4,783 research outputs found
Recommended from our members
Using queuing theory to analyse completion times in accident and emergency departments in the light of the government 4-hour target
This paper uses a queuing model to evaluate completion times in accident and emergency (A&E) departments in the light of the Government target of completing and discharging 98% of patients inside 4 hours. It illustrates how flows though an A&E can be very accurately represented as a queuing process, how the outputs of a queuing model can be used to visualise and interpret the 4-hour hours Government target in a simple way and how queuing models can be used to assess the practical achievability of A&E targets in the future. The paper finds that A&E targets have resulted in significant improvements in completion times and thus deal with a major source of complaint by users of the National Health Service. It finds that whilst some of this improvement is attributable to better management, some is also due to the way some patients in A&E are designated and therefore counted. It finds for example that the current target would not have been possible without some form of patient re-designation or re-labelling taking place. Further it finds that the current target is so demanding that the integrity of reported performance is open to question and that a different approach is needed. Related incentives and demand management issues resulting from this Government target are also briefly discussed
Ambulance Emergency Response Optimization in Developing Countries
The lack of emergency medical transportation is viewed as the main barrier to
the access of emergency medical care in low and middle-income countries
(LMICs). In this paper, we present a robust optimization approach to optimize
both the location and routing of emergency response vehicles, accounting for
uncertainty in travel times and spatial demand characteristic of LMICs. We
traveled to Dhaka, Bangladesh, the sixth largest and third most densely
populated city in the world, to conduct field research resulting in the
collection of two unique datasets that inform our approach. This data is
leveraged to develop machine learning methodologies to estimate demand for
emergency medical services in a LMIC setting and to predict the travel time
between any two locations in the road network for different times of day and
days of the week. We combine our robust optimization and machine learning
frameworks with real data to provide an in-depth investigation into three
policy-related questions. First, we demonstrate that outpost locations
optimized for weekday rush hour lead to good performance for all times of day
and days of the week. Second, we find that significant improvements in
emergency response times can be achieved by re-locating a small number of
outposts and that the performance of the current system could be replicated
using only 30% of the resources. Lastly, we show that a fleet of small
motorcycle-based ambulances has the potential to significantly outperform
traditional ambulance vans. In particular, they are able to capture three times
more demand while reducing the median response time by 42% due to increased
routing flexibility offered by nimble vehicles on a larger road network. Our
results provide practical insights for emergency response optimization that can
be leveraged by hospital-based and private ambulance providers in Dhaka and
other urban centers in LMICs
Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
Future wireless networks have a substantial potential in terms of supporting
a broad range of complex compelling applications both in military and civilian
fields, where the users are able to enjoy high-rate, low-latency, low-cost and
reliable information services. Achieving this ambitious goal requires new radio
techniques for adaptive learning and intelligent decision making because of the
complex heterogeneous nature of the network structures and wireless services.
Machine learning (ML) algorithms have great success in supporting big data
analytics, efficient parameter estimation and interactive decision making.
Hence, in this article, we review the thirty-year history of ML by elaborating
on supervised learning, unsupervised learning, reinforcement learning and deep
learning. Furthermore, we investigate their employment in the compelling
applications of wireless networks, including heterogeneous networks (HetNets),
cognitive radios (CR), Internet of things (IoT), machine to machine networks
(M2M), and so on. This article aims for assisting the readers in clarifying the
motivation and methodology of the various ML algorithms, so as to invoke them
for hitherto unexplored services as well as scenarios of future wireless
networks.Comment: 46 pages, 22 fig
Operational Research IO2017, Valença, Portugal, June 28-30
This proceedings book presents selected contributions from the XVIII Congress of APDIO (the Portuguese Association of Operational Research) held in Valença on June 28–30, 2017. Prepared by leading Portuguese and international researchers in the field of operations research, it covers a wide range of complex real-world applications of operations research methods using recent theoretical techniques, in order to narrow the gap between academic research and practical applications. Of particular interest are the applications of, nonlinear and mixed-integer programming, data envelopment analysis, clustering techniques, hybrid heuristics, supply chain management, and lot sizing and job scheduling problems. In most chapters, the problems, methods and methodologies described are complemented by supporting figures, tables and algorithms.
The XVIII Congress of APDIO marked the 18th installment of the regular biannual meetings of APDIO – the Portuguese Association of Operational Research. The meetings bring together researchers, scholars and practitioners, as well as MSc and PhD students, working in the field of operations research to present and discuss their latest works. The main theme of the latest meeting was Operational Research Pro Bono. Given the breadth of topics covered, the book offers a valuable resource for all researchers, students and practitioners interested in the latest trends in this field.info:eu-repo/semantics/publishedVersio
Cross-layer design of multi-hop wireless networks
MULTI -hop wireless networks are usually defined as a collection of nodes
equipped with radio transmitters, which not only have the capability to
communicate each other in a multi-hop fashion, but also to route each others’ data
packets. The distributed nature of such networks makes them suitable for a variety of
applications where there are no assumed reliable central entities, or controllers, and
may significantly improve the scalability issues of conventional single-hop wireless
networks.
This Ph.D. dissertation mainly investigates two aspects of the research issues
related to the efficient multi-hop wireless networks design, namely: (a) network
protocols and (b) network management, both in cross-layer design paradigms to
ensure the notion of service quality, such as quality of service (QoS) in wireless mesh
networks (WMNs) for backhaul applications and quality of information (QoI) in
wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of
this Ph.D. dissertation, different network settings are used as illustrative examples,
however the proposed algorithms, methodologies, protocols, and models are not
restricted in the considered networks, but rather have wide applicability.
First, this dissertation proposes a cross-layer design framework integrating
a distributed proportional-fair scheduler and a QoS routing algorithm, while using
WMNs as an illustrative example. The proposed approach has significant performance
gain compared with other network protocols. Second, this dissertation proposes
a generic admission control methodology for any packet network, wired and
wireless, by modeling the network as a black box, and using a generic mathematical
0. Abstract 3
function and Taylor expansion to capture the admission impact. Third, this dissertation
further enhances the previous designs by proposing a negotiation process,
to bridge the applications’ service quality demands and the resource management,
while using WSNs as an illustrative example. This approach allows the negotiation
among different service classes and WSN resource allocations to reach the optimal
operational status. Finally, the guarantees of the service quality are extended to
the environment of multiple, disconnected, mobile subnetworks, where the question
of how to maintain communications using dynamically controlled, unmanned data
ferries is investigated
Proceedings of Abstracts Engineering and Computer Science Research Conference 2019
© 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
Recommended from our members
The National Transport Data Framework
Report by Professor Peter Landshoff (Cambridge University) and
Professor John Polak (Imperial College London) on a project for
the Department for Transport.
emails: [email protected] [email protected] NTDF is designed to be a resource for data owners to deposit descriptions
into a central catalogue, so that people can search for data and find data
and understand their characteristics. The value of this is to individuals, to
commercial organizations, and to public bodies. For example, services that
provide better information to travellers will help to make their journey
less stressful and persuade them to make more use of public transport.
Transport operators need very diverse information to help them
plan developments to their services: demographic, geographical, economic etc.
And policy makers need a similar range of information to help them decide
how to divide their budget and afterwards to evaluate how valuable it has
been.This work was supported by the Department for Transport (DfT)
- …
