
1

CoAP Congestion Control
for the Internet of Things

August Betzler∗, Carles Gomez†, Ilker Demirkol†, Josep Paradells†
∗i2CAT Foundation, Barcelona, Spain
†Department of Telematics Engineering

Universitat Politecnica de Catalunya, Barcelona, Spain
Email: august.betzler@i2cat.net, {carlesgo, ilker.demirkol, josep.paradells}@entel.upc.edu

Abstract—The Constrained Application Protocol (CoAP) is a
lightweight RESTful application layer protocol devised for the
Internet of Things (IoT). Operating on top of UDP, CoAP must
handle congestion control by itself. The core CoAP specification
defines a basic congestion control mechanism, which is however
not capable of adapting to network conditions. Yet, IoT scenarios
exhibit significant resource constraints which pose new challenges
on the design of congestion control mechanisms. In this paper
we present the CoAP Simple Congestion Control/Advanced
(CoCoA), an advanced congestion control mechanism for CoAP
being standardized by the Internet Engineering Task Force
(IETF) CoRE working group. CoCoA introduces novel Round
Trip Time (RTT) estimation techniques, together with a Variable
Backoff Factor (VBF) and aging mechanisms in order to provide
dynamic and controlled Retransmission Timeout (RTO) adap-
tation suitable for the peculiarities of IoT communications. We
conduct a comparative performance analysis of CoCoA and a
variety of alternative algorithms including state-of-the-art mech-
anisms developed for TCP. The study is based on experiments
carried out in real testbeds. Results show that, in contrast with the
alternative methods considered, CoCoA consistently outperforms
default CoAP congestion control mechanism in all evaluated
scenarios.

I. INTRODUCTION

The quantity and diversity of devices that are interconnected
in the Internet of Things (IoT) are constantly increasing,
leading to a large variety of new and appealing application
scenarios. More than 25 billion things are expected to be
connected over the Internet by the end of 20201. A significant
pillar for this development is the Constrained Application
Protocol (CoAP), a lightweight RESTful protocol recently
standardized by the Internet Engineering Task Force (IETF).
CoAP is designed as the main application-layer protocol to
be used by IoT devices for IP-based, HTTP-like interactions
[1]. Typically, constrained devices, such as low-power wire-
less sensor nodes, are used for IoT communications. These
devices offer very limited processing and memory capacities.
Furthermore, the communication technologies used by these

Author’s pre-print, accepted for publication in the IEEE Communications
Magazine (2016-3-9).

c©2016 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other users, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective
works for resale or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

1http://www.gartner.com/document/2625419?ref=QuickSearch&sthkw=
G00259115

devices exhibit significant limitations such as low data rates
and relatively high bit error rate (BER). CoAP is tailored to
these extreme resource constraints.

One of the main problems to be handled when design-
ing a new end-to-end communication paradigm is network
congestion. This phenomenon occurs when the traffic load
offered to a network approaches the network capacity. In many
traditional Internet applications, TCP provides end-to-end con-
gestion control. However, CoAP operates over UDP to enable
lightweight applications and must handle congestion by itself.

In IoT communications, the traffic patterns are different
from the ones in conventional networks. Constrained devices
often communicate periodically to notify their sensor measure-
ments. Even when individual devices create small amounts
of data, the large number of communicating devices can be
a cause of network congestion. Another possible reason for
congestion is traffic bursts generated as a reaction to events,
for example a large number of notifications sent after a
sensor network equipped with accelerometers detects a seismic
event. These IoT traffic patterns, together with severe node
and link constraints, pose challenges for the design of a
congestion control mechanism for CoAP, which should be
capable of assuring a safe network operation, while using
network resources efficiently.

The core CoAP specification offers a simple congestion
control mechanism, based on a Retransmission Timeout (RTO)
with Binary Exponential Backoff (BEB), which is however
insensitive to network conditions. Therefore, default CoAP
congestion control may significantly underperform, often be-
ing too conservative or too aggressive, instead of adapting its
behavior on the basis of network status information actually
available to CoAP.

