6 research outputs found

    On Tutte polynomial uniqueness of twisted wheels

    Get PDF
    AbstractA graph G is called T-unique if any other graph having the same Tutte polynomial as G is isomorphic to G. Recently, there has been much interest in determining T-unique graphs and matroids. For example, de Mier and Noy [A. de Mier, M. Noy, On graphs determined by their Tutte polynomials, Graphs Combin. 20 (2004) 105–119; A. de Mier, M. Noy, Tutte uniqueness of line graphs, Discrete Math. 301 (2005) 57–65] showed that wheels, ladders, Möbius ladders, square of cycles, hypercubes, and certain class of line graphs are all T-unique. In this paper, we prove that the twisted wheels are also T-unique

    On the Structure of 3-connected Matroids and Graphs

    Get PDF
    An element e of a 3-connected matroid M is essential if neither the deletion M\e nor the contraction M/e is 3-connected. Tutte\u27s Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. In this paper, we consider those 3-connected matroids that have some non-essential elements, showing that every such matroid M must have at least two such elements. We prove that the essential elements of M can be partitioned into classes where two elements are in the same class if M has a fan, a maximal partial wheel, containing both. We also prove that if an essential element e of M is in more than one fan, then that fan has three or five elements; in the latter case, e is in exactly three fans. Moreover, we show that if M has a fan with 2k or 2k + 1 elements for some k ≥ 2, then M can be obtained by sticking together a (k + 1)-spoked wheel and a certain 3-connected minor of M. The results proved here will be used elsewhere to completely determine all 3-connected matroids with exactly two non-essential elements. © 2000 Academic Press

    Connectivity for Matroids and Graphs.

    Get PDF
    This dissertation studies connectivity for matroids and graphs. The main results generalize Tutte\u27s Wheels and Whirls Theorem and have numerous applications. In Chapter 2, we prove two structural theorems for 3-connected matroids. An element e of a 3-connected matroid M is essential if neither the deletion M\\e nor the contraction M/e is 3-connected. Tutte\u27s Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. If M is not a wheel or a whirl, we prove that the essential elements of M can be partitioned into classes where two elements are in the same class if M has a fan containing both. In particular, M must have at least two non-essential elements. In the second structural theorem, we show that if M has a fan with 2k or 2k + 1 elements for some k≥ 2k \geq \ 2, then M can be obtained by sticking together a (k + 1)-spoked wheel and a certain 3-connected minor of M. In Chapters 3 and 4, we characterize all 3-connected matroids whose set of non-essential elements has rank two. In particular, we completely determine all 3-connected matroids with exactly two non-essential elements. In Chapter 5, we derive some consequences of these results for the 3-connected binary matroids and graphs. We prove that there are exactly six classes of 3-connected binary matroids whose set of non-essential elements has rank two and we prove that there are exactly two classes of graphs, multi-dimensional wheels and twisted wheels, with exactly two non-essential edges. In Chapter 6, we use our first structural theorem to investigate the set of elements e in a 3-connected matroid M such that the simplification of M/e is 3-connected. We get best-possible lower bounds on the number of such elements thereby improving a result which was derived by Cunningham and Seymour independently. We also give some generalizations of the Wheels and Whirls Theorem and the Wheels Theorem

    Matroids and graphs with few non-essential elements

    No full text
    An essential element of a 3-connected matroid M is one for which neither the deletion nor the contraction is 3-connected. Tutte\u27s Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. In an earlier paper, the authors showed that a 3-connected matroid with at least one non-essential element has at least two such elements. This paper completely determines all 3-connected matroids with exactly two non-essential elements. Furthermore, it is proved that every 3-connected matroid M for which no single-element contraction is 3-connected can be constructed from a similar such matroid whose rank equals the rank in M of the set of elements e for which the deletion M\e is 3-connected. © Springer-Verlag 2000
    corecore