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In his early philosophy as well as in his middle period, Wittgenstein holds a purely
syntactic view of logic and mathematics. However, his syntactic foundation of logic
and mathematics is opposed to the axiomatic approach of modern mathematical logic.
The object of Wittgenstein’s approach is not the representation of mathematical prop-
erties within a logical axiomatic system, but their representation by a symbolism that
identifies the properties in question by its syntactic features. It rests on his distinction of
descriptions and operations; its aim is to reduce mathematics to operations. This paper
illustrates Wittgenstein’s approach by examining his discussion of irrational numbers.

1 Tractarian heritage
In the Tractatus, TLP for short, Wittgenstein distinguishes between operations and
functions. As do Russell and Whitehead in the Principia Mathematica, PM for short,
he uses “functions” in the sense of “propositional functions”, which are representable
by symbols of the form ϕx within a logical formalism. In contrast, the concept of op-
eration is Wittgenstein’s own creation. According to Wittgenstein, the “basic mistake”
of the symbolism of PM is the failure to distinguish between propositional functions
and operations (WVC, p. 217 and TLP 4.126). In this respect, the syntax of PM suf-
fers from the same deficiency as the syntax of ordinary language. Wittgenstein distin-
guishes between functions and operations by the criterion of the possibility of iterative
application, TLP 5.25f.:

(Operations and functions must not be confused with each other.)
A function cannot be its own argument, whereas an operation can take one
of its own results as its base.

Due to its possible iterative application, an operation generates a series of internally
related elements. This series is defined by an initial member, η, and an operation, Ω(ξ),
that must be applied to generate a new member from a previous one ξ. The form of
such a definition is [η, ξ,Ω(ξ)]. This series is not defined as an “infinite extension” but
by the iterative application of an operation that determines forms. The natural num-
bers, for example, are defined by the operation +1. Starting with 0 as initial member,
this yields the series 0, 0+1, 0+1+1 etc., which is denoted by [0, ξ, ξ + 1], cf. TLP
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6.03. According to Wittgenstein’s point of view numbers are forms defined by oper-
ations (cf. WVC, p. 223). They are neither objects denoted by names nor classes or
classes of classes described by functions. While functions determine the extension of
a property independent of its symbolic representation, operations determine the syntax
of symbols. Operations do not refer to anything outside the symbols; they determine
formal (internal) properties rather than material (external) properties. Operations do
not state anything, but determine how to vary the form of their bases (inputs) without
contributing any content. In contrast, functions, e.g., “x is human,” state that their ar-
guments have some property, which is not determined by the symbol of the arguments.
A function determines an extension of objects, namely the “totality” or class of objects
that satisfy the function.

Operations are internally related, they can “counteract the effect of another” and
“cancel out another” (TLP 5.253); they form a system. In TLP Wittgenstein recon-
structs so called “truth functions” such as negation, conjunction, disjunction and im-
plication as “truth operations”. They form the system of logical operations. Likewise,
he understands addition, multiplication, subtraction and division as a system of “arith-
metic operations”. In both cases, this forces significant changes in the traditional sym-
bolism of logic and arithmetic. In logic, he invents his ab-notation, in which the truth
operators are not represented by ¬,∧,∨ or → but by ab-operations, which assign a-
and b-poles to a- and b-poles (cf. e.g., CL, letters 28, 32 NL, p. 94-96, 102, MN, p.
114-16 and TLP 6.1203). By this he intends to overcome within propositional logic
the “basic mistake” of PM in failing to distinguish symbolically between operations
and functions. In arithmetic he defines natural numbers by operations, cf. TLP 6.02-
6.04, and indicates a symbolism of primitive arithmetic wholly resting on operations
(cf. TLP 6.24f.). He explicitly opposes this to the Frege’s and Russell’s program to
reduce mathematics to a “a theory of classes” (TLP 6.031), these classes being defined
by propositional functions.

