1,557,206 research outputs found

    Materializing policies for sustainable use and economy-wide management of resources: biophysical perspectives, socio-economic options and a dual approach for the European Union

    Get PDF
    Policies for Sustainable Use and economy-wide Management of natural Resources (SUMR) throughout the production and consumption system are faced with environmental and socio-economic requirements and regulatory constraints. Based on empirical findings of ongoing trends of resource use, decoupling from economic growth, and transregional problem shifting, the paper outlines a potentially sustainable biophysical basis for production and consumption in the EU. It discusses the main challenges for the major resource groups, describing the specific and the common tasks with regard to biomass, fossil fuels, metals, non-metallic minerals. Adopting a medical metaphor, it suggests that policies for SUMR should follow a dual approach reflecting the long-term need for a main cure of the socio-industrial metabolism in form of a conditioning towards a more mature, resource efficient, and renewables based constitution on the one hand, and a fine tuning of selected material flows (e.g. for optimized recycling and control of hazardous compounds) on the othe hand. Both strategies are deemed complementary and necessary to reduce environmental impact and increase the utility of material use. Action required is exemplified with regard to the three pillars of SUMR, i.e. improved orientation, information and incentives. --Material efficiency,dematerialization,renewables,socio-industrial metabolism,resource use,environmental impacts,sustainable production & consumption,bioeconomy

    CoAP congestion control for the Internet of Things

    Get PDF
    “© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” August Betzler, Javier Isern, Carles Gomez, Ilker Demirkol, Josep Paradells, "Experimental evaluation of congestion control for CoAP communications without end-to-end reliability", Ad Hoc Networks, pp. , 2016, ISSN 15708705. DOI: 10.1109/MCOM.2016.7509394CoAP is a lightweight RESTful application layer protocol devised for the IoT. Operating on top of UDP, CoAP must handle congestion control by itself. The core CoAP specification defines a basic congestion control mechanism, but it is not capable of adapting to network conditions. However, IoT scenarios exhibit significant resource constraints, which pose new challenges on the design of congestion control mechanisms. In this article we present CoCoA, an advanced congestion control mechanism for CoAP being standardized by the Internet Engineering Task Force CoRE working group. CoCoA introduces a novel round-trip time estimation technique, together with a variable backoff factor and aging mechanisms in order to provide dynamic and controlled retransmission timeout adaptation suitable for the peculiarities of IoT communications. We conduct a comparative performance analysis of CoCoA and a variety of alternative algorithms including state-of-the-art mechanisms developed for TCP. The study is based on experiments carried out in real testbeds. Results show that, in contrast to the alternative methods considered, CoCoA consistently outperforms the default CoAP congestion control mechanism in all evaluated scenarios.Peer ReviewedPostprint (author's final draft

    Virtual Network Embedding Approximations: Leveraging Randomized Rounding

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Virtual Network Embedding Problem (VNEP) captures the essence of many resource allocation problems. In the VNEP, customers request resources in the form of Virtual Networks. An embedding of a virtual network on a shared physical infrastructure is the joint mapping of (virtual) nodes to physical servers together with the mapping of (virtual) edges onto paths in the physical network connecting the respective servers. This work initiates the study of approximation algorithms for the VNEP for general request graphs. Concretely, we study the offline setting with admission control: given multiple requests, the task is to embed the most profitable subset while not exceeding resource capacities. Our approximation is based on the randomized rounding of Linear Programming (LP) solutions. Interestingly, we uncover that the standard LP formulation for the VNEP exhibits an inherent structural deficit when considering general virtual network topologies: its solutions cannot be decomposed into valid embeddings. In turn, focusing on the class of cactus request graphs, we devise a novel LP formulation, whose solutions can be decomposed. Proving performance guarantees of our rounding scheme, we obtain the first approximation algorithm for the VNEP in the resource augmentation model. We propose different types of rounding heuristics and evaluate their performance in an extensive computational study. Our results indicate that good solutions can be achieved even without resource augmentations. Specifically, heuristical rounding achieves 77.2% of the baseline’s profit on average while respecting capacities.BMBF, 01IS12056, Software Campus GrantEC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    End-to-end 5G service deployment and orchestration in optical networks with QoE guarantees

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe upcoming 5G deployments will impose stringent requirements. Optical networks control and resource orchestration is set to potentially turn into software-defined approaches in order to address such requirements. As a result, there rises a need for an architectural scheme capable of supporting the different types of services defined for 5G verticals.We present in this paper an architecture enabling end-to-end (E2E) provisioning and monitoring of such 5G services over optical network segments. In particular, the scenario considers the coordination of various optical enabled network segments by a higher level E2E Orchestrator, which provides of network slice deployment and is able to guarantee agreed levels of Quality of Experience (QoE). Moreover, we discuss an example of 5G service provisioning using the proposed architecture to demonstrate its behaviour in front of different network events.Peer ReviewedPostprint (author's final draft

