58,560 research outputs found

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Overlay Protection Against Link Failures Using Network Coding

    Get PDF
    This paper introduces a network coding-based protection scheme against single and multiple link failures. The proposed strategy ensures that in a connection, each node receives two copies of the same data unit: one copy on the working circuit, and a second copy that can be extracted from linear combinations of data units transmitted on a shared protection path. This guarantees instantaneous recovery of data units upon the failure of a working circuit. The strategy can be implemented at an overlay layer, which makes its deployment simple and scalable. While the proposed strategy is similar in spirit to the work of Kamal '07 & '10, there are significant differences. In particular, it provides protection against multiple link failures. The new scheme is simpler, less expensive, and does not require the synchronization required by the original scheme. The sharing of the protection circuit by a number of connections is the key to the reduction of the cost of protection. The paper also conducts a comparison of the cost of the proposed scheme to the 1+1 and shared backup path protection (SBPP) strategies, and establishes the benefits of our strategy.Comment: 14 pages, 10 figures, accepted by IEEE/ACM Transactions on Networkin

    An information-theoretic view of network management

    Get PDF
    We present an information-theoretic framework for network management for recovery from nonergodic link failures. Building on recent work in the field of network coding, we describe the input-output relations of network nodes in terms of network codes. This very general concept of network behavior as a code provides a way to quantify essential management information as that needed to switch among different codes (behaviors) for different failure scenarios. We compare two types of recovery schemes, receiver-based and network-wide, and consider two formulations for quantifying network management. The first is a centralized formulation where network behavior is described by an overall code determining the behavior of every node, and the management requirement is taken as the logarithm of the number of such codes that the network may switch among. For this formulation, we give bounds, many of which are tight, on management requirements for various network connection problems in terms of basic parameters such as the number of source processes and the number of links in a minimum source-receiver cut. Our results include a lower bound for arbitrary connections and an upper bound for multitransmitter multicast connections, for linear receiver-based and network-wide recovery from all single link failures. The second is a node-based formulation where the management requirement is taken as the sum over all nodes of the logarithm of the number of different behaviors for each node. We show that the minimum node-based requirement for failures of links adjacent to a single receiver is achieved with receiver-based schemes

    On the multiple unicast capacity of 3-source, 3-terminal directed acyclic networks

    Get PDF
    We consider the multiple unicast problem with three source-terminal pairs over directed acyclic networks with unit-capacity edges. The three sitis_i-t_i pairs wish to communicate at unit-rate via network coding. The connectivity between the sitis_i - t_i pairs is quantified by means of a connectivity level vector, [k1k2k3][k_1 k_2 k_3] such that there exist kik_i edge-disjoint paths between sis_i and tit_i. In this work we attempt to classify networks based on the connectivity level. It can be observed that unit-rate transmission can be supported by routing if ki3k_i \geq 3, for all i=1,,3i = 1, \dots, 3. In this work, we consider, connectivity level vectors such that mini=1,,3ki<3\min_{i = 1, \dots, 3} k_i < 3. We present either a constructive linear network coding scheme or an instance of a network that cannot support the desired unit-rate requirement, for all such connectivity level vectors except the vector [1 2 4][1~2~4] (and its permutations). The benefits of our schemes extend to networks with higher and potentially different edge capacities. Specifically, our experimental results indicate that for networks where the different source-terminal paths have a significant overlap, our constructive unit-rate schemes can be packed along with routing to provide higher throughput as compared to a pure routing approach.Comment: To appear in the IEEE/ACM Transactions on Networkin
    corecore