Wittgenstein called for a symbolism based on operations as a counter-program to
Frege’s and Russell’s logicism. This still holds for his middle period. Instead of his
peculiar term “operation,” he frequently uses the common expression “law,” and instead
of the technical term “propositional function,” he uses the less specific expression of
“description”. Yet, he still claims that mathematics is dealing with systems, operations
or laws and not with totalities, functions or descriptions (cf. e.g., WVC, p. 216f. or
MS 107, p. 116). Likewise, he claims that “the falsities in philosophy of mathematics”
are based on a confusion of the “internal properties of a form”, which are determined
by operations, and “properties” in terms of material properties of daily life, which are
identified by propositional functions, cf. PG, p. 476. He also calls the view that bases
mathematics on functions the “extensional view” whereas he professes an “intensional
view” that identifies mathematical properties by syntactic properties of an adequate
symbolic representation (PG, p. 471-474, RFM, V, §34-40).

In the following we go on to illustrate Wittgenstein’s intensional view in his in-
termediate (1929-1934) discussion of irrational numbers. Finally, we will apply this
discussion to diagonal numbers, as well as to the notions of enumerability, decidability
and provability. We hereby want to address two challenges faced by Wittgenstein’s
program: (i) How to apply it to other parts of mathematics besides primitive arith-
metic? (ii) How to relate it to the basic notions and impossibility results of modern
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mathematical logic?

2 Irrationals

2.1 Cauchy sequences
Irrationals are customarily defined as equivalence classes of identical Cauchy sequences.
A Cauchy sequence is an infinite sequence of rational numbers a1, a2, . . . such that the
absolute difference |am − an| can be made less than any given value ε > 0 whenever
the indices m,n are taken to be greater than some natural number k. Two Cauchy
sequences a1, a2, . . . and a′1, a

′
2, . . . are identical if and only if for any given ε > 0

there is some natural number k such that |an − a′n| < ε for all n greater than k. The
idea behind this definition is that all methods approximating the “true expansion” of
an irrational number must once result in the same expansion up to a certain digit. For
example, the methods illustrated in tables 1 and 2 both approximate the true decimal
expansion of

√
2 in a plain manner.

a1 a2 a3 a4 a5 a6 a7 a8 a9

x2 < 2 1 1.25 1.375 1.40625 1.4140525

x2 > 2 2 1.5 1.4375 1.421875

Table 1: Method 1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

x2 < 2 1 1.4 1.41 1.414 1.4141

x2 > 2 2 1.5 1.42 1.415 1.4142

Table 2: Method 2

At some point the methods come up with identical decimal expansions up to a
certain digit. For example, from a9 on both sequences begin with 1.41. Thus, going
further and further one approximates more and more “the” expansion of the irrational
number. However, no finite sequence will ever represent the “true expansion,” as it is
the limit of all sequences approximating it; the “true expansion” is beyond all finite
sequences – it is infinite.

With respect to Wittgenstein’s point of view, it is important to note that these meth-
ods of approximation do not generate the next digits by iteration. Instead, at any step
it must be checked whether the square of the result is < 2 or > 2.

3



2.2 Wittgenstein’s critique
Wittgenstein’s main critique of the definition of irrational numbers in terms of Cauchy
sequences is that this definition does not provide an identity criterion, which decides
the identity of two real numbers (PR §186, 187, 191, 195). The problem is that, on the
standard conception of irrational numbers as infinite sequences of rational numbers, for
any infinite sequence s there are infinite many sequences that are identical with s up to
a certain digit k. However, the definition does not provide a method to specify some
upper bound for k in comparing two arbitrary real numbers. Thus, no finite comparison
is sufficient to decide whether two arbitrary sequences are identical. The definition has
it that the “true expansion” lies beyond all finite sequences. Therefore, it provides
only a sufficient criterion for a negative answer but no sufficient criterion for a positive
answer to the question of identifying arbitrary real numbers. In this respect, we have
the same situation as in the case of determining within a traditional logical calculus
whether some formula of first order logic is not a theorem.

