46 research outputs found

    Advances on Matroid Secretary Problems: Free Order Model and Laminar Case

    Get PDF
    The most well-known conjecture in the context of matroid secretary problems claims the existence of a constant-factor approximation applicable to any matroid. Whereas this conjecture remains open, modified forms of it were shown to be true, when assuming that the assignment of weights to the secretaries is not adversarial but uniformly random (Soto [SODA 2011], Oveis Gharan and Vondr\'ak [ESA 2011]). However, so far, there was no variant of the matroid secretary problem with adversarial weight assignment for which a constant-factor approximation was found. We address this point by presenting a 9-approximation for the \emph{free order model}, a model suggested shortly after the introduction of the matroid secretary problem, and for which no constant-factor approximation was known so far. The free order model is a relaxed version of the original matroid secretary problem, with the only difference that one can choose the order in which secretaries are interviewed. Furthermore, we consider the classical matroid secretary problem for the special case of laminar matroids. Only recently, a constant-factor approximation has been found for this case, using a clever but rather involved method and analysis (Im and Wang, [SODA 2011]) that leads to a 16000/3-approximation. This is arguably the most involved special case of the matroid secretary problem for which a constant-factor approximation is known. We present a considerably simpler and stronger 33e≈14.123\sqrt{3}e\approx 14.12-approximation, based on reducing the problem to a matroid secretary problem on a partition matroid

    The matroid secretary problem for minor-closed classes and random matroids

    Full text link
    We prove that for every proper minor-closed class MM of matroids representable over a prime field, there exists a constant-competitive matroid secretary algorithm for the matroids in MM. This result relies on the extremely powerful matroid minor structure theory being developed by Geelen, Gerards and Whittle. We also note that for asymptotically almost all matroids, the matroid secretary algorithm that selects a random basis, ignoring weights, is (2+o(1))(2+o(1))-competitive. In fact, assuming the conjecture that almost all matroids are paving, there is a (1+o(1))(1+o(1))-competitive algorithm for almost all matroids.Comment: 15 pages, 0 figure

    Laminar Matroids

    Get PDF
    A laminar family is a collection A\mathscr{A} of subsets of a set EE such that, for any two intersecting sets, one is contained in the other. For a capacity function cc on A\mathscr{A}, let I\mathscr{I} be \{I:|I\cap A| \leq c(A)\text{ for all A\in\mathscr{A}}\}. Then I\mathscr{I} is the collection of independent sets of a (laminar) matroid on EE. We present a method of compacting laminar presentations, characterize the class of laminar matroids by their excluded minors, present a way to construct all laminar matroids using basic operations, and compare the class of laminar matroids to other well-known classes of matroids.Comment: 17 page

    The Best-or-Worst and the Postdoc problems

    Full text link
    We consider two variants of the secretary problem, the\emph{ Best-or-Worst} and the \emph{Postdoc} problems, which are closely related. First, we prove that both variants, in their standard form with binary payoff 1 or 0, share the same optimal stopping rule. We also consider additional cost/perquisites depending on the number of interviewed candidates. In these situations the optimal strategies are very different. Finally, we also focus on the Best-or-Worst variant with different payments depending on whether the selected candidate is the best or the worst

    Generalized Laminar Matroids

    Get PDF
    Nested matroids were introduced by Crapo in 1965 and have appeared frequently in the literature since then. A flat of a matroid MM is Hamiltonian if it has a spanning circuit. A matroid MM is nested if and only if its Hamiltonian flats form a chain under inclusion; MM is laminar if and only if, for every 11-element independent set XX, the Hamiltonian flats of MM containing XX form a chain under inclusion. We generalize these notions to define the classes of kk-closure-laminar and kk-laminar matroids. This paper focuses on structural properties of these classes noting that, while the second class is always minor-closed, the first is if and only if k≤3k \le 3. The main results are excluded-minor characterizations for the classes of 2-laminar and 2-closure-laminar matroids.Comment: 12 page
    corecore