In this paper we present the CoAP Simple Congestion
Control/Advanced (CoCoA) mechanism, defined in a draft
specification2 being standardized by the IETF CoRE work-
ing group to improve the CoAP congestion control. CoCoA
combines the use of Round-trip Time (RTT) measurements,
dynamic RTO backoff calculations, and RTO aging mecha-
nisms to obtain dynamic RTO estimations for the transmission
of CoAP messages. CoCoA has been designed to deliver a
congestion control that is adaptive to network dynamics and
suitable for IoT characteristics. CoCoA has reached maturity

2http://tools.ietf.org/id/draft-bormann-core-cocoa-03.txt

2

in its current form, after initial design and tuning work [2]. We
evaluate how default CoAP and CoCoA behave in two realistic
IoT setups and traffic scenarios through physical experiments.
The first set of experiments is performed on a testbed com-
posed of nodes running the IPv6-based IoT protocol stack
produced by the IETF over IEEE 802.15.4. The second set
of experiments uses General Packet Radio Service (GPRS),
which is a common Machine-to-machine (M2M) solution for
IoT. Along with CoCoA, we assess the potential contribution
that state-of-the-art algorithms used in TCP can provide over
default CoAP congestion control. Results show that, in contrast
with the alternative methods considered, CoCoA consistently
outperforms default CoAP congestion control in all evaluated
scenarios.

II. COAP CONGESTION CONTROL

The base CoAP specification provides congestion control
by imposing conservative restrictions on the rate of outgoing
messages and on the number of allowed parallel message
exchanges. CoAP defines four types of messages: confirmable
(CON), non-confirmable (NON), reset (RST), and acknowl-
edgement (ACK) messages. The restrictions are applied to
CON and NON messages, the first one being the limitation of
outstanding interactions per destination to 1. An outstanding
interaction can be a CON or a NON request for which no
ACK or reply has been received yet, respectively.

In CoAP, a CON message requires an ACK from the
receiver and may be retransmitted up to four times, before
considering the transmission to have failed. For the first
transmission of a message, a RTO value is randomly picked
from the interval [2, 3] s. As in TCP, a BEB is applied to the
RTO value for a retransmission, i.e., the RTO value is then
doubled.

CoAP congestion control is insensitive to network condi-
tions. In fact, it does not adapt the RTO on the basis of RTT
information that is actually available to CoAP. Therefore, if the
RTO chosen by CoAP congestion control is below the actual
RTT, CoAP will incur spurious retransmissions. On the other
hand, CoAP is likely to be used in networks with losses due
to BER, which can lead to unnecessarily long idle times if the
RTO timer overestimates the RTT.

Advanced congestion control mechanisms for CoAP should
resolve the aforementioned issues, while assuring a safe be-
havior in the Internet. The proposal being standardized by
the IETF CoRE working group for such advanced congestion
control is made in the CoCoA draft specification.

III. COCOA

CoCoA provides a flexible congestion control solution that
relaxes the conservative message rate restrictions of the CoAP
base specification, while guaranteeing a safe protocol opera-
tion. A fundamental requirement for the design of CoCoA has
been to produce a mechanism that offers a performance that is
better than, or at least similar to, that of default CoAP. CoCoA
comprises three main components: adaptive RTO calculation,
Variable Backoff Factor (VBF) and RTO aging.

A. Adaptive RTO calculation

In CoCoA, RTT measurement and adapted RTO calculation
follow the principles of RFC 6298 3. This RFC constitutes
the basis for RTO computation in most TCP implementations,
where the RTO is calculated adaptively by applying an expo-
nentially weighted moving average of RTT and RTT-variation
estimates. CoCoA adapts this algorithm for IoT communica-
tions.

In TCP, a packet loss is assumed to be caused by network
congestion. However, in IoT networks, a high packet loss rate
is expected due to BER. The RTO estimator detailed in RFC
6298 only uses strong RTTs, i.e. RTT measurements from the
packets for which an ACK is received before the sender runs
into retransmissions. This estimator is referred to as strong
RTO estimator. In CoCoA, also a weak RTO estimator is
defined, which uses weak RTTs, i.e. RTT measurements taken
from packets that have required at most two retransmissions.
This increases the chances of obtaining RTT measurements in
the presence of packet losses. In CoCoA, when a weak or a
strong RTT is measured, the corresponding weak or strong
RTO (RTOX) is updated, respectively, following the same
scheme defined in RFC 6298, as

RTOX = SRTTX +KX × RTTVARX , (1)

where X is either weak or strong, SRTT and RTTVAR denote
the well known smoothed RTT and RTT variation computed
as in RFC 6298, Kstrong is 4 also as in RFC 6298, and Kweak

is 1. The newly calculated RTO contributes to an overall RTO
value with a weighted average:

RTOoverall = α× RTOX + (1− α)× RTOoverall, (2)

where α is 0.5 for the strong RTO estimator and 0.25 for the
weak RTO estimator.