One might reply to this critique that one cannot claim the decidability of things that
simply are not decidable; the nature of the real numbers as infinite sequences implies
that one cannot decide upon the identity of two real numbers. However, in fact it is
from the purported definition that the problem arises, and it is not carved in stone that
this indeed captures the “nature” of real numbers. According to Wittgenstein’s analysis
the definition is nothing but a consequence of the extensional view of modern mathe-
matics. This spuriously takes the designations of real numbers by ordinary language as
descriptions of everyday properties, which determine a certain extension. For exam-
ple, in the case of

√
2 one wrongly analyses the ordinary explanation in terms of “the

number that when multiplied by itself is identical with 2” as a description of a material,
non-symbolic property. This property is then conceived as being satisfied by the “true
infinite expansion”, which is approximated by multiplying finite sequences with them-
selves and comparing the result to 2. In order to come to understand Wittgenstein’s
point of view, it is crucial to recognize that there is an alternative to this conception
that refers to known mathematics. According to this point of view, real numbers are
not defined by extensions, but by laws in the sense of Wittgenstein’s operations.

2.3 Wittgenstein’s alternative
In order to come to understand Wittgenstein’s position one must recognize that he
rejects methods of approximation such as the above illustrated methods 1 and 2. Al-
though these kinds of methods of approximation might be called “laws,” they are not
“laws” in terms of operations. They are not operations because they do not generate
a sequence by iteration. How to go on does not simply depend on the previous mem-
bers but on a comparison between the last member and some condition. For example,
at each stage in the development of the decimal expansion of

√
2, one must consider

whether squaring the last member is greater or smaller than 2. This method is incom-
patible with Wittgenstein’s purely syntactic foundation of mathematical properties. In
his program, any sequence must be definable by an operation that determines nothing
but the syntax of the members of the sequence. Only in this way is the property consti-
tuting the sequence reduced to an internal property of forms that can be identified by
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the symbolic features of the members of the series.
Wittgenstein’s well known rejection of “arithmetical experiments” is based on his

requirement to define sequences by syntactic means alone, PR §190:

In this context we keep coming up against something that could be
called an “arithmetical experiment”. Admittedly the data determine the
result, but I can’t see in what way they determine it (cf. e.g., the occur-
rences of 7 in π.) The primes likewise come out from the method for
looking for them, as the results of an experiment. To be sure, I can con-
vince myself that 7 is a prime, but I can’t see the connection between it and
the condition it satisfies. – I have only found the number, not generated it.
I look for it, but I don’t generate it. I can certainly see a law in the rule
which tells me how to find the primes, but not in the numbers that result.
And so it is unlike the case + 1

1! ,−
1
3! ,+

1
5! etc., where I can see a law in

the numbers.
I must be able to write down a part of the series, in such a way that you
can recognize the law.
That is to say, no description is to occur in what is written down, every-
thing must be represented.
The approximations must themselves form what is manifestly a series.
That is, the approximations themselves must obey a law.

The series of primes is Wittgenstein’s paradigm of a series that cannot be gener-
ated by an operation. Although operations are available to generate an infinite series
of primes, no operation is known to generate the primes in a certain order that en-
sures that all primes are enumerated. In his detailed discussions of primes in other
places, Wittgenstein draws the consequence that we still lack of a clear concept of
“the” primes. All we have is a concept of what “a” prime is, which allows us to decide
whether a given number is prime or not (PR §159, 161, cf. (Lampert 2008)). For the
same reason, he rejects the definition of a real number P as the dual fraction with an =
1 if n is prime and an = 0 otherwise, cf. PG, p. 475. This definition does satisfy the
definition of real numbers by Cauchy sequences, but it does not satisfy Wittgenstein’s
criterion of being definable by an operation. In the quoted passage, Wittgenstein em-
phasizes that we do have a method to look for the next prime: we go through the series
of natural numbers and decide one by one whether each member satisfies the condition
to be divisible only by 1 and itself. However, this method does not satisfy his standard
of a definition by operation. As long as we are not able to reduce the property of being
a prime to some operation generating the series of primes by iteration, “we can’t see
the connection” between the members of the series and the condition they satisfy: we
cannot “recognize the law” in the series. The problem is the same as with the above
illustrated methods of approximating

√
2. Instead of generating the next member by

iteration, we must decide whether some condition is satisfied or not in order to find the
next member.

