing methods. Next, we empirically adjusted the other parameters λ and γ for

each dataset. Similar to SDH, we prefer the multi-class SVM dominate the process

of learning binary codes by setting λ to a large number. For example, for the

CIFAR-10 dataset the parameter values are Cx = 16, Cb = 10−3, λ = m× 108 and

γ = 105. The maximum number of iterations max iter in Algorithm 5.1 is set to 5

like SDH. We repeated the same evaluation methodology as in Chapter 4.

74

5.3.2 Effects of Training and Anchor Set Size

We start our experiments by analyzing the effects of training and anchor set

size on retrieval. The SVM-Hash method is analyzed in details with a different

number of anchor points and training points for comparison. Table 5.1 shows the

comparative retrieval performance of our method with different training and anchor

set sizes along with the state-of-the-art methods on the CIFAR-10 dataset for 32-

bit hash codes regarding mAP and mean precision at Hamming radius 2. We also

report the execution time for learning hashing functions as training time and the

time needed for computing binary code of a single query using the learned hashing

functions as test time. As expected, larger training and anchor sets provide better

performance with longer execution time. The number of anchor points has a greater

influence on retrieval performance than training size. Note that the scale of the

anchor set also affects the test time. Our method outperforms other methods in

retrieval performance while it has competitive execution time. Note that Table 5.1

shows the training time on a four-core machine, and our method learns its hash

function by a parallel algorithm. The training time in Table 5.1 can be enhanced

by a computer with a larger number of nodes. The most efficient method in the

experiments is CCA-ITQ; however, it performs poorly in retrieval.

5.3.3 Retrieval Performance Analysis

For quantitative analysis, we report retrieval performance as mean average

precision (mAP) for all methods on the three datasets in Figure 5.1. Precision-

75

Table 5.1: Results in mean average precision (mAP), mean of precision at Hamming

radius r = 2, training and test time for 32-bit hash codes on CIFAR-10 dataset. For

our method (SVM-Hash), the number of training samples varies from 300 to 1,0000.

The experiments were performed on a machine with an Intel quad-core processor.

Method
Training Anchor

mAP
Precision Training Test

Set Size Set Size at r = 2 Time (s) Time (µs)

SVM-Hash

5,000 300 0.322 0.383 2.7 6.1

5,000 500 0.342 0.397 3.4 11.6

5,000 1,000 0.366 0.420 7.5 15.9

5,000 3,000 0.393 0.438 47.3 45.7

50,000 300 0.360 0.417 61.683 6.3

50,000 1,000 0.429 0.475 171.1 17.7

SDH
5,000 1,000 0.107 0.003 4.6 20.6

50,000 1,000 0.415 0.476 25.0 24.9

Fasthash
5,000 - 0.292 0.202 47.5 86.8

50,000 - 0.354 0.267 628.4 102.6

KSH 5,000 1,000 0.339 0.408 2,895.6 26.8

CCA-ITQ
5,000 - 0.290 0.364 0.2 3.8

50,000 - 0.321 0.407 1.5 3.8

76

recall curves of all methods on the same datasets are displayed in Figure 5.2 for

32-bit length codes. Note that these precision and recall values are computed by

combining the return set of all queries in a single set. The mean of precision and

recall at Hamming radius r = 2 are shown in Tables 5.2 and 5.3, respectively. The

mean of precision and recall values for 64-bits and longer are not presented because

this evaluation is impractical for longer binary codes.