To avoid a steep RTO increase after measuring a weak
RTT, and to maintain the overall RTO estimation stability,
modifications were applied to the weak RTO estimator when
compared to the strong RTO estimator:

• Weak RTT measurements are only allowed for up to the
second retransmission in order to avoid very large weak
RTT measurements (which could overestimate the RTO)
and because the probability of obtaining veridical RTT
information decreases with every retransmission.

• The value of K that determines the impact of RTTVAR
for the weak RTO estimator is changed from 4 to 1.
This reduces the impact of RTTVAR on the weak RTO
estimation, since RTTVAR tends to grow large, especially
if more than one retransmission is used.

• When calculating the overall RTO, the weak RTO es-
timator contributes less than the strong RTO estimator
by using a reduced weight (0.25) for the weak RTO
value. Although considering weak RTT information is
necessary, strong RTTs provide more reliable input on
the expected RTTs, and deliver a more accurate RTO
estimation.

The parameter values chosen for RTOweak calculations
were shown to reduce the fluctuations without compromising

3https://tools.ietf.org/html/rfc6298

3

the stability [2]. Like in default CoAP, CoCoA dithers the
initial RTO of a transaction by choosing it from the interval
[RTOoverall, 1.5× RTOoverall].

B. Variable Backoff Factor (VBF)

For small initial RTOs, a BEB may not increase the RTO
fast enough to allow the network to recover from congestion,
still offering high load to the network and increasing the
chance for spurious retransmissions. On the contrary, for large
initial RTOs, a BEB may overestimate the RTO, leading to an
unnecessary delay increase.

To address these problems, CoCoA applies a VBF that
adjusts the backoff factor depending on the initial RTO value
of a transmission. If the initial RTO is very small (below 1 s),
a larger backoff factor is applied to retransmissions (VBF = 3).
If a transaction initiates with a large RTO value (above
3 s), a smaller backoff factor is chosen for retransmissions
(VBF = 1.5). For transactions that initiate with an RTO
between 1 and 3 s, the VBF is set to 2, corresponding to
a BEB.

Several backoff factor values for the VBF have been consid-
ered and evaluated [2]. Based on the evaluation results and in
consensus with the CoCoA specification authors and the IETF
CoRE working group, the set of backoff factors presented
above was chosen4.

C. RTO aging

If estimated RTO values are not updated for an extended
period of time, the probability that they are no longer valid
becomes high. In IoT networks, network conditions, and thus
the RTT, can change fast. To avoid bogus RTO values due to
such changes, CoCoA applies an aging mechanism to small
and large RTO estimations. If a RTO estimation is small or
large (below 1 s or above 3 s, respectively), and no new RTT
measurement is made for 16 or 4 times the current RTO,
respectively, the RTO value is modified to approach the default
initial value.

D. Congestion Control for NON messages

CoAP NON messages do not trigger ACKs from the re-
ceiver, therefore being used if end-to-end reliability is not
required. Default CoAP does not limit the rate of outgoing
NON messages towards a destination endpoint. CoCoA intro-
duces congestion control for NON messages, limiting the rate
of outgoing NON messages towards a destination endpoint
to one message every RTO seconds. Since RTO estimation
requires the presence of round trip type interaction, CoCoA
mandates the use of a controlled fraction of CON messages
among the NON messages to be transmitted. For the sake of
brevity, in this paper we only focus on congestion control for
CON messages. The interested reader is referred to [3] for
evaluations of NON type message traffic.

4For the determination of other parameter settings of CoCoA, the same
approach was followed. The investigation of the performance-complexity
trade-off brought by adaptive parameter setting approaches is a future research
direction for CoCoA.