Wittgenstein’s reference to the series of primes as an illustration of arithmetical
experiments demonstrates that his concept of operation is not equivalent to that of
primitive recursive function. Primes are definable by a primitive recursive function,
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but not by an operation.1 Iteration in the case of operations means that the output of
the n-th application of an operation is itself the input of the n+ 1-th application of the
very same operation. In contrast, recursion in the case of primitive recursive functions
means that the value of a primitive recursive function f for the successor of n, S(n),
is defined by referring to the value of the very same function f for n. This does not
imply that the values of f are themselves their arguments. This is only true in case
of the successor function, which itself is primitive recursive. However, the identity
function, e.g., I(x) = x, and the zero function, Z(x) = 0, on which the definition
of primitive recursive functions are based, are functions and do not define a series by
iterative application. The same holds for primitive recursive characteristic functions.
They have the form “f(x) = 0 if ϕ(x) and f(x) = 1 otherwise”. In Wittgenstein’s
terms, characteristic functions are a paradigm of “descriptions” and not of operations.
In contrast, any iteration by applying operations has the form an = Ω′ ~ai, where ~ai
stands for members previous to an. For example, the series of Fibonacci numbers is
defined by an = an−2 +an−1. Recursion in the case of primitive recursive functions is
part of a strategy of defining primitive recursive functions, whereas operations are not
defined by iteration but applied iteratively. They are defined by some purely syntactic
variation that generates a formal series of systematically varied members if iteratively
applied. In the case of Fibonacci numbers, this operation consists of adding the last
two members. Starting from 0 and 1, this generates the series 0, 1, 0 + 1, 1 + (0 +
1), (0 + 1) + (1 + (0 + 1)), (1 + (0 + 1)) + ((0 + 1) + (1 + (0 + 1))) etc.2

If not even primitive recursive functions satisfy Wittgenstein’s standards of a purely
syntactic foundation of mathematics, this causes doubts whether his programme is re-
alizable at all. Likewise, his rejection of arithmetical experiments and his claim to
“recognize the law” in the series has caused trouble. The decimal sequences of ir-
rationals do not satisfy Wittgenstein’s demand for sequences that manifestly obey a
law. Do not irrationals contradict Wittgenstein’s claim from their very nature? Thus,
it seems unclear how Wittgenstein’s point of view can even do justice to such basic
irrational numbers as π and

√
2 (cf., e.g., (Redecker 2006), p. 212).

However, these problems only arise if one overlooks the fact that the possibility of
definitions by operations depends on the mode of representation. In case of irrationals,
the syntactic features of the decimal system are responsible for their “lawless” repre-
sentation. However, this kind of representation is not essential; it obscures their lawful
nature instead of revealing it. In MS 107, p. 91 Wittgenstein writes (translated by T.L.):

The procedure of extracting
√

2 in the decimal system, e.g., is an arith-
metical experiment, too. However, this only means that this procedure is
not completely essential to

√
2 and a representation must exist that makes

the law recognizable.

To see the connection between the members of a sequence representing a real num-
1The question in what sense Wittgenstein characterizes real numbers as “laws” is thoroughly discussed in

the literature (cf. (Da Silva 1993), (Frascolla 1994), p.85-92, (Marion 1998), (Rodych 1999) and (Redecker
2006), chapter 5.2). However, the main reason why the identification of laws with Wittgenstein’s notion of
operations seemed to be insufficient to most commentators is that operations in Wittgenstein’s sense were
not distinguished sharply from the notion of primitive recursive functions.

2Brackets are merely introduced to identify an−2 and an−1.
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ber and the condition or property that these members satisfy, one must refer to an
equivalence transformation that reduces this property to an internal property of forms.
There is no equivalence transformation between

√
2 and a decimal number. This al-

ready shows that it is impossible to represent
√

2 by the decimal system; whatever
decimal number one generates, it cannot be identical with

√
2 – referring to “infinite

extensions” is just another expression of this deficiency. However, using the represen-
tation by continued fractions, it is possible to represent

√
2 by an operation, cf. MS

107, p. 126 (translated by T.L., cf. MS 107, p. 99):

[...] in 1
2 ,

1
2+ 1

2
, 1

2+ 1
2+ 1

2

etc. one can recognize the law one cannot

recognize in the decimal development.