    A differential game approach to urban drainage systems control

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Urban drainage systems (UDSs) are complex large-scale systems that carry stormwater and wastewater throughout urban areas. During heavy rain scenarios, UDSs are not able to handle the amount of extra water that enters the network and flooding occurs. Usually, this might happen because the network is not being used efficiently, i.e., some structures remain underused while many others are overused. This paper proposes a control methology based on differential game theory that aims to efficiently use the existing network elements in order to minimize overflows and properly manage the water resource. The proposed controller is tested on a typical UDS and is compared with a centralized MPC achieving similar results in terms of flooding minimization and network usage, but only using local information on distributed controllers.Peer ReviewedPostprint (author's final draft

    Structural Material Property Tailoring Using Deep Neural Networks

    Full text link
    Advances in robotics, artificial intelligence, and machine learning are ushering in a new age of automation, as machines match or outperform human performance. Machine intelligence can enable businesses to improve performance by reducing errors, improving sensitivity, quality and speed, and in some cases achieving outcomes that go beyond current resource capabilities. Relevant applications include new product architecture design, rapid material characterization, and life-cycle management tied with a digital strategy that will enable efficient development of products from cradle to grave. In addition, there are also challenges to overcome that must be addressed through a major, sustained research effort that is based solidly on both inferential and computational principles applied to design tailoring of functionally optimized structures. Current applications of structural materials in the aerospace industry demand the highest quality control of material microstructure, especially for advanced rotational turbomachinery in aircraft engines in order to have the best tailored material property. In this paper, deep convolutional neural networks were developed to accurately predict processing-structure-property relations from materials microstructures images, surpassing current best practices and modeling efforts. The models automatically learn critical features, without the need for manual specification and/or subjective and expensive image analysis. Further, in combination with generative deep learning models, a framework is proposed to enable rapid material design space exploration and property identification and optimization. The implementation must take account of real-time decision cycles and the trade-offs between speed and accuracy

    A Tabu Search algorithm for ground station scheduling problem

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Mission planning plays an important role in satellite control systems. Satellites are not autonomously operated in many cases but are controlled by tele-commands transmitted from ground stations. Therefore, mission scheduling is crucial to efficient satellite control systems, especially with increase of number of satellites and more complex missions to be planned. In a general setting, the satellite mission scheduling consists in allocating tasks such as observation, communication, etc. to resources (spacecrafts (SCs), satellites, ground stations). One common version of this problem is that of ground station scheduling, in which the aim is to compute an optimal planning of communications between satellites and operations teams of Ground Station (GS). Because the communication between SCs and GSs can be done during specific window times, this problem can also be seen as a window time scheduling problem. The required communication time is usually quite smaller than the window of visibility of SCs to GSs, however, clashes are produced, making the problem highly constrained. In this paper we present a Tabu Search (TS) algorithm for the problem, while considering several objective functions, namely, windows fitness, clashes fitness, time requirement fitness, and resource usage fitness. The proposed algorithm is evaluated by a set of problem instances of varying size and complexity generated with the STK simulation toolkit. The computational results showed the efficacy of TS for solving the problem on all considered objectives.Peer ReviewedPostprint (author's final draft

    Effects of an experimental resource pulse on the macrofaunal assemblage inhabiting seagrass macrophytodetritus

    Get PDF
    Physical disturbances and resource pulses are major structuring drivers of terrestrial and aquatic ecosystems. The accumulations of exported dead leaves from the Neptune grass, Posidonia oceanica (L.) Delile are ephemeral and highly dynamic detrital habitats offering food sources and shelter for vagile macrofauna community. These habitats are frequently subject to wind and storms which can add “new” detrital material to previous accumulations; these can be defined as resource pulses and could potentially impact the associated macrofauna. This study assesses the impact of an experimental resource pulse on the macrofauna associated with exported P. oceanica litter accumulations. The experimental design consisted of two pulse treatments (the addition of dead leaves with and without the associated fauna), and two controls (one procedural, and one total control), where the added material was left underwater for 14 days. Invertebrates then present in the sampled detritus were all identified and counted. Our data suggest that the responses of these invertebrates to resource pulses present intermediate characteristics between aquatic and terrestrial ecosystems responses. Inputting a moderate amount of dead P. oceanica leaves into experimental mesocosms had a non-negligible impact and rapidly affected the macrofauna community. Specialist detritivores species were boosted while herbivore/detritivore species dramatically decreased. Predators also showed a modest but significant density increase, demonstrating the fast propagation of the pulse response throughout the entire community and through several trophic levels. Strict hypoxia-tolerant species were also only observed in the treated mesocosms, indicating the strong influence of resource pulses on physico-chemical conditions occurring inside litter accumulations
    corecore