IV. ALTERNATIVE CONGESTION CONTROL MECHANISMS

For a wider understanding of congestion control for the IoT,
besides comparing default CoAP with CoCoA, in this paper
we also analyze other RTO calculation algorithms such as the
Linux TCP RTO (Linux-RTO) estimator [4], the peak-hopper
TCP RTO estimator (PH-RTO) [5] and also a CoCoA variant
that only uses the strong RTO estimator (CoCoA-S).

Linux-RTO adds two mechanisms to the basic TCP RTO
algorithm. First, when a new RTT measurement is smaller
than the previously gathered RTT information, the RTO is
not increased, avoiding peaks in the RTO value when the
channel seems to improve. Second, Linux-RTO avoids the
RTO estimator to converge into a RTT value after repeatedly
measuring constant RTT values [4], which could lead to
spurious retransmissions.

PH-RTO reacts to a sudden RTT increase with a RTO
increase by using a short term RTT history, which then
decays over time towards the value of a long term RTT
history. PH-RTO intends to avoid spurious retransmissions by
using the long term history, when the channel suffers from
sudden delays. RTO dithering is not defined for the Linux
and PH-RTO algorithms, which were not designed for IoT
scenarios.

Above these two state-of-the-art algorithms used in TCP,
we include a minimalist Basic-RTO’ (B-RTO) estimator in
the evaluations as a benchmark, which always sets the initial
RTO for a transmission to a random value between 1 and
1.5 times the previously measured RTT. B-RTO can use weak
RTT measurements. An overview of the features of all six
analyzed congestion control mechanisms is given in Table I.
None of the two considered TCP-oriented congestion control
mechanisms takes into account the peculiarities of IoT traffic,
such as high BER, sporadic transmissions and traffic bursts. On
the other hand, B-RTO provides poor RTO estimation due to
its simplicity. In contrast, CoCoA introduces features like the
weak RTT, the VBF, and RTO aging, designed for IoT traffic.
As a result, CoCoA is expected to outperform the alternative
congestion control mechanisms.

V. EXPERIMENTAL SETUP AND TEST CONFIGURATION

A. Testbeds

GPRS and IEEE 802.15.4 are used in this paper for evalu-
ations in two respective experimental setups, which also use
different hardware to run CoAP servers and clients.

GPRS is a common M2M technology that allows a flexible
network setup for Internet connectivity. IEEE 802.15.4 targets
low-power communication and is a common interface em-
ployed by many IoT standards, including ZigBee and 6LoW-
PAN. GPRS and IEEE 802.15.4 are interesting for this study
because they have different bit rates and delay characteristics.
Moreover, GPRS involves a single wireless hop, whereas IEEE
802.15.4 networks are often deployed as multihop networks.

In the first setup, a laptop running CoAP clients uses a
Matrix MTX-65-ULP GPRS modem to connect to the Internet,
from where packets are routed towards a PC running a CoAP
server. When compared to a wired connection, much larger
RTTs and a much higher RTT jitter are observed over the

4

TABLE I: Overview of the Features of the Different Congestion Control Mechanisms

Strong
RTTs

Weak
RTTs Dithering Backoff

method
RTO
aging

Use backed-off RTO
after no RTT update

RAM usage
per client Main Goal

Default CoAP No No Yes BEB No No 2 Bytes IoT Traffic
CoCoA Yes Yes Yes VBF Yes No 29 Bytes IoT Traffic (adaptive)

CoCoA-S Yes No Yes VBF Yes No 19 Bytes IoT Traffic (adaptive)
Basic RTO Yes Yes Yes BEB No Yes 2 Bytes Minimalist RTO Solution
Linux RTO Yes No No BEB No Yes 21 Bytes TCP RTO Enhancement

PH-RTO Yes No No BEB No Yes 43 Bytes TCP RTO Enhancement

GPRS link, as well as a higher chance for packet losses.
In our testbed we observe uplink/downlink data rates of
approximately 15/40 kbit/s.

In this setup, both the CoAP clients and server run the Java
Californium (Cf) CoAP [6] implementation. The alternative
congestion control mechanisms considered in this paper are
implemented and publicly available in Cf5. For a fair com-
parative evaluation, while the PH-RTO and Linux algorithms
were designed for TCP, we have implemented these algorithms
for CoAP (over UDP). Other TCP features are not present in
our evaluation.