As seen in the figures and tables, the proposed hashing method clearly outper-

forms the state-of-the-art supervised hashing methods on the CIFAR-10 and MNIST

datasets, in which each image belongs to a single class. Our method provides the

best performance on the independent set with the aid of better generalization and

bit balancing. Furthermore, the imbalance penalty improves the retrieval perfor-

mance slightly for almost all cases. Note that we initialized B with uniformly

random strings from the SVM-Hash without imbalance penalty i.e. γ = 0 while we

used a sequential sampling procedure where balanced binary codes have a higher

probability for the SVM-Hash version with imbalance penalty i.e. γ > 0. SDH un-

surprisingly provides the second best performance. Our method slightly improves

its performance by our changes in the classification framework. On the other hand,

our method is affected by the imbalance in the class sizes of reduced NUS-WIDE

dataset. About half of the images belong to a single class while the rest of them are

distributed among 20 categories. Despite this fact, our method still has competitive

results along with SDH and FastHash on this dataset.

77

SVM-Hash SDH FastHash KSH CCA-ITQ

8 16 32 64 128
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Bits

m
AP

CIFAR-10

8 16 32 64 128
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Bits
m

AP

MNIST

8 16 32 64 128
0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

Number of Bits

m
AP

NUS-WIDE

Figure 5.1: Our method (SVM-Hash) is compared with the state-of-the-art meth-

ods on the CIFAR-10, MNIST and NUS-WIDE datasets in terms of mean average

precision (mAP). Dashed line represents SVM-Hash without imbalance penalty.

78

SVM-Hash SDH FastHash KSH CCA-ITQ

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

CIFAR-10

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

MNIST

0 0.2 0.4 0.6 0.8 1
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

NUS-WIDE

Figure 5.2: Our method (SVM-Hash) is compared with the state-of-the-art methods

on the CIFAR-10, MNIST and NUS-WIDE datasets by precision-recall curves for

32-bit length hash codes. Dashed line represents SVM-Hash without imbalance

penalty.

79

T
ab

le
5.

2:
O

u
r

m
et

h
o
d

(S
V

M
-H

as
h
)

is
co

m
p
ar

ed
in

te
rm

s
of

th
e

m
ea

n
of

p
re

ci
si

on
(%

)
at

th
e

H
am

m
in

g
ra

d
iu

s
r

=
2.

M
e
th

o
d

C
IF

A
R

-1
0

M
N

IS
T

N
U

S
-W

ID
E

8-
b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s

S
V

M
-H

as
h

2
7
.7

3
4
5
.5

3
4
7
.9

2
63

.3
6

93
.5

8
9
3
.6

6
30

.8
1

33
.9

8
3
5
.8

8

S
D

H
14

.5
9

41
.8

6
47

.5
3

76
.6

2
83

.1
6

83
.0

8
33

.1
5

33
.8

3
34

.9
9

F
as

tH
as

h
25

.4
4

44
.0

0
26

.6
5

7
7
.4

2
9
3
.6

5
87

.4
5

-
-

-

K
S
H

25
.9

9
40

.7
3

31
.6

8
70

.6
8

89
.2

7
87

.0
6

32
.7

6
35

.0
7

22
.6

8

C
C

A
-I

T
Q

25
.2

0
38

.9
3

41
.3

6
56

.3
6

81
.6

3
81

.8
3

3
3
.3

8
3
5
.8

9
26

.7
7

80

T
ab

le
5.

3:
O

u
r

m
et

h
o
d

(S
V

M
-H

as
h
)

is
co

m
p
ar

ed
in

te
rm

s
of

th
e

m
ea

n
of

re
ca

ll
(%

)
at

th
e

H
am

m
in

g
ra

d
iu

s
r

=
2.