The connection between the property of
√

2 as “the number that multiplied with it-
self is identical with 2” and its definition by its continued fraction is due to equivalence
transformation:

x2 = 2 | √

x =
√

2 | a = 1 + (a− 1)

x = 1 + (
√

2− 1) | a = 1
1
a

x = 1 + 1
1√
2−1

| 1
a−b = a+b

a2−b2

x = 1 + 1√
2+1√

22−12

| a = a√
2
2−12

x = 1 + 1√
2+1

| x =
√

2, a+ b = b+ a

x = 1 + 1
1+x | −1

x− 1 = 1
1+x | 1 + x = 2 + (x− 1)

x− 1 = 1
2+(x−1)

Thus,
√

2−1 is representable by the operation 1
2+(x−1) . Starting with 1−1 for x−1,

the iterative application of this operation yields the series 1
2+(1−1) ,

1
2+ 1

2+(1−1)
, 1

2+ 1
2+ 1

2+(1−1)

etc. This is identical to the series Wittgenstein mentions if one eliminates +(1 − 1)
by an equivalence transformation. In the short notation of regular periodic continued
fractions,

√
2 is definable by [1; 2]. A continued fraction of a real number is peri-

odic if and only if the real number is a quadratic irrational (theorem of Lagrange).
The notation of continued fraction identifies a common property of quadratic irra-
tionals by a common syntactic feature, and thus shows that this property is an inter-
nal property. Other irrational numbers are representable by regular continued frac-
tions that are not periodic but still definable by operations, such as the Euler number
e : [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]. Another type of irrational numbers are not de-
finable by operations within regular continued fractions but within irregular continued
fractions such as 4

π = 1+ 12

2+ 32

2+ 52

. . .

. Furthermore, the continued fraction representation

for a number is finite if and only if the number is rational. This shows that this mode
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of representation reveals by its syntactic properties internal properties of numbers that
are not identified by the decimal number system. We learn more about “the laws of
numbers,” their internal structure, by representing them in the notation of continued
fractions.

Mathematical proofs reveal this internal structure by equivalence transformations.
Consider, for example, the golden ratio. Its representation as a decimal number does
not show its exceptional nature. However, by an equivalence transformation resulting
in an operation defining a continued fraction, internal properties of the golden ratio
are identified by the syntactic features of this adequate representation. This procedure
reduces property that the ratio of two quantities a and b is identical to the ratio of the
sum of them to the larger quantity a to an operation:

φ = a
b = a+b

a = 1 + b
a = 1 + 1

φ . (1)

By the operation 1+ 1
φ , the periodic, regular continued fraction [1; 1] is defined. By

this representation it is proven that the golden ratio is “the most irrational and the most
noble number,” because these properties are identified by the lowest possible numbers
in an infinite regular continued fraction. Furthermore, by this representation it is proven
that the ratio of two neighboured Fibonacci numbers converges to the golden ratio. For
the Fibonacci numbers are defined by an+1 = an + an−1. Thus, with a = an and
b = an−1 we yield equation (1). The syntax of continued fractions provides symbolic
connections that prove certain internal relations between numbers.

The continued fraction representation of any irrational number is unique. Thus,
any definition of a real number by an operation (or “induction”) defining a continued
fraction satisfies Wittgenstein’s criterion for representing a real number, MS 107, p. 89
(translation T.L.):

I want a representation of the real number that reveals the number in
an induction such that I have herewith the only proper, unique symbol.

It is by this property of uniqueness that the symbolic representation of irrationals
by continued fractions serves as an identity criterion, which allows one to compare
irrationals and rational numbers. The principle is the same as in the case of comparing
fractions by converting them to fractions with identical denominators. The problem
of deciding the identity of numbers results from a deficiency in their representation,
allowing for ambiguity.