In the second setup, the interaction between a cloud service
and a multihop, low-power wireless network is analyzed.
CoAP clients running in the cloud service are connected via
Ethernet to an IEEE 802.15.4 testbed where all motes run
CoAP servers. FlockLab, a publicly available IEEE 802.15.4
indoor/outdoor testbed composed of 30 TelosB motes [7],
is chosen for this setup, a publicly available IEEE 802.15.4
indoor/outdoor testbed composed of 30 TelosB motes [7].
The FlockLab motes run ContikiMAC [8] with radio duty
cycling (RDC) enabled, which is required to save energy in
real deployments. On the client side, Cf is used as CoAP
implementation, while the server motes in FlockLab run
the full IPv6-based ContikiOS stack for constrained devices,
including the Erbium (Er) CoAP implementation [9].

When compared to the GPRS setup, FlockLab imposes
additional challenges for the congestion control mechanisms,
such as a considerable packet loss rate and RTT variance due
to different route lengths and RDC [9]. Packet losses in this
setup mostly emerge from lossy links and from packet drops
due to full buffers in the border router and relay nodes close
to it. The border router is the FlockLab node that provides
Internet connectivity to the Flocklab motes.

B. Traffic Scenarios

For both testbeds (GPRS and FlockLab), two traffic scenar-
ios are defined to explore the effect of different congestion
control mechanisms on the performance of CoAP communi-
cations:

1) Continuous Traffic: In this scenario, CoAP clients send
CON requests to a CoAP server. When a client receives
a reply from the server, the client immediately sends
another CON request. Sending messages back-to-back
by many clients simultaneously can create congestion.
The number of clients is varied from 10 to 40 (in
steps of 10) in order to achieve different degrees of

5https://github.com/eclipse/californium/tree/congestion-control

congestion. In the GPRS setup, one server is running
on the destination device. In FlockLab, one client is
assigned to each CoAP server mote in the testbed. A
continuous traffic test lasts 180 s.

2) Burst Traffic: This scenario starts with a low congestion
level, where 10 clients (GPRS) or 5 clients (FlockLab)
generate continuous traffic of back-to-back CON re-
quests. Then, a burst of traffic is generated by a new
group of clients that send 50 (GPRS) or 25 (FlockLab)
back-to-back CON requests to the servers. Such traffic
patterns can correspond to a local event (such as alerts
about presence, temperature, etc.). The burst of messages
causes a congestion peak. For the GPRS setup, we
vary the number of clients that generate burst traffic.
In FlockLab, for each mote that is not a destination of
continuous traffic, we create a client that generates burst
traffic.

Tests are repeated 15 times for each specific configuration.

VI. CONGESTION CONTROL EVALUATION RESULTS

A. Performance Metrics

In the continuous traffic scenario, the overall throughput
as successfully finished transactions per second is chosen as
performance metric, merging delay and packet delivery ratio
into one single value.

In the burst traffic scenario, we analyze the Settling Time
of the different congestion control approaches. We define the
Settling Time as the time it takes for the clients to finish
at least 80% of the burst traffic transactions. This is an
important metric, since traffic bursts are expected when CoAP
transactions are event-based or transmissions from various
senders are synchronized.

Furthermore, the congestion control mechanisms behavior
is analyzed regarding their fairness in FlockLab, which is
challenging given the different path lengths and the tree-like
topology of the scenario. Jain’s Fairness Index (FI) 6 is used
as the fairness metric, which ranges between 0 and 1, and a
higher FI indicates a higher fairness level.

B. Throughput Results

Nearly all RTT-sensitive mechanisms outperform default
CoAP independently from the network setup in terms of
throughput in the continuous traffic scenario (Fig. 1).

In the GPRS setup, since the packet loss rate is low, the
performance mainly depends on how the RTO algorithms
adapt to the RTT. In this setup, RTT increases with the amount

6http://www.rfc-base.org/rfc-5166.html

5

TABLE II: Comparison of the Average RTT and Initial RTO Values in Milliseconds for Different Numbers of Clients in the
GPRS Setup and the FlockLab Setup

10 GPRS clients 20 GPRS clients 30 GPRS clients 40 GPRS clients FlockLab
RTT RTO RTT RTO RTT RTO RTT RTO RTT RTO

Default CoAP - 2497 - 2499 - 2499 - 2506 - 2505
CoCoA 661 1505 1437 3379 1936 4119 2796 5431 1507 3710