M
e
th

o
d

C
IF

A
R

-1
0

M
N

IS
T

N
U

S
-W

ID
E

8-
b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s
8-

b
it

s
16

-b
it

s
32

-b
it

s

S
V

M
-H

as
h

5
1
.9

6
25

.3
8

13
.9

4
9
5
.1

6
8
8
.5

6
8
3
.8

1
7
2
.1

4
49

.5
9

38
.2

3

S
D

H
23

.4
2

3
5
.9

0
1
4
.4

3
94

.3
1

87
.4

0
82

.5
4

55
.1

3
5
4
.1

5
4
6
.7

0

F
as

tH
as

h
41

.6
1

9.
11

2.
07

90
.3

1
76

.1
3

59
.0

9
-

-
-

K
S
H

42
.9

8
10

.0
6

2.
02

88
.4

8
71

.2
9

55
.2

1
28

.4
8

5.
59

0.
64

C
C

A
-I

T
Q

43
.7

1
13

.5
6

4.
01

77
.5

2
51

.4
9

34
.2

9
29

.1
8

4.
57

0.
66

81

5.3.4 Retrieval Performance Analysis for Dynamic Datasets

We evaluated our incremental hashing strategy in comparison to the passive

and from-scratch hashing strategies for three types of modifications on the same

three datasets with 32-bit binary codes regarding mAP scores and training time.

For deleting classes case, we first learned hash functions from the entire data. Next,

we removed images of 1, 2 or 4 randomly selected classes and learned hash functions

not only from scratch but also incrementally. We repeated this several times and

reported mAP scores and training time for all type of hashing strategies. A similar

methodology in the reverse order was employed for adding new classes case. For

adding new images case, we first learned hash functions from 10%, 50% or 75%

of training data selected randomly and then used the entire training set for from-

scratch and incremental strategies. For adding new classes and adding new images

cases, we used the same query set in the previous section. For deleting classes case,

we removed the images associated with those classes and computed mAP scores for

the rest of the queries. The mAP scores and training time are shown in Figures 5.3-

5.8 for all types of modifications in all three datasets. Note that the training time

reported for the passive strategy shows the initial computation only. As shown

in the figures, our incremental hashing strategy reaches the same performance as

the from-scratch hashing strategy in shorter training time. For the NUS-WIDE

dataset, most of the classes are tiny. Therefore, adding or deleting those classes

on that dataset has little effect on the retrieval performance. On the other hand,

deleting classes from the MNIST dataset did not have any significant impact on the

82

retrieval performance because there is no room for improvement on that dataset. As

shown in Table 5.1, adding new images improves the retrieval performance slightly

while adding anchor points enhances considerably. Note that the total computation

time for training on 10% of training data and incrementally training on the entire

data is less than the training time on the entire from scratch. As a result, it might be

sound strategy to use our supervised hashing method as a combination of training

on a small set of representative images followed by incremental training on the entire

training data.

5.4 Conclusion

We presented a supervised hashing method based on two-stage classification

framework. We formulated a joint optimization task for the classification problem

and the problem of finding optimal binary codes and developed an efficient algorithm

for learning hash functions in a distributed scheme where the sub-problems are

solved independently. Our objectives, which are to obtain higher quality codes by

better generalization and balanced bits, are met by the proposed approach and

validated by experiments on three image datasets. Furthermore, we showed that

the incremental hashing strategy for dynamics datasets is capable of updating hash

functions efficiently.

83

Passive Hashing Incremental Hashing Hashing from scratch

1 2 4
Number of New Classes

0

0.1

0.2

0.3

0.4

0.5
CIFAR-10

m
AP

1 2 4
Number of New Classes

0

0.2

0.4

0.6

0.8

1

m
AP

MNIST

1 2 4
Number of New Classes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m
AP

NUS-WIDE

Figure 5.3: Adding new classes : Incremental hashing is compared with the from-

scratch and passive hashing for adding different number of new classes to the CIFAR-

10, MNIST and NUS-WIDE datasets in terms of mean average precision (mAP) at

32-bits.

84

Passive Hashing Incremental Hashing Hashing from scratch

1 2 4
Number of New Classes

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

CIFAR-10

1 2 4
Number of New Classes

0

50

100

150

200

Tr
ai

ni
ng

 T
im

e
(s

ec
)

MNIST

1 2 4
Number of New Classes

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

NUS-WIDE

Figure 5.4: Adding new classes : Incremental hashing is compared with the from-

scratch and passive hashing for adding different number of new classes to the CIFAR-

10, MNIST and NUS-WIDE datasets in terms of training time at 32-bits.

