6,715 research outputs found

    UniRecSys: A Unified Framework for Personalized, Group, Package, and Package-to-Group Recommendations

    Full text link
    Recommender systems aim to enhance the overall user experience by providing tailored recommendations for a variety of products and services. These systems help users make more informed decisions, leading to greater user satisfaction with the platform. However, the implementation of these systems largely depends on the context, which can vary from recommending an item or package to a user or a group. This requires careful exploration of several models during the deployment, as there is no comprehensive and unified approach that deals with recommendations at different levels. Furthermore, these individual models must be closely attuned to their generated recommendations depending on the context to prevent significant variation in their generated recommendations. In this paper, we propose a novel unified recommendation framework that addresses all four recommendation tasks, namely personalized, group, package, or package-to-group recommendation, filling the gap in the current research landscape. The proposed framework can be integrated with most of the traditional matrix factorization-based collaborative filtering models. The idea is to enhance the formulation of the existing approaches by incorporating components focusing on the exploitation of the group and package latent factors. These components also help in exploiting a rich latent representation of the user/item by enforcing them to align closely with their corresponding group/package representation. We consider two prominent CF techniques, Regularized Matrix Factorization and Maximum Margin Matrix factorization, as the baseline models and demonstrate their customization to various recommendation tasks. Experiment results on two publicly available datasets are reported, comparing them to other baseline approaches that consider individual rating feedback for group or package recommendations.Comment: 25 page

    Incorporating Constraints into Matrix Factorization for Clothes Package Recommendation

    Get PDF
    Recommender systems have been widely applied in the literature to suggest individual items to users. In this paper, we consider the harder problem of package recommendation, where items are recommended together as a package. We focus on the clothing domain, where a package recommendation involves a combination of a "top'' (e.g. a shirt) and a "bottom'' (e.g. a pair of trousers). The novelty in this work is that we combined matrix factorisation methods for collaborative filtering with hand-crafted and learnt fashion constraints on combining item features such as colour, formality and patterns. Finally, to better understand where the algorithms are underperforming, we conducted focus groups, which lead to deeper insights into how to use constraints to improve package recommendation in this domain

    Algorithms and Architecture for Real-time Recommendations at News UK

    Full text link
    Recommendation systems are recognised as being hugely important in industry, and the area is now well understood. At News UK, there is a requirement to be able to quickly generate recommendations for users on news items as they are published. However, little has been published about systems that can generate recommendations in response to changes in recommendable items and user behaviour in a very short space of time. In this paper we describe a new algorithm for updating collaborative filtering models incrementally, and demonstrate its effectiveness on clickstream data from The Times. We also describe the architecture that allows recommendations to be generated on the fly, and how we have made each component scalable. The system is currently being used in production at News UK.Comment: Accepted for presentation at AI-2017 Thirty-seventh SGAI International Conference on Artificial Intelligence. Cambridge, England 12-14 December 201

    Adaptive Matrix Completion for the Users and the Items in Tail

    Full text link
    Recommender systems are widely used to recommend the most appealing items to users. These recommendations can be generated by applying collaborative filtering methods. The low-rank matrix completion method is the state-of-the-art collaborative filtering method. In this work, we show that the skewed distribution of ratings in the user-item rating matrix of real-world datasets affects the accuracy of matrix-completion-based approaches. Also, we show that the number of ratings that an item or a user has positively correlates with the ability of low-rank matrix-completion-based approaches to predict the ratings for the item or the user accurately. Furthermore, we use these insights to develop four matrix completion-based approaches, i.e., Frequency Adaptive Rating Prediction (FARP), Truncated Matrix Factorization (TMF), Truncated Matrix Factorization with Dropout (TMF + Dropout) and Inverse Frequency Weighted Matrix Factorization (IFWMF), that outperforms traditional matrix-completion-based approaches for the users and the items with few ratings in the user-item rating matrix.Comment: 7 pages, 3 figures, ACM WWW'1

    Scalable Recommendation with Poisson Factorization

    Full text link
    We develop a Bayesian Poisson matrix factorization model for forming recommendations from sparse user behavior data. These data are large user/item matrices where each user has provided feedback on only a small subset of items, either explicitly (e.g., through star ratings) or implicitly (e.g., through views or purchases). In contrast to traditional matrix factorization approaches, Poisson factorization implicitly models each user's limited attention to consume items. Moreover, because of the mathematical form of the Poisson likelihood, the model needs only to explicitly consider the observed entries in the matrix, leading to both scalable computation and good predictive performance. We develop a variational inference algorithm for approximate posterior inference that scales up to massive data sets. This is an efficient algorithm that iterates over the observed entries and adjusts an approximate posterior over the user/item representations. We apply our method to large real-world user data containing users rating movies, users listening to songs, and users reading scientific papers. In all these settings, Bayesian Poisson factorization outperforms state-of-the-art matrix factorization methods
    • …
    corecore