CoCoA-S 625 1428 1275 2903 1880 4122 2795 4928 656 3227
B-RTO 1025 1152 1962 2198 2983 3272 4733 4441 3172 3266

Linux RTO 682 1325 1550 2801 1863 3345 2931 5797 598 4424
PH-RTO 746 1797 1835 3703 1827 4112 3194 6213 625 4796

10 Clients 20 Clients 30 Clients 40 Clients FlockLab
0

5

10

15

20

25

F
in

is
h
e
d
 T

ra
n
s
a
c
ti
o
n
s
 p

e
r

S
e
c
o
n
d
 (

G
P

R
S

)

 Default CoCoA CoCoA−S Basic Linux PH

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
in

is
h
e
d
 T

ra
n
s
a
c
ti
o
n
s
 p

e
r

S
e
c
o
n
d
 (

F
lo

c
k
L
a
b
)

Fig. 1: Average throughput with 95% confidence intervals
achieved by the evaluated congestion control mechanisms in
the GPRS and FlockLab setups.

of active clients due to the delay introduced by the queuing
of packets in the GPRS modem, which occurs since the
overall generated data rate exceeds the uplink capacity. With
the average RTT increase, the RTT-sensitive RTO algorithms
increase their initial RTO values (Table II). In FlockLab,
the average RTT is small, yet the average initial RTO for
RTT-sensitive algorithms is larger than in the GPRS setup.
This can be ascribed to a greater amount of weak RTTs that
increase the RTO value and backed-off RTO values due to
packet drops as a consequence of overflowing buffers near the
border router, where traffic mostly concentrates.

Default CoAP underperforms independently from the setup
(except in the GPRS setup with B-RTO) since it uses a fixed
range of initial RTO values and does not adapt to the current
RTT. If the real RTT is noticeably below the default RTO
range, CoAP reacts slowly to losses. If the RTT lies in the
RTO range or even exceeds it, spurious retransmissions are
likely to happen, as indicated by the increasing percentage of
retransmissions with the number of clients in GPRS (Fig. 2).

CoCoA achieves the highest throughput in the GPRS setup.
In the same setup, CoCoA-S does not perform as well
as CoCoA since it only allows strong RTT measurements,
generally resulting in slightly lower RTO values and thus
increasing the probability of spurious retransmissions (see
Fig. 2). In FlockLab, CoCoA and CoCoA-S perform very
similarly. Their features allow to benefit especially from links
with good connections and small RTTs, but they also adapt

10 GPRS Cl. 20 GPRS Cl. 30 GPRS Cl. 40 GPRS Cl. FlockLab
0 %

5 %

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

R
e
tr

a
n
s
m

is
s
io

n
 R

a
ti
o

Default

CoCoA

CoCoA−S

Basic

Linux

PH

Fig. 2: Average percentage of CoAP retransmissions over all
CoAP transmissions observed for the evaluated congestion
control mechanisms in the GPRS and FlockLab setups.

the RTO and avoid bogus values even in a lossy network: the
VBF and the aging mechanisms effectively limit the growth
of RTO values when retransmissions are necessary. Without
these features, CoCoA would tend to calculate very large RTO
values for retransmissions using the BEB, whereas the overall
RTO would not be shifted towards the default value of 2 s in
absence of further RTO updates.

The throughput obtained with B-RTO suffers noticeably
due to its simplicity. If after measuring a small RTT the
following transaction RTT is larger, which is likely given the
RTT fluctuations in both network setups, the RTO timer will
fire ahead of time with a high probability. In fact, B-RTO
exhibits the highest retransmit ratio of all tested algorithms
in all settings (Fig. 2). On the other hand, when a large RTT
is measured, the next RTO used by B-RTO can grow very
large due to the random multiplier, potentially leading to low
throughput.