This does not mean that there must be one and only one proper notation for num-
bers. Nor does it mean that continued fractions are “the” proper notation of real num-
bers. Different internal properties of numbers, and herewith different types of numbers,
may be identified by different systems of representation. And different types of num-
bers may be comparable within different modes of representation (cf. MS 107, p. 123).
Natural numbers can be compared according to the conventions of the decimal system,
fractions are comparable by converting them to fractions with identical denominator,
rational numbers and quadratic irrationals are comparable by regular continued frac-
tions etc. Furthermore, new proofs consist of making new symbolic connections. They
invent new possibilities of comparing numbers and of revealing their internal relations.
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Not all internal relations of a number to other numbers must be revealed within only
one notational system. For example, instead of representing π by an irregular continued

fraction (as quoted above), 2
π can also be represented by

√
2

2 ·
√

2+
√

2
2 ·

√
2+
√

2+
√

2

2 · . . .
or π2 by 2

1 ·
2
3 ·

4
3 ·

4
5 ·

6
5 ·

6
7 ·

8
7 ·

8
9 · . . .. The internal properties of different numbers may

call for operations referring to different modes of representation. There need not be a
“system of irrational numbers” in the sense as there is a “system of natural numbers”
or a “system of rational numbers” (cf. PG, p. 479, RFM, app. 3,§33). As we have
seen, only quadratic irrationals are definable by periodic, regular continued fractions,
and another type of irrationals is not even definable by regular continued fractions. Dif-
ferent types of irrationals are definable by different kinds of operations within different
modes of representation.

According to Wittgenstein’s intensional point of view, our mathematical compre-
hension and knowledge depends on the syntax of mathematical representation. This is
not due to psychological reasons. Instead, this is because mathematical proofs make
symbolic connections between different modes of representation, and because the solv-
ability of mathematical problems depends on imposing adequate notations. Instead of
concluding from a specific, deficient mode of representation the lawless nature of ir-
rational numbers, which makes it impossible to decide upon their identity and which
invokes misconceptions such as “infinite extensions,” one should look for adequate
representations that reveal their lawful nature and make it possible to decide upon their
identity. This is done by reducing their properties to operations instead of conceptualiz-
ing them in terms of functions. If such a reduction is not available, this means that one
does not have a full understanding of the properties in question. We can then only refer
to a vague understanding expressed within a deficient, descriptive symbolism. Only by
imposing an adequate expression that depicts those properties by its syntactic features,
can we be sure that those properties are properly defined.

This approach is in conflict with basic impossibility results of modern mathematical
logic, such as the non-enumerability of the irrationals, the undecidability of first-order
logic or the incompleteness of logical axiomatizations of arithmetics. This does not
mean that Wittgenstein’s point of view implies that these results are false in the sense
that their negation is true. Instead, his intensional view implies that it does not make
sense to speak of “the irrationals” unless an operation is known that allows us to gen-
erate them by iteration (and thus to enumerate “the irrationals”). This, of course, does
not mean that he claims that such an operation is or must be available. Likewise, his
intensional view implies that one cannot speak of decidability or provability in an ab-
solute sense, such that one can say in advance that certain properties of formulae of
a certain syntax are not decidable or provable, independent of the syntactic manipu-
lations that might be invented to identify those properties. According to Wittgenstein
“being a tautology” (“being true in all interpretations”) or “being a theorem” of first
order logic is not defined properly unless some sort of equivalence procedure is in-
vented that converts first order formulae to an adequate representation that identifies
their logical properties by its syntactic properties. From this point of view, it cannot be
said that it is impossible to define such procedures, because the properties in question
that are said to be undecidable or unprovable are not represented properly unless such
procedures are available. Likewise, from Wittgenstein’s point of view the incomplete-
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ness of axiomatic systems of arithmetic means in the first place that those systems do
not properly represent the properties in question. It does not mean that we know that
a certain property, e.g., the provability of a certain formula, holds, but its formal rep-
resentation is not derivable. Instead, it means that we have a deficient understanding
of that property expressed by an inadequate representation. In the following, we will
show that this conflict between Wittgenstein’s point of view and the impossibility re-
sults can all be traced back to his rejection of “descriptions” in terms of characteristic
functions as adequate forms to represent real numbers.

