38 research outputs found

    Polarimetric Calibration and Characterization of the Telops Field Portable Polarimetric-Hyperspectral Imager

    Get PDF
    The Telops polarimetric-hyperspectral imager combines polarimetric and hyperspectral technologies to enable enhanced scene characterization. The Defense Threat Reduction Agency funded research at AFIT to leverage this capability to provide more accurate scene information to radiation transport models that will allow for more effective location of radiation sources within a region of interest. To support the objectives of the DTRA effort, there is a requirement for highly accurate radiometric, polarimetric, and spectral data on a pixel-by-pixel basis. The complex nature of the Telops instrument combined with working in the thermal IR waveband makes achieving this accuracy a challenge. This thesis develops a calibration methodology that enables high data accuracy in all three domains. In the process, a mathematical calibration framework was developed that links standard Fourier transform spectrometer (FTS) calibration with standard polarimetric calibration in a straightforward manner. This provided a framework for understanding the influence of various instrument parameters (both ideal and non-ideal) on ultimate calibration performance. The framework developed is utilized to quantify the non-idealities of the system and to characterize the performance of the spectro-polarimetric calibration. Additionally, fundamental performance limits are characterized including the noise equivalent spectral radiance and noise equivalent degree of linear polarization of the system

    Development of a Spectropolarimetric Capability

    Get PDF
    A Bomem 200 series Fourier transform infrared spectrometer and FLIR Systems Inc InGaAs infrared (IR) camera was used to measure the degree of linear polarization (DOLP) from a metal and glass surfaces. This was accomplished by placing a wire grid polarizer in front of the aperture of the FTIR and IR camera to measure the polarized reflection from the target material. For the IR camera, an average of pixel counts was collected over the area of the target to measure to DOLP. Factors impacting the accuracy of the measurements from the FTIR are calibration, instrument self emission, and alignment error. Factors impacting the value of the DOLP from the material are the complex index of refraction, angle of incidence, and surface roughness. Results of these measurements match theory with varying success and also show the limitation and challenges associated with the physical limitation of the equipment used

    Exploitation of infrared polarimetric imagery for passive remote sensing applications

    Get PDF
    Polarimetric infrared imagery has emerged over the past few decades as a candidate technology to detect manmade objects by taking advantage of the fact that smooth materials emit strong polarized electromagnetic waves, which can be remotely sensed by a specialized camera using a rotating polarizer in front of the focal plate array in order to generate the so-called Stokes parameters: S0, S1, S2, and DoLP. Current research in this area has shown the ability of using such variations of these parameters to detect smooth manmade structures in low contrast contrast scenarios. This dissertation proposes and evaluates novel anomaly detection methods for long-wave infrared polarimetric imagery exploitation suited for surveillance applications requiring automatic target detection capability. The targets considered are manmade structures in natural clutter backgrounds under unknown illumination and atmospheric effects. A method based on mathematical morphology is proposed with the intent to enhance the polarimetric Stokes features of manmade structures found in the scene while minimizing its effects on natural clutter. The method suggests that morphology-based algorithms are capable of enhancing the contrast between manmade objects and natural clutter backgrounds, thus, improving the probability of correct detection of manmade objects in the scene. The second method departs from common practices in the polarimetric research community (i.e., using the Stokes vector parameters as input to algorithms) by using instead the raw polarization component imagery (e.g., 0°, 45°, 90°, and 135°) and employing multivariate mathematical statistics to distinguish the two classes of objects. This dissertation unequivocally shows that algorithms based on this new direction significantly outperform the prior art (algorithms based on Stokes parameters and their variants). To support this claim, this dissertation offers an exhaustive data analysis and quantitative comparative study, among the various competing algorithms, using long-wave infrared polarimetric imagery collected outdoor, over several days, under varying weather conditions, geometry of illumination, and diurnal cycles

    The Development of a Performance Assessment Methodology for Activity Based Intelligence: A Study of Spatial, Temporal, and Multimodal Considerations

    Get PDF
    Activity Based Intelligence (ABI) is the derivation of information from a series of in- dividual actions, interactions, and transactions being recorded over a period of time. This usually occurs in Motion imagery and/or Full Motion Video. Due to the growth of unmanned aerial systems technology and the preponderance of mobile video devices, more interest has developed in analyzing people\u27s actions and interactions in these video streams. Currently only visually subjective quality metrics exist for determining the utility of these data in detecting specific activities. One common misconception is that ABI boils down to a simple resolution problem; more pixels and higher frame rates are better. Increasing resolution simply provides more data, not necessary more informa- tion. As part of this research, an experiment was designed and performed to address this assumption. Nine sensors consisting of four modalities were place on top of the Chester F. Carlson Center for Imaging Science in order to record a group of participants executing a scripted set of activities. The multimodal characteristics include data from the visible, long-wave infrared, multispectral, and polarimetric regimes. The activities the participants were scripted to cover a wide range of spatial and temporal interactions (i.e. walking, jogging, and a group sporting event). As with any large data acquisition, only a subset of this data was analyzed for this research. Specifically, a walking object exchange scenario and simulated RPG. In order to analyze this data, several steps of preparation occurred. The data were spatially and temporally registered; the individual modalities were fused; a tracking algorithm was implemented, and an activity detection algorithm was applied. To develop a performance assessment for these activities a series of spatial and temporal degradations were performed. Upon completion of this work, the ground truth ABI dataset will be released to the community for further analysis

    Passively Estimating Index of Refraction for Specular Reflectors Using Polarimetric Hyperspectral Imaging