While Linux and PH-RTO perform better than default
CoAP, they are not able to outperform CoCoA. Linux often
calculates smaller RTO values, causing a higher amount of
spurious retransmissions (Fig. 2), since contrarily to CoCoA
it does not increase the RTO when the RTT decreases. The
PH-RTO reacts to a sudden RTT increase with a peak in the
RTO that then slowly decays in the following transactions.
However, given the continuous RTT jittering that is character-
istic for both network setups, a sudden RTO increase may not

6

10 GPRS Cl. 20 GPRS Cl. 30 GPRS Cl. FlockLab
0

50

100

150

200

S
e
tt
lin

g
 T

im
e
 (

s
)

Default

CoCoA

CoCoA−S

Basic

Linux

PH

Fig. 3: Average Settling Times with 95% confidence intervals
achieved by the different RTO mechanisms in the burst traffic
scenario. For the GPRS experiment results, Settling Times
larger than 180 s are valuated as 180 s.

be necessary and can lead to larger idle times if subsequent
packets are lost. A disadvantage of both Linux and PH-RTO
is their limitation to using only strong RTTs, while weak
RTT measurements could provide additional RTO estimator
updates. Instead, the old RTO is maintained and backed-off,
i.e., large RTO values are reused for new transactions. The
reuse of backed-off RTO values by these two algorithms
happens frequently in FlockLab due to packet losses, leading
to long idle times that reduce throughput.

C. Settling Time Results

Fig. 3 shows the average Settling Times obtained by the con-
gestion control mechanisms in the burst traffic scenario. In the
GPRS setup, results reveal that all RTT-sensitive mechanisms,
except B-RTO, are able to improve the performance of default
CoAP when there is congestion. For 10 burst clients (i.e.,
low congestion), the different congestion control approaches
perform similarly, except for B-RTO since it tends to produce
spurious retransmissions. When the amount of burst clients
increases to 20 and 30, the RTT-sensitive mechanisms adjust
their RTOs to higher RTT values. CoCoA does this most
efficiently, followed by Linux-RTO, PH-RTO, and CoCoA-S,
which perform slightly worse. While CoCoA-S tends to be
too aggressive during the burst, Linux-RTO and PH-RTO
need slightly longer time to adjust their RTO timers during
congestion, since they do not exploit weak RTT information.
The VBF and the aging mechanisms used in CoCoA reduce
the chances for spurious retrans- missions or long idle times,
effectively increasing performance. With few clients and short
RTTs, B-RTO deteriorates performance, being too aggressive.
However, it gets more conservative with more clients and
larger RTTs, eventually increasing performance when com-
pared to default CoAP, which does not adapt the RTO timers
at all.

In FlockLab, CoCoA yields an improvement over default

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

of successful transactions per node

P
ro

b
a

b
ili

ty

Default CoAP (FI = 0.75)

CoCoA (FI = 0.74)

CoCoA−S (FI = 0.74)

B−RTO (FI = 0.51)

Linux (FI = 0.55)

PH−RTO (FI = 0.58)

Fig. 4: Probability Mass Function for the number of finished
transactions per node and the Fairness Index (FI) achieved
by each of the analyzed algorithms. For illustration purposes,
more than 100 finished transactions per node are valuated as
100 finished transactions per node.

CoAP in terms of Settling Time and it shows the most stable
behavior with the narrowest confidence intervals. Over the
course of the tests, CoCoA adapts client RTOs efficiently,
so the continuous and burst traffic can be processed in par-
allel. CoCoA-S behaves similarly, also leading to a minor
Settling Time improvement. In contrast, B-RTO, Linux-RTO,
and PH-RTO lead to larger Settling Times in average. For
these algorithms we observe a prevalent behavior of the
continuous background traffic that hampers the sudden burst
from being processed quickly and abates slowly since few RTT
measurements can be made because of packet losses.

D. Fairness Evaluations

In terms of fairness, important differences are observed be-
tween the different congestion control algorithms in FlockLab.
Fig. 4 shows the Probability Mass Function (PMF) for the
number of finished transactions per destination node for each
congestion control algorithm, measured during the continuous
traffic experiments along with the FI.

As seen in the figure, with Linux-RTO, PH-RTO and
B-RTO, a small group of nodes are served with a very
high number of transactions (e.g. more than 80), whereas a
large number of nodes obtain a very low number of finished
transactions (e.g. below 10). This results in much lower FI
values compared to those of CoAP, CoCoA and CoCoA-S.
The former methods exploit connections with small hop counts
and small RTTs, setting their RTO to small values, behaving
aggressively in case of message losses and increasing through-
put. However, connections with multiple hops and larger RTTs
do not achieve the same data rates, since larger RTO values
and consecutive backoffs to these RTO values are applied,
reducing throughput.