85

Passive Hashing Incremental Hashing Hashing from scratch

10 50 75
Initial Training Size / Final Training Size (%)

0

0.1

0.2

0.3

0.4

0.5

m
AP

CIFAR-10

10 50 75
Initial Training Size / Final Training Size (%)

0

0.2

0.4

0.6

0.8

1

m
AP

MNIST

10 50 75
Initial Training Size / Final Training Size (%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m
AP

NUS-WIDE

Figure 5.5: Adding new images : Incremental hashing is compared with the from-

scratch and passive hashing for adding different number of new images to existing

classes to the CIFAR-10, MNIST and NUS-WIDE datasets in terms of mean average

precision (mAP) at 32-bits.

86

Passive Hashing Incremental Hashing Hashing from scratch

10 50 75
Initial Training Size / Final Training Size (%)

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

CIFAR-10

Initial Training Size / Final Training Size (%)
0

50

100

150

200

Tr
ai

ni
ng

 T
im

e
(s

ec
)

MNIST

10 50 75

10 50 75
Initial Training Size / Final Training Size (%)

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

NUS-WIDE

Figure 5.6: Adding new images : Incremental hashing is compared with the from-

scratch and passive hashing for adding different number of new images to existing

classes to the CIFAR-10, MNIST and NUS-WIDE datasets in terms of training time

at 32-bits.

87

Passive Hashing Incremental Hashing Hashing from scratch

1 2 4
Number of Deleted Classes

0

0.1

0.2

0.3

0.4

0.5

0.6

m
AP

CIFAR-10

1 2 4
Number of Deleted Classes

0

0.2

0.4

0.6

0.8

1

m
AP

MNIST

1 2 4
Number of Deleted Classes

0

0.1

0.2

0.3

0.4

0.5

m
AP

NUS-WIDE

Figure 5.7: Deleting existing classes : Incremental hashing is compared with the

from-scratch and passive hashing for deleting different number of existing classes

from the CIFAR-10, MNIST and NUS-WIDE datasets in terms of mean average

precision (mAP) at 32-bits.

88

Passive Hashing Incremental Hashing Hashing from scratch

1 2 4
Number of Deleted Classes

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

CIFAR-10

1 2 4
Number of Deleted Classes

0

50

100

150

200

Tr
ai

ni
ng

 T
im

e
(s

ec
)

MNIST

1 2 4
Number of Deleted Classes

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

ec
)

NUS-WIDE

Figure 5.8: Deleting existing classes : Incremental hashing is compared with the

from-scratch and passive hashing for deleting different number of existing classes

from the CIFAR-10, MNIST and NUS-WIDE datasets in terms of training time at

32-bits.

89

Chapter 6: Conclusions and Future Work

My life would have taken a completely different turn. For better or for worse?

If you’re still alive to ask yourself the question, it can’t have been for the worse, can it?

“Ports of Call” – Amin Maalouf

6.1 Conclusions

We emphasized the importance of binary code representations for image re-

trieval. Accordingly, we studied three different types of hashing schemes in this

thesis. In the first part, we proposed a retrieval framework based on latent bi-

nary features for multimodal data integration. A probabilistic retrieval model was

presented for cross-modal queries. User judgments were also included in the frame-

work for better retrieval performance. Experiments on the PASCAL-Sentence and

SUN-Attribute datasets demonstrate the effectiveness of the proposed procedure in

comparison to the state-of-the-art algorithms for multimedia databases.

In the second part, we introduced a supervised retrieval model based on Gaus-

sian processes for classification. We elegantly constructed a network of latent vari-

ables by connecting multiple Gaussian processes with probit models on pairwise

similarities. The model is able to learn binary codes for the datasets lacking well-

90

defined classes where the hashing problem becomes more challenging than for those

with class labels. We described a scalable distributed inference algorithm for the

proposed model. The experimental results on the CIFAR-10, MNIST, and NUS-

WIDE datasets show that our method produces the best retrieval performance by

preventing overfitting to training data.