    Get PDF
    As off-nadir viewing platforms becoming increasingly prevalent in remote sensing, material classification and ID techniques robust to changing viewing geometries must be developed. Traditionally, either reflectivity or emissivity are used for classification, but these quantities vary with viewing angle. Instead, estimating index of refraction may be advantageous as it is invariant with respect to viewing geometry. This work focuses on estimating index of refraction from LWIR (875-1250 wavenumbers) polarimetric hyperspectral radiance measurements

    Understanding forest health with Remote sensing-Part II-A review of approaches and data models

    Get PDF
    Stress in forest ecosystems (FES) occurs as a result of land-use intensification, disturbances, resource limitations or unsustainable management, causing changes in forest health (FH) at various scales from the local to the global scale. Reactions to such stress depend on the phylogeny of forest species or communities and the characteristics of their impacting drivers and processes. There are many approaches to monitor indicators of FH using in-situ forest inventory and experimental studies, but they are generally limited to sample points or small areas, as well as being time- and labour-inte

    Air Force Institute of Technology Research Report 2017

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)

    An Analysis of multimodal sensor fusion for target detection in an urban environment

    Get PDF
    This work makes a compelling case for simulation as an attractive tool in designing cutting-edge remote sensing systems to generate the sheer volume of data required for a reasonable trade study. The generalized approach presented here allows multimodal system designers to tailor target and sensor parameters for their particular scenarios of interest via synthetic image generation tools, ensuring that resources are best allocated while sensors are still in the design phase. Additionally, sensor operators can use the customizable process showcased here to optimize image collection parameters for existing sensors. In the remote sensing community, polarimetric capabilities are often seen as a tool without a widely accepted mission. This study proposes incorporating a polarimetric and spectral sensor in a multimodal architecture to improve target detection performance in an urban environment. Two novel multimodal fusion algorithms are proposed--one for the pixel level, and another for the decision level. A synthetic urban scene is rendered for 355 unique combinations of illumination condition and sensor viewing geometry with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, and then validated to ensure the presence of enough background clutter. The utility of polarimetric information is shown to vary with the sun-target-sensor geometry, and the decision fusion algorithm is shown to generally outperform the pixel fusion algorithm. The results essentially suggest that polarimetric information may be leveraged to restore the capabilities of a spectral sensor if forced to image under less than ideal circumstances

    Snapshot hyperspectral imaging : near-infrared image replicating imaging spectrometer and achromatisation of Wollaston prisms

    Get PDF
    Conventional hyperspectral imaging (HSI) techniques are time-sequential and rely on temporal scanning to capture hyperspectral images. This temporal constraint can limit the application of HSI to static scenes and platforms, where transient and dynamic events are not expected during data capture. The Near-Infrared Image Replicating Imaging Spectrometer (N-IRIS) sensor described in this thesis enables snapshot HSI in the short-wave infrared (SWIR), without the requirement for scanning and operates without rejection in polarised light. It operates in eight wavebands from 1.1μm to 1.7μm with a 2.0° diagonal field-of-view. N-IRIS produces spectral images directly, without the need for prior topographic or image reconstruction. Additional benefits include compactness, robustness, static operation, lower processing overheads, higher signal-to-noise ratio and higher optical throughput with respect to other HSI snapshot sensors generally. This thesis covers the IRIS design process from theoretical concepts to quantitative modelling, culminating in the N-IRIS prototype designed for SWIR imaging. This effort formed the logical step in advancing from peer efforts, which focussed upon the visible wavelengths. After acceptance testing to verify optical parameters, empirical laboratory trials were carried out. This testing focussed on discriminating between common materials within a controlled environment as proof-of-concept. Significance tests were used to provide an initial test of N-IRIS capability in distinguishing materials with respect to using a conventional SWIR broadband sensor. Motivated by the design and assembly of a cost-effective visible IRIS, an innovative solution was developed for the problem of chromatic variation in the splitting angle (CVSA) of Wollaston prisms. CVSA introduces spectral blurring of images. Analytical theory is presented and is illustrated with an example N-IRIS application where a sixfold reduction in dispersion is achieved for wavelengths in the region 400nm to 1.7μm, although the principle is applicable from ultraviolet to thermal-IR wavelengths. Experimental proof of concept is demonstrated and the spectral smearing of an achromatised N-IRIS is shown to be reduced by an order of magnitude. These achromatised prisms can provide benefits to areas beyond hyperspectral imaging, such as microscopy, laser pulse control and spectrometry

    The Characterization of Earth Sediments using Radiative Transfer Models from Directional Hyperspectral Reflectance

    Get PDF
    Remote sensing techniques are continuously being developed to extract physical information about the Earth’s surface. Over the years, space-borne and airborne sensors have been used for the characterization of surface sediments. Geophysical properties of a sediment surface such as its density, grain size, surface roughness, and moisture content can influence the angular dependence of spectral signatures, specifically the Bidirectional Reflectance Distribution Function (BRDF). Models based on radiative transfer equations can relate the angular dependence of the reflectance to these geophysical variables. Extraction of these parameters can provide a better understanding of the Earth’s surface, and play a vital role in various environmental modeling processes. In this work, we focused on retrieving two of these geophysical properties of earth sediments, the bulk density and the soil moisture content (SMC), using directional hyperspectral reflectance. We proposed a modification to the radiative transfer model developed by Hapke to retrieve sediment bulk density. The model was verified under controlled experiments within a laboratory setting, followed by retrieval of the sediment density from different remote sensing platforms: airborne, space-borne and a ground-based imaging sensor. The SMC was characterized using the physics based multilayer radiative transfer model of soil reflectance or MARMIT. The MARMIT model was again validated from experiments performed in our controlled laboratory setting using several different soil samples across the United States; followed by applying the model in mapping SMC from imagery data collected by an Unmanned Aerial System (UAS) based hyperspectral sensor
    corecore