While CoCoA and CoCoA-S adapt their RTO values as

7

well, the VBF prevents fast retransmissions for good con-
nections with small RTTs and slow retransmissions for bad
connections with large RTTs. Moreover, the use of backed-off
values when initiating new transmissions is avoided and the
aging mechanism prevents from maintaining very small or
very large RTO values in idle periods. Thus, CoCoA(-S) does
not sacrifice from fairness when compared to default CoAP
Fig. 4, while achieving the performance improvements previ-
ously presented. Default CoAP behaves neutrally in terms of
fairness, since its RTO computation algorithm is independent
of the characteristics of a specific path.

E. Memory footprint considerations

There exists a trade-off between performance and memory
footprint of the congestion control mechanisms. Improving
the behavior of default CoAP congestion control requires one
order of magnitude more memory consumption per CoAP
client (Table I). However, and despite the limitations of many
IoT devices, the additional state required is negligible com-
pared with the state needed for other components in a CoAP
implementation such as security support. In fact, Datagram
Transport Layer Security (DTLS) is mandatory as per the
CoAP specification, and it consumes around 2 kB of RAM
[10].

VII. CONCLUSIONS

CoAP specifies a conservative and non-adaptive congestion
control mechanism. CoCoA, an advanced congestion control
mechanism for CoAP, provides a flexible and adaptive solution
by combining an adaptive RTO calculation, the use of weak
RTTs, a VBF, and an aging mechanism to optimize perfor-
mance.

In comparison with default CoAP, CoCoA increases
throughput and reduces the time it takes for a network to
process traffic bursts, while not sacrificing fairness. CoCoA
consistently delivers a performance that is better than, or
at least similar to, that of default CoAP. In contrast, other
approaches may be too simple (B-RTO) or do not adapt well to
IoT communications (Linux-RTO, PH-RTO), underperforming
default CoAP under certain conditions, and therefore not being
recommendable as congestion control mechanisms for CoAP.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the Spanish Govern-
ment’s Ministerio de Economı́a y Competitividad under grant
number RYC-2013-13029, through project TEC2012-32531,
and FEDER. The authors would like to thank Dr. Carsten
Bormann for his major contribution to advanced congestion
control for CoAP, and the IETF CoRE WG for providing
feedback on CoCoA.

REFERENCES

[1] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An Application
Protocol for Billions of Tiny Internet Nodes,” IEEE Internet Computing,
vol. 16, no. 2, pp. 62–67, Mar. 2012.

[2] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells, “CoCoA+: An
advanced congestion control mechanism for CoAP,” Ad Hoc Networks,
vol. 33, pp. 126 – 139, 2015.

[3] A. Betzler, C. Gomez, and I. Demirkol, “Evaluation of Advanced Con-
gestion Control Mechanisms for Unreliable CoAP Communications,” in
Proceedings of the 12th ACM Symposium on Performance Evaluation
of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, PE-WASUN 2015,
Cancun, Mexico, November 2-6, 2015, 2015, pp. 63–70.

[4] P. Sarolahti and A. Kuznetsov, “Congestion Control in Linux TCP,” in
Proceedings of the FREENIX Track: 2002 USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2002, pp.
49–62.

[5] H. Ekstrom and R. Ludwig, “The peak-hopper: a new end-to-end
retransmission timer for reliable unicast transport,” in INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Com-
munications Societies, vol. 4, March 2004, pp. 2502–2513 vol.4.

[6] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud
services for the internet of things with coap,” in Internet of Things (IOT),
2014 International Conference on the, Oct 2014, pp. 1–6.

[7] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in Information Processing in Sensor
Networks (IPSN), 2013 ACM/IEEE International Conference on, April
2013, pp. 153–165.

[8] A. Dunkels, “The ContikiMAC Radio Duty Cycling Protocol,” Swedish
Institute of Computer Science, Tech. Rep. T2011:13, 2011.

[9] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power CoAP for
Contiki,” in Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th
International Conference on, Oct 2011, pp. 855–860.

[10] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Management of
resource constrained devices in the Internet of Things,” Communications
Magazine, IEEE, vol. 50, no. 12, pp. 144–149, December 2012.