In the last part, we restricted the problem of supervised hashing to image

databases with predefined classes. With the help of this restriction, we presented a

supervised hashing method based on two-stage classification framework. Also, we

define an incremental hashing strategy on the proposed supervised hashing method.

We described an efficient distributed and incremental algorithm for learning bi-

nary codes. The experimental results demonstrate that the SVM-Hash has the

best retrieval performance in comparison to the state-of-the-art supervised hashing

methods. Besides, the defined incremental strategy for dynamic datasets gives the

same performance like the active strategy while being faster than that method for

all types of modifications. We finally suggest a two-step incremental learning of the

hash functions from a small set of representative images.

6.2 Future Work

Each hashing method that we presented in Chapters 3-5 can be further im-

proved for better retrieval by small extension to the models or by different inference

algorithms. For example, our retrieval model based on the integrative Indian buffet

process can be extended to a hierarchical model like [70] where the first level clus-

91

ters images into categories. The Chinese restaurant process, which is a clustering

method with infinite categories, will provide a flexible procedure. When similar

images are grouped, and the integrative IBP is trained on each group, the training

time will be shorter because very diverse data requires a large number of features

in the IBP model and this results in longer training time. In addition, the iIBP

inference can be made deterministic by a variational inference algorithm based on

a truncated stick-breaking approximation. Therefore, the stability of retrieval set

returned by iIBP will increase. Furthermore, a web-based user interface for iIBP

makes user judgments easier, and it will contribute iIBP towards becoming a useful

image retrieval tool for users.

The Gaussian process hashing method provides a predictive probability distri-

bution for each bit. These distributions can be utilized for dynamic databases where

changes might result in a formation of a new class or deletion of an existing class.

Such modifications to a database require efficient updates to the hash functions

and eventually binary code assignments for images in the database. We assume

that data points which are closer to hyperplanes i.e. having predictive probabilities

around 0.5 are more likely to change their binary codes in the Gibbs sampling step.

This property can be used in an incremental-decremental learning scheme.

The SVM-Hash has a potential of improvement in two areas: Incremental

learning of SVMs and a sophisticated initialization of binary codes. All hashing

methods in this thesis are defined based on other models namely, Indian buffet pro-

cess, Gaussian process, and SVM. Therefore, any future advances in these methods

or their inference algorithms will eventually enhance our hashing methods.

92

Bibliography

[1] Genevieve Patterson, Chen Xu, Hang Su, and James Hays. The sun attribute
database: Beyond categories for deeper scene understanding. International
Journal of Computer Vision (IJCV), 108(1-2):59–81, 2014.

[2] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In International Conference on Very Large Data Bases
(VLDB), pages 518–529, 1999.

[3] Brian Kulis and Kristen Grauman. Kernelized Locality-Sensitive Hashing.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
34(6):1092–1104, 2011.

[4] Maxim Raginsky and Svetlana Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. In Advances in Neural Information Processing Systems
(NIPS), pages 1509–1517, 2009.

[5] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iter-
ative quantization: a Procrustean approach to learning binary codes for large-
scale image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 35(12):2916–2929, December 2013.

[6] Antonio Torralba, Rob Fergus, and Yair Weiss. Small codes and large im-
age databases for recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–8, June 2008.

[7] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances
in Neural Information Processing Systems (NIPS), pages 1753–1760, 2009.

[8] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta,
and Ramesh Jain. Content-based image retrieval at the end of the early years.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
22(12):1349–1380, Dec 2000.

[9] Bahadir Ozdemir and Larry S Davis. A Probabilistic Framework for Multi-
modal Retrieval using Integrative Indian Buffet Process. In Advances in Neural
Information Processing Systems (NIPS), pages 2384–2392, 2014.

