12,749 research outputs found

    A Gravitational Theory of the Quantum

    Full text link
    The synthesis of quantum and gravitational physics is sought through a finite, realistic, locally causal theory where gravity plays a vital role not only during decoherent measurement but also during non-decoherent unitary evolution. Invariant set theory is built on geometric properties of a compact fractal-like subset IUI_U of cosmological state space on which the universe is assumed to evolve and from which the laws of physics are assumed to derive. Consistent with the primacy of IUI_U, a non-Euclidean (and hence non-classical) state-space metric gpg_p is defined, related to the pp-adic metric of number theory where pp is a large but finite Pythagorean prime. Uncertain states on IUI_U are described using complex Hilbert states, but only if their squared amplitudes are rational and corresponding complex phase angles are rational multiples of 2π2 \pi. Such Hilbert states are necessarily gpg_p-distant from states with either irrational squared amplitudes or irrational phase angles. The gappy fractal nature of IUI_U accounts for quantum complementarity and is characterised numerically by a generic number-theoretic incommensurateness between rational angles and rational cosines of angles. The Bell inequality, whose violation would be inconsistent with local realism, is shown to be gpg_p-distant from all forms of the inequality that are violated in any finite-precision experiment. The delayed-choice paradox is resolved through the computational irreducibility of IUI_U. The Schr\"odinger and Dirac equations describe evolution on IUI_U in the singular limit at p=∞p=\infty. By contrast, an extension of the Einstein field equations on IUI_U is proposed which reduces smoothly to general relativity as p→∞p \rightarrow \infty. Novel proposals for the dark universe and the elimination of classical space-time singularities are given and experimental implications outlined

    Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    Full text link
    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.Comment: 33 pages. To appear in Uwe Naumann and Olaf Schenk, editors, "Combinatorial Scientific Computing," Chapman and Hall/CRC Press, 201

    Euclidean Distance Matrices: Essential Theory, Algorithms and Applications

    Get PDF
    Euclidean distance matrices (EDM) are matrices of squared distances between points. The definition is deceivingly simple: thanks to their many useful properties they have found applications in psychometrics, crystallography, machine learning, wireless sensor networks, acoustics, and more. Despite the usefulness of EDMs, they seem to be insufficiently known in the signal processing community. Our goal is to rectify this mishap in a concise tutorial. We review the fundamental properties of EDMs, such as rank or (non)definiteness. We show how various EDM properties can be used to design algorithms for completing and denoising distance data. Along the way, we demonstrate applications to microphone position calibration, ultrasound tomography, room reconstruction from echoes and phase retrieval. By spelling out the essential algorithms, we hope to fast-track the readers in applying EDMs to their own problems. Matlab code for all the described algorithms, and to generate the figures in the paper, is available online. Finally, we suggest directions for further research.Comment: - 17 pages, 12 figures, to appear in IEEE Signal Processing Magazine - change of title in the last revisio
    • …
    corecore