12,849 research outputs found

    AIDS Review

    Get PDF

    Recent finding and new technologies in nephrolithiasis: a review of the recent literature

    Get PDF
    This review summarizes recent literature on advances regarding renal and ureteral calculi, with particular focus in areas of recent advances in the overall field of urolithiasis. Clinical management in everyday practice requires a complete understanding of the issues regarding metabolic evaluation and subgrouping of stone-forming patients, diagnostic procedures, effective treatment regime in acute stone colic, medical expulsive therapy, and active stone removal. In this review we focus on new perspectives in managing nephrolitihiasis and discuss recentadvances, including medical expulsive therapy, new technologies, and refinements of classical therapy such as shock wave lithotripsy, give a fundamental modification of nephrolithiasis management. Overall, this field appears to be the most promising, capable of new developments in ureterorenoscopy and percutaneous approaches. Further improvements are expected from robotic-assisted procedures, such as flexible robotics in ureterorenoscopy

    Computational Tools for the Investigation of the Male Lower Urinary Tract Functionality in Health and Disease

    Get PDF
    Purpose This paper aims to show the potentialities of computational bioengineering in the field of lower urinary tract pathophysiology. Engineering methods allow the investigation of urine flow in healthy and pathologic conditions and the analysis of urethral occlusion by means of artificial urinary sphincters. Methods Computational models of bladder and urethra were developed and exploited to investigate the lower urinary tract physiology in health and in disease. Average male morphometric configurations were assumed, together with typical properties of both biological tissues and fluids. The reliability of the models was assessed by the mutual comparison of results and the investigation of data from experimental and clinical activities. Results The developed models allowed to analyze typical situations, such as the micturition in health and in disease, and the lumen occlusion by external devices. The models provided information that clinical and experimental tests barely provide, as the occurrence of turbulent phenomena within urine flow, the shear stresses at the lumen wall, the external pressure that is strictly required to occlude the lumen. Conclusions The methods of bioengineering allow broadening and deepening the knowledge of the lower urinary tract functionality. More in detail, modeling techniques provide information that contributes to explain the occurrence of pathological situations, and allows to design and to optimize clinical-surgical procedures and devices

    Logistic Regression modelling and Chi Square statistic to predicting chance of survival of STD in Ondo State, Nigeria

    Get PDF
    Sexually Transmitted diseases are major problems in the health sector. Several researches have shown that it can shorten the lives of people and can cause serious morbidity. This research examined application of Chi Square Statistic and linear logistic regression model to predict the chances of survival among victims of Urinary Tract Infection and Gonorrhoea based on their age, gender and the disease type in Ondo State, Nigeria. Based on the data analysed, we were able to deduce that the male gender irrespective of the age has a greater chance of surviving any sexually transmitted disease. It is therefore recommended that the female sex irrespective of their age undergo constant examination for early detection of any sexually transmitted disease. It is also recommended that there should be sensitization programme for female on sex education irrespective of their age to enable them avoid the infection. Keywords: Sexually Transmitted Disease, Logistic Regression, Odd Ratio, Urinary Tract Infection and Gonorrhoea

    A formal theory for spatial representation and reasoning in biomedical ontologies

    Get PDF
    Objective: The objective of this paper is to demonstrate how a formal spatial theory can be used as an important tool for disambiguating the spatial information embodied in biomedical ontologies and for enhancing their automatic reasoning capabilities. Method and Materials: This paper presents a formal theory of parthood and location relations among individuals, called Basic Inclusion Theory (BIT). Since biomedical ontologies are comprised of assertions about classes of individuals (rather than assertions about individuals), we define parthood and location relations among classes in the extended theory BIT+Cl (Basic Inclusion Theory for Classes). We then demonstrate the usefulness of this formal theory for making the logical structure of spatial information more precise in two ontologies concerned with human anatomy: the Foundational Model of Anatomy (FMA) and GALEN. Results: We find that in both the FMA and GALEN, class-level spatial relations with different logical properties are not always explicitly distinguished. As a result, the spatial information included in these biomedical ontologies is often ambiguous and the possibilities for implementing consistent automatic reasoning within or across ontologies are limited. Conclusion: Precise formal characterizations of all spatial relations assumed by a biomedical ontology are necessary to ensure that the information embodied in the ontology can be fully and coherently utilized in a computational environment. This paper can be seen as an important beginning step toward achieving this goal, but much more work is along these lines is required

    Peristaltic Transport of a Physiological Fluid in an Asymmetric Porous Channel in the Presence of an External Magnetic Field

    Full text link
    The paper deals with a theoretical investigation of the peristaltic transport of a physiological fluid in a porous asymmetric channel under the action of a magnetic field. The stream function, pressure gradient and axial velocity are studied by using appropriate analytical and numerical techniques. Effects of different physical parameters such as permeability, phase difference, wave amplitude and magnetic parameter on the velocity, pumping characteristics, streamline pattern and trapping are investigated with particular emphasis. The computational results are presented in graphical form. The results are found to be in perfect agreement with those of a previous study carried out for a non-porous channel in the absence of a magnetic field
    • …
    corecore