93

[10] Abhishek Sharma, Abhishek Kumar, Hal Daumé III, and David W Jacobs. Gen-
eralized multiview analysis: A discriminative latent space. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2160–2167, June
2012.

[11] Xiang Sean Zhou and Thomas S. Huang. Relevance feedback in image retrieval:
A comprehensive review. Multimedia Systems, 8(6):536–544, 2003.

[12] Yi Yang, Feiping Nie, Dong Xu, Jiebo Luo, Yueting Zhuang, and Yunhe Pan. A
multimedia retrieval framework based on semi-supervised ranking and relevance
feedback. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 34(4):723–742, April 2012.

[13] Bahadir Ozdemir and Larry S. Davis. Scalable Gaussian Processes for Super-
vised Hashing. ArXiv e-prints, cs.CV/1604.07335, April 2016.

[14] Malte Kuss and Carl Edward Rasmussen. Assessing Approximate Inference for
Binary Gaussian Process Classification. Journal of Machine Learning Research
(JMLR), 6:1679–1704, October 2005.

[15] Bahadir Ozdemir, Mahyar Najibi, and Larry S. Davis. Incremental Hashing
with Kernels. ArXiv e-prints, cs.CV/1604.07342, April 2016.

[16] Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier. Col-
lecting image annotations using amazon’s mechanical turk. In The NAACL
HLT Workshop on Creating Speech and Language Data with Amazon’s Me-
chanical Turk, 2010.

[17] Mohammad Rastegari, Jonghyun Choi, Shobeir Fakhraei, Hal Daumé III, and
Larry S. Davis. Predictable Dual-View Hashing. International Conference on
Machine Learning (ICML), pages 1328–1336, 2013.

[18] Dekang Lin. An information-theoretic definition of similarity. In International
Conference on Machine Learning (ICML), pages 296–304, 1998.

[19] Genevieve Patterson and James Hays. Sun attribute database: Discovering,
annotating, and recognizing scene attributes. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2751–2758, June 2012.

[20] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Tor-
ralba. Sun database: Large-scale scene recognition from abbey to zoo. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3485–
3492, June 2010.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

94

[22] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holis-
tic representation of the spatial envelope. International Journal of Computer
Vision (IJCV), 42(3):145–175, 2001.

[23] Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, Nov 1998.

[24] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-
Tao Zheng. Nus-wide: A real-world web image database from national uni-
versity of singapore. In ACM International Conference on Image and Video
Retrieval (CIVR), Santorini, Greece, 2009.

[25] Thomas L. Griffiths and Zoubin Ghahramani. Infinite latent feature models
and the indian buffet process. In Advances in Neural Information Processing
Systems (NIPS), pages 475–482, 2005.

[26] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In ACM Symposium
on Computational Geometry, pages 253–262, 2004.

[27] Brian Kulis, Prateek Jain, and Kristen Grauman. Fast similarity search for
learned metrics. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 31(12):2143–2157, 2009.

[28] Junfeng He, Wei Liu, and Shih-Fu Chang. Scalable similarity search with opti-
mized kernel hashing. In International ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 1129–1138, 2010.

[29] Junfeng He, Regunathan Radhakrishnan, Shih-Fu Chang, and Claus Bauer.
Compact hashing with joint optimization of search accuracy and time. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 753–
760, 2011.

[30] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs.
In International Conference on Machine Learning (ICML), pages 1–8, 2011.

[31] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Discrete graph hashing.
In Advances in Neural Information Processing Systems (NIPS), pages 3419–
3427, 2014.

[32] Weihao Kong and Wu-Jun Li. Isotropic hashing. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 1646–1654, 2012.

[33] Yunchao Gong, Sanjiv Kumar, Vishal Verma, and Svetlana Lazebnik. Angu-
lar quantization-based binary codes for fast similarity search. In Advances in
Neural Information Processing Systems (NIPS), pages 1196–1204, 2012.

