6 research outputs found

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Maximum Matchings in Geometric Intersection Graphs

    Get PDF
    Let G be an intersection graph of n geometric objects in the plane. We show that a maximum matching in G can be found in O(ρ3ω/2nω/2) time with high probability, where ρ is the density of the geometric objects and ω>2 is a constant such that n×n matrices can be multiplied in O(nω) time. The same result holds for any subgraph of G, as long as a geometric representation is at hand. For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian elimination, with the fact that geometric intersection graphs have small separators. We also show that in many interesting cases, the maximum matching problem in a general geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum matching in the intersection graph of any family of translates of a convex object in the plane can be found in O(nω/2) time with high probability, and a maximum matching in the intersection graph of a family of planar disks with radii in [1,Ψ] can be found in O(Ψ6log11n+Ψ12ωnω/2) time with high probability

    Matrix sparsification and nested dissection over arbitrary fields

    No full text
    corecore