3 Pseudo-Irrationals
Wittgenstein illustrates his point of view by providing several definitions of pseudo-
irrationals. These are definitions of irrationals in terms of Cauchy sequences. However,
contrary to

√
2 or π no reductions to operations of these definitions are available. Thus,

according to Wittgenstein there are no irrationals corresponding to those definitions.
Besides the above mentioned definition of P as the dual fraction 0.a1a2 . . .with an = 1
if n is prime and an = 0 otherwise, Wittgenstein discusses the following definitions
(cf. PG, p. 475):

π′: The decimal number a1.a2a3 . . . with anan+1an+2 = 000 if anan+1an+2 = 777
in π; otherwise an = an of π.

F : The dual fraction 0.a1a2a3 . . . with an = 1 if xn + yn = zn is solvable for n
(1 ≥ x, y, z ≥ 100); otherwise an = 0.

All these definitions are intended to define an irrational number by a characteristic
function. In this case, the dots “. . .” refer to an “infinite extension”. Thus, they are
ill-defined according to Wittgenstein’s standards. They do not identify a number but
describe an arithmetical experiment. Wittgenstein emphasizes that even if the charac-
teristic functions become reducible to operations, this does not mean that this shows
that the definitions in fact define irrational numbers. Instead, it means that vague defi-
nitions that do not identify numbers are replaced with exact definitions that are able to
identify numbers. He, for example, considers the situation when Fermat’s theorem is
proven. Due to his rejection of descriptions, he does not analyse this situation in terms
of coming to know the number F that before was only described. Instead, the proof
allows one to replace the pseudo-definition of F , which does not identify a number
(neither a rational nor an irrational one), with F = 0.11, which is a rational number
(PG, p. 480). Before, it was not decidable whether “F” denotes a number such that
F = 0.11 or not; the definition by description simply did not define rules to do this.
This demonstrates the lack of meaning that is given to “F ” by the previous definition.
The proof, if it is valid, makes connections to other parts of mathematics that were not
recognized before and thus gives “F ” a clear meaning.

Cantor’s proof of the non-enumerability of irrational numbers is based on defining
a diagonal number by a characteristic function. Given some enumeration of dual frac-
tions between 0 and 1, the proof of the non-enumerability of “all” of them is based
upon the following diagonal number D:
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D: The dual fraction 0.a1a2 . . . with an = 0 if the n’th digit of the n’th dual fraction
is 1; otherwise an = 1.

To this definition, the same objections apply as to the definitions of P , π′ or F :
It is a definition by description in terms of a characteristic function. It describes an
arithmetical experiment and does not identify a number, which can only be done by an
operation. However, such an operation is not available. Thus, it is not meaningful to
say that D is an “irrational number” not occurring in the assumed enumeration of irra-
tionals. This, of course, does not mean that Wittgenstein claims that “the irrationals”
are enumerable. Instead, he objects to identifying irrational numbers by non-periodic,
infinite decimal or dual fractions. This criterion does not say anything about a certain
type of numbers; it only says something about the deficiency of the decimal notation
(PG, p. 474). This notation cannot serve as the unique notation for real numbers, as it
does not make it possible to decide upon the identity of numbers. Likewise, Wittgen-
stein objects to the picture of a real number as a “point” on the “line” of real numbers.
These items are elements of the extensional view. They arise from treating “is an irra-
tional number” as well as “is a rational number” or “is a natural number” as concepts
(propositional functions) identifying certain sets of numbers. This makes it possible to
ask about the “cardinality” of those sets. This, in turn, allows one (i) to use “infinite” as
a number word and speak of “the infinite number” of objects satisfying some concept,
and (ii) to compare the cardinality of sets by coordinating their elements. Finally, from
this and the method of diagonalization one comes to speak of sets with a cardinality
greater than that of the set of natural numbers. First and foremost, Wittgenstein’s crit-
icism is that this conceptual machinery is rather an expression of the extensional view
than a description of the nature of numbers (RFM, app. 3, §19). He cuts the roots of
(transfinite) set theory by conceptualizing “types of numbers” in terms of “systems”
instead of “sets”. According to his intensional point of view, the criterion to identify
a type of number is the possibility to generate them by an operation. As this implies
their enumerability in terms of the iterative application of an operation, it does not
make sense to speak of types of numbers that are not enumerable.