95

[34] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui Yoon.
Spherical hashing. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2957–2964, June 2012.

[35] Alexis Joly and Olivier Buisson. Random maximum margin hashing. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 873–
880, June 2011.

[36] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive
embeddings. In Advances in Neural Information Processing Systems (NIPS),
pages 1042–1050, 2009.

[37] Wei Liu, Jun Wang, Yadong Mu, Sanjiv Kumar, and Shih-Fu Chang. Compact
hyperplane hashing with bilinear functions. In International Conference on
Machine Learning (ICML), 2012.

[38] Michael M. Bronstein, Alexander M. Bronstein, Fabrice Michel, and Nikos
Paragios. Data fusion through cross-modality metric learning using similarity-
sensitive hashing. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3594–3601, June 2010.

[39] Shaishav Kumar and Raghavendra Udupa. Learning hash functions for cross-
view similarity search. In International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1360–1365, 2011.

[40] Yi Zhen and Dit-Yan Yeung. Co-regularized hashing for multimodal data. In
Advances in Neural Information Processing Systems (NIPS), pages 1376–1384,
2012.

[41] Yi Zhen and Dit-Yan Yeung. A probabilistic model for multimodal hash func-
tion learning. In International ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 940–948, 2012.

[42] Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep
boltzmann machines. In Advances in Neural Information Processing Systems
(NIPS), pages 2222–2230, 2012.

[43] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Sequential projection learn-
ing for hashing with compact codes. In International Conference on Machine
Learning (ICML), pages 1127–1134, 2010.

[44] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-supervised hashing for
large-scale search. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), 34(12):2393–2406, 2012.

[45] Christoph Strecha, Alexander M Bronstein, Michael M Bronstein, and Pascal
Fua. Ldahash: Improved matching with smaller descriptors. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 34(1):66–78, 2012.

96

[46] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Su-
pervised hashing with kernels. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2074–2081, 2012.

[47] Mohammad Rastegari, Ali Farhadi, and David Forsyth. Attribute discovery via
predictable discriminative binary codes. In European Conference on Computer
Vision (ECCV), pages 876–889, 2012.

[48] Ran He, Yinghao Cai, Tieniu Tan, and Larry S. Davis. Learning predictable
binary codes for face indexing. Pattern Recognition, 48(10):3160 – 3168, 2015.

[49] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton Van den Hengel, and David
Suter. Fast supervised hashing with decision trees for high-dimensional data.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1971–1978, June 2014.

[50] Mohammad Norouzi and David J Fleet. Minimal loss hashing for compact
binary codes. In International Conference on Machine Learning (ICML), 2011.

[51] Peichao Zhang, Wei Zhang, Wu-Jun Li, and Minyi Guo. Supervised hashing
with latent factor models. International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 173–182, 2014.

[52] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. Supervised discrete
hashing. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[53] Ilker Yildirim and Robert A. Jacobs. A rational analysis of the acquisition of
multisensory representations. Cognitive Science, 36(2):305–332, 2012.

[54] Finale Doshi-Velez and Zoubin Ghahramani. Accelerated sampling for the in-
dian buffet process. In International Conference on Machine Learning (ICML),
pages 273–280, 2009.

[55] Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus
Rashtchian, Julia Hockenmaier, and David Forsyth. Every picture tells a story:
Generating sentences from images. In European Conference on Computer Vi-
sion (ECCV), pages 15–29, Berlin, Heidelberg, 2010.

[56] Harold Hotelling. Relations Between Two Sets of Variates. Biometrika,
28(3/4):321–377, December 1936.

[57] Carl Edward Rasmussen and Christopher K I Williams. Gaussian processes for
machine learning. MIT Press, Cambridge, Massachusetts, 2006.

[58] Hannes Nickisch and Carl Edward Rasmussen. Approximations for binary
Gaussian process classification. Journal of Machine Learning Research (JMLR),
9:2035–2078, October 2008.

