644,060 research outputs found

    Thermodynamic Limit in Statistical Physics

    Full text link
    The thermodynamic limit in statistical thermodynamics of many-particle systems is an important but often overlooked issue in the various applied studies of condensed matter physics. To settle this issue, we review tersely the past and present disposition of thermodynamic limiting procedure in the structure of the contemporary statistical mechanics and our current understanding of this problem. We pick out the ingenious approach by N. N. Bogoliubov, who developed a general formalism for establishing of the limiting distribution functions in the form of formal series in powers of the density. In that study he outlined the method of justification of the thermodynamic limit when he derived the generalized Boltzmann equations. To enrich and to weave our discussion, we take this opportunity to give a brief survey of the closely related problems, such as the equipartition of energy and the equivalence and nonequivalence of statistical ensembles. The validity of the equipartition of energy permits one to decide what are the boundaries of applicability of statistical mechanics. The major aim of this work is to provide a better qualitative understanding of the physical significance of the thermodynamic limit in modern statistical physics of the infinite and "small" many-particle systems.Comment: 28 pages, Refs.180. arXiv admin note: text overlap with arXiv:1011.2981, arXiv:0812.0943 by other author

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Design of engineering systems in Polish mines in the third quarter of the 20th century

    Full text link
    Participation of mathematicians in the implementation of economic projects in Poland, in which mathematics-based methods played an important role, happened sporadically in the past. Usually methods known from publications and verified were adapted to solving related problems. The subject of this paper is the cooperation between mathematicians and engineers in Wroc{\l}aw in the second half of the twentieth century established in the form of an analysis of the effectiveness of engineering systems used in mining. The results of this cooperation showed that at the design stage of technical systems it is necessary to take into account factors that could not have been rationally controlled before. The need to explain various aspects of future exploitation was a strong motivation for the development of mathematical modeling methods. These methods also opened research topics in the theory of stochastic processes and graph theory. The social aspects of this cooperation are also interesting.Comment: 45 pages, 11 figures, 116 reference

    On a Perceived Expressive Inadequacy of Principia Mathematica

    Get PDF
    This paper deploys a Cantor-style diagonal argument which indicates that there is more possible mathematical content than there are propositional functions in Russell and Whitehead's Principia Mathematica and similar formal systems. This technical result raises a historical question: "How did Russell, who was himself an expert in diagonal arguments, not see this coming?" It turns out that answering this question requires an appreciation of Russell's understanding of what logic is, and how he construed the relationship between logic and Principia Mathematica

    Towards MKM in the Large: Modular Representation and Scalable Software Architecture

    Full text link
    MKM has been defined as the quest for technologies to manage mathematical knowledge. MKM "in the small" is well-studied, so the real problem is to scale up to large, highly interconnected corpora: "MKM in the large". We contend that advances in two areas are needed to reach this goal. We need representation languages that support incremental processing of all primitive MKM operations, and we need software architectures and implementations that implement these operations scalably on large knowledge bases. We present instances of both in this paper: the MMT framework for modular theory-graphs that integrates meta-logical foundations, which forms the base of the next OMDoc version; and TNTBase, a versioned storage system for XML-based document formats. TNTBase becomes an MMT database by instantiating it with special MKM operations for MMT.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201
    • …
    corecore