According to Church’s thesis, the concept of decidability is representable by a
primitive recursive characteristic function. Thus, on the basis of an enumeration of
first-order logic formulae by their Gödel numbers, the property of being a theorem (or
a tautology) is representable by the following number:

T : The dual fraction 0.a1a2 . . .with an = 0 if ` ϕn (or |= ϕn); and an = 1 otherwise.

On the basis of diagonalization, undecidability proofs demonstrate that character-
istic functions such as the one defining T cannot be primitive recursive. From Wittgen-
stein’s point of view, these proofs are based upon a confusion of material and formal
properties. As a formal property, theoremhood (or being a tautology) is not repre-
sentable by a characteristic function. Instead, these properties are only represented
adequately by a shared syntactic property in an ideal notation. This is illustrated by the
representation of tautologies via truth tables or disjunctive normal forms of proposi-
tional logic as well as by means of Venn diagrams in monadic first order logic. Wittgen-
stein’s conception calls for equivalence transformations to identify the truth conditions
of logical formulae by means of syntactic properties of their proper representation.
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This conception differs from the traditional semantics of first-order logic. Presuming
an endless enumeration of interpretations =1,=2, . . ., each being either a model or a
counter-model of a formula A, one might represent the truth conditions of A according
to these interpretations by the following number:

θ(A): The dual fraction 0.a1a2 . . . with an = 0 if =n |= A and an = 1 otherwise.

On the contrary, Wittgenstein’s approach calls for a representation of the truth con-
ditions of a formula A that allows one to identify the truth conditions of A without de-
ciding whether single interpretations are models or counter-models of A. Furthermore,
the proper representation of first order formulae should reveal the internal relations of
non-equivalent logical formulae by making it possible to generate the system of truth
conditions by operations. To have an idea of what Wittgenstein envisages, one might
think of a systematic generation of reduced disjunctive normal forms of the Quine-
McCluskey algorithm3, that represent all possible truth functions of propositional logic.
Likewise, the task of first order logic is to define analogous disjunctive normal forms
and procedures for their unique reduction within first order logic. To claim that this is
impossible presumes the extensional view that is rejected by Wittgenstein’s endeavour.

Likewise, Gödel represents “x is a proof of y” by a primitive recursive function
xBy in definition 45 of his incompleteness proof (cf. (Gödel 1931), p. 358). On this
basis, he expresses “x is provable” by ∃y yBx in definition 46. This is incompatible
with Wittgenstein’s claim that the internal relation of being provable (derivable) should
be defined by operations instead of propositional functions. This, in turn, presumes a
proof procedure in term of equivalence transformations to an adequate symbolism that
makes such a definition possible, instead of a proof procedure in terms of logical deriva-
tions from axioms. The lack of such a definition means a deficiency in the syntactic
representation of the formulae in question. According to Wittgenstein’s point of view,
the conclusion that must be drawn from Gödel’s incompleteness proof is to look for a
formal representation of arithmetic that is not based upon the concept of propositional
function, which is at the heart of any logical formalization.

Wittgenstein’s intensional reconstruction of mathematics is not meant to be a “refu-
tation” of the extensional view of modern mathematical logic. Instead, first and fore-
most it intends to propose a decisive alternative conceptualization of mathematics that
radically differs in its foundations. According to him, the fruit of this endeavour should
be a clarification of the philosophical problems of modern mathematics that will have
the same influence on the increase of mathematics as sunshine on the growth of potato
shoots, cf. PG, p. 381.

PD Dr. Timm Lampert
University of Berne
timm.lampert@philo.unibe.ch

3Note that the reduced disjunctive normal forms of the Quine-McCluskey algorithm are unique; any
equivalent propositional formula is represented by the same reduced disjunctive normal form. Ambiguity
only comes into play in the second step of the Quine-McCluskey algorithm that intends to minimize reduced
disjunctive normal forms.
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