97

[59] Joaquin Quinonero Candela and Carl Edward Rasmussen. A Unifying View of
Sparse Approximate Gaussian Process Regression. Journal of Machine Learn-
ing Research (JMLR), 6:1939–1959, December 2005.

[60] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian Processes using
Pseudo-inputs. In Advances in Neural Information Processing Systems (NIPS),
pages 1257–1264, 2005.

[61] Andrew Naish-Guzman and Sean Holden. The generalized FITC approxima-
tion. In Advances in Neural Information Processing Systems (NIPS), pages
1057–1064, 2007.

[62] Finale Doshi-Velez, David A Knowles, Shakir Mohamed, and Zoubin Ghahra-
mani. Large Scale Nonparametric Bayesian Inference: Data Parallelisation in
the Indian Buffet Process. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 1294–1302, 2009.

[63] Thomas P Minka. Expectation Propagation for approximate Bayesian infer-
ence. In Conference in Uncertainty in Artificial Intelligence (UAI), August
2001.

[64] Andrew Gelman, Aki Vehtari, Pasi Jylanki, Christian Robert, Nicolas Chopin,
and John P Cunningham. Expectation propagation as a way of life. arXiv.org,
December 2014.

[65] Daniel Hernandez-Lobato and Jose Miguel Hernandez-Lobato. Scalable Gaus-
sian Process Classification via Expectation Propagation. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2016.

[66] Koby Crammer and Yoram Singer. On the algorithmic implementation of mul-
ticlass kernel-based vector machines. Journal of Machine Learning Research
(JMLR), 2:265–292, March 2002.

[67] Rukshan Batuwita and Vasile Palade. Class Imbalance Learning Methods for
Support Vector Machines, pages 83–99. John Wiley & Sons, Inc.

[68] Vojtěch Franc and Sören Sonnenburg. Optimized cutting plane algorithm for
large-scale risk minimization. Journal of Machine Learning Research (JMLR),
10:2157–2192, December 2009.

[69] Cheng-Hao Tsai, Chieh-Yen Lin, and Chih-Jen Lin. Incremental and decremen-
tal training for linear classification. In International ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), pages 343–352, New York,
NY, USA, 2014.

[70] Thomas L. Griffiths, Michael I. Jordan, Joshua B. Tenenbaum, and David M.
Blei. Hierarchical topic models and the nested chinese restaurant process. In
Advances in Neural Information Processing Systems (NIPS), pages 17–24, 2004.

98

	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Problem Definition
	Datasets
	Pascal-Sentence Dataset
	SUN-Attribute Dataset
	CIFAR-10 Dataset
	MNIST Dataset
	NUS-WIDE Dataset

	Summary of Contributions
	Organization of the Thesis

	Literature Review
	Overview
	Unsupervised Hashing
	Supervised Hashing

	Unsupervised Multimodal Retrieval
	Overview
	Latent Feature Model for Multimodal Retrieval
	Integrative Latent Feature Model
	Retrieval Model
	Relevance Feedback Model

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion

	Supervised Hashing
	Overview
	Gaussian Process Hashing
	Problem Definition
	A Probabilistic Approach
	The Gaussian Process Model for Binary Classification
	Predictions for Queries
	Sparse Approximation

	Inference
	Inference for the Full GPC Model

	Experiments
	Datasets and Experimental Setup
	Experimental Results

	Conclusion

	Dynamic Hashing
	Overview
	Incremental Hashing
	Learning Hash Functions for Dynamic Databases
	Supervised Discrete Hashing
	SVM-based Hashing
	Training SVMs
	Learning Binary Codes
	Incremental Updates on Hash Functions

	Experiments
	Datasets and Experimental Setup
	Effects of Training and Anchor Set Size
	Retrieval Performance Analysis
	Retrieval Performance Analysis for Dynamic Datasets

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

