374,609 research outputs found
The modal logic of Reverse Mathematics
The implication relationship between subsystems in Reverse Mathematics has an
underlying logic, which can be used to deduce certain new Reverse Mathematics
results from existing ones in a routine way. We use techniques of modal logic
to formalize the logic of Reverse Mathematics into a system that we name
s-logic. We argue that s-logic captures precisely the "logical" content of the
implication and nonimplication relations between subsystems in Reverse
Mathematics. We present a sound, complete, decidable, and compact tableau-style
deductive system for s-logic, and explore in detail two fragments that are
particularly relevant to Reverse Mathematics practice and automated theorem
proving of Reverse Mathematics results
Wittgenstein on Pseudo-Irrationals, Diagonal Numbers and Decidability
In his early philosophy as well as in his middle period, Wittgenstein holds a purely
syntactic view of logic and mathematics. However, his syntactic foundation of logic
and mathematics is opposed to the axiomatic approach of modern mathematical logic.
The object of Wittgenstein’s approach is not the representation of mathematical properties within a logical axiomatic system, but their representation by a symbolism that identifies the properties in question by its syntactic features. It rests on his distinction of descriptions and operations; its aim is to reduce mathematics to operations. This paper illustrates Wittgenstein’s approach by examining his discussion of irrational numbers
Kriesel and Wittgenstein
Georg Kreisel (15 September 1923 - 1 March 2015) was a formidable mathematical
logician during a formative period when the subject was becoming
a sophisticated field at the crossing of mathematics and logic. Both with his
technical sophistication for his time and his dialectical engagement with mandates,
aspirations and goals, he inspired wide-ranging investigation in the metamathematics
of constructivity, proof theory and generalized recursion theory.
Kreisel's mathematics and interactions with colleagues and students have been
memorably described in Kreiseliana ([Odifreddi, 1996]). At a different level of
interpersonal conceptual interaction, Kreisel during his life time had extended
engagement with two celebrated logicians, the mathematical Kurt Gödel and
the philosophical Ludwig Wittgenstein. About Gödel, with modern mathematical
logic palpably emanating from his work, Kreisel has reflected and written
over a wide mathematical landscape. About Wittgenstein on the other hand,
with an early personal connection established Kreisel would return as if with
an anxiety of influence to their ways of thinking about logic and mathematics,
ever in a sort of dialectic interplay. In what follows we draw this out through
his published essays—and one letter—both to elicit aspects of influence in his
own terms and to set out a picture of Kreisel's evolving thinking about logic
and mathematics in comparative relief.Accepted manuscrip
The Principle Of Excluded Middle Then And Now: Aristotle And Principia Mathematica
The prevailing truth-functional logic of the twentieth century, it is argued, is incapable of expressing the subtlety and richness of Aristotle's Principle of Excluded Middle, and hence cannot but misinterpret it. Furthermore, the manner in which truth-functional logic expresses its own Principle of Excluded Middle is less than satisfactory in its application to mathematics. Finally, there are glimpses of the "realism" which is the metaphysics demanded by twentieth century logic, with the remarkable consequent that Classical logic is a particularly inept instrument to analyze those philosophies which stand opposed to the "realism" it demands
- …
