180 research outputs found

    Tight upper bound on the maximum anti-forcing numbers of graphs

    Full text link
    Let GG be a simple graph with a perfect matching. Deng and Zhang showed that the maximum anti-forcing number of GG is no more than the cyclomatic number. In this paper, we get a novel upper bound on the maximum anti-forcing number of GG and investigate the extremal graphs. If GG has a perfect matching MM whose anti-forcing number attains this upper bound, then we say GG is an extremal graph and MM is a nice perfect matching. We obtain an equivalent condition for the nice perfect matchings of GG and establish a one-to-one correspondence between the nice perfect matchings and the edge-involutions of GG, which are the automorphisms α\alpha of order two such that vv and α(v)\alpha(v) are adjacent for every vertex vv. We demonstrate that all extremal graphs can be constructed from K2K_2 by implementing two expansion operations, and GG is extremal if and only if one factor in a Cartesian decomposition of GG is extremal. As examples, we have that all perfect matchings of the complete graph K2nK_{2n} and the complete bipartite graph Kn,nK_{n, n} are nice. Also we show that the hypercube QnQ_n, the folded hypercube FQnFQ_n (n4n\geq4) and the enhanced hypercube Qn,kQ_{n, k} (0kn40\leq k\leq n-4) have exactly nn, n+1n+1 and n+1n+1 nice perfect matchings respectively.Comment: 15 pages, 7 figure

    An ETH-Tight Exact Algorithm for Euclidean TSP

    Get PDF
    We study exact algorithms for {\sc Euclidean TSP} in Rd\mathbb{R}^d. In the early 1990s algorithms with nO(n)n^{O(\sqrt{n})} running time were presented for the planar case, and some years later an algorithm with nO(n11/d)n^{O(n^{1-1/d})} running time was presented for any d2d\geq 2. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on {\sc Euclidean TSP}, except for a lower bound stating that the problem admits no 2O(n11/dϵ)2^{O(n^{1-1/d-\epsilon})} algorithm unless ETH fails. Up to constant factors in the exponent, we settle the complexity of {\sc Euclidean TSP} by giving a 2O(n11/d)2^{O(n^{1-1/d})} algorithm and by showing that a 2o(n11/d)2^{o(n^{1-1/d})} algorithm does not exist unless ETH fails.Comment: To appear in FOCS 201

    On the Central Levels Problem

    Get PDF

    On the central levels problem

    Get PDF
    The \emph{central levels problem} asserts that the subgraph of the (2m+1)(2m+1)-dimensional hypercube induced by all bitstrings with at least m+1m+1-\ell many 1s and at most m+m+\ell many 1s, i.e., the vertices in the middle 22\ell levels, has a Hamilton cycle for any m1m\geq 1 and 1m+11\le \ell\le m+1. This problem was raised independently by Buck and Wiedemann, Savage, Gregor and {\v{S}}krekovski, and by Shen and Williams, and it is a common generalization of the well-known \emph{middle levels problem}, namely the case =1\ell=1, and classical binary Gray codes, namely the case =m+1\ell=m+1. In this paper we present a general constructive solution of the central levels problem. Our results also imply the existence of optimal cycles through any sequence of \ell consecutive levels in the nn-dimensional hypercube for any n1n\ge 1 and 1n+11\le \ell \le n+1. Moreover, extending an earlier construction by Streib and Trotter, we construct a Hamilton cycle through the nn-dimensional hypercube, n2n\geq 2, that contains the symmetric chain decomposition constructed by Greene and Kleitman in the 1970s, and we provide a loopless algorithm for computing the corresponding Gray code

    Resonance graphs of plane bipartite graphs as daisy cubes

    Full text link
    We characterize all plane bipartite graphs whose resonance graphs are daisy cubes and therefore generalize related results on resonance graphs of benzenoid graphs, catacondensed even ring systems, as well as 2-connected outerplane bipartite graphs. Firstly, we prove that if GG is a plane elementary bipartite graph other than K2K_2, then the resonance graph R(G)R(G) is a daisy cube if and only if the Fries number of GG equals the number of finite faces of GG, which in turn is equivalent to GG being homeomorphically peripheral color alternating. Next, we extend the above characterization from plane elementary bipartite graphs to all plane bipartite graphs and show that the resonance graph of a plane bipartite graph GG is a daisy cube if and only if GG is weakly elementary bipartite and every elementary component of GG other than K2K_2 is homeomorphically peripheral color alternating. Along the way, we prove that a Cartesian product graph is a daisy cube if and only if all of its nontrivial factors are daisy cubes

    Optimal Permutation Routing for Low-dimensional Hypercubes

    Get PDF
    We consider the offline problem of routing a permutation of tokens on the nodes of a d-dimensional hypercube, under a queueless MIMD communication model (under the constraints that each hypercube edge may only communicate one token per communication step, and each node may only be occupied by a single token between communication steps). For a d-dimensional hypercube, it is easy to see that d communication steps are necessary. We develop a theory of “separability ” which enables an analytical proof that d steps suffice for the case d = 3, and facilitates an experimental verification that d steps suffice for d = 4. This result improves the upper bound for the number of communication steps required to route an arbitrary permutation on arbitrarily large hypercubes to 2d − 4. We also find an interesting side-result, that the number of possible communication steps in a d-dimensional hypercube is the same as the number of perfect matchings in a (d + 1)-dimensional hypercube, a combinatorial quantity for which there is no closed-form expression. Finally we present some experimental observations which may lead to a proof of a more general result for arbitrarily large dimension d. 2
    corecore