4 research outputs found

    Features for Cross Spectral Image Matching: A Survey

    Get PDF
    In recent years, cross spectral matching has been gaining attention in various biometric systems for identification and verification purposes. Cross spectral matching allows images taken under different electromagnetic spectrums to match each other. In cross spectral matching, one of the keys for successful matching is determined by the features used for representing an image. Therefore, the feature extraction step becomes an essential task. Researchers have improved matching accuracy by developing robust features. This paper presents most commonly selected features used in cross spectral matching. This survey covers basic concepts of cross spectral matching, visual and thermal features extraction, and state of the art descriptors. In the end, this paper provides a description of better feature selection methods in cross spectral matching

    Comparative analysis of augmented datasets performances of age invariant face recognition models

    Get PDF
    The popularity of face recognition systems has increased due to their non-invasive method of image acquisition, thus boasting the widespread applications. Face ageing is one major factor that influences the performance of face recognition algorithms. In this study, the authors present a comparative study of the two most accepted and experimented face ageing datasets (FG-Net and morph II). These datasets were used to simulate age invariant face recognition (AIFR) models. Four types of noises were added to the two face ageing datasets at the preprocessing stage. The addition of noise at the preprocessing stage served as a data augmentation technique that increased the number of sample images available for deep convolutional neural network (DCNN) experimentation, improved the proposed AIFR model and the trait aging features extraction process. The proposed AIFR models are developed with the pre-trained Inception-ResNet-v2 deep convolutional neural network architecture. On testing and comparing the models, the results revealed that FG-Net is more efficient over Morph with an accuracy of 0.15%, loss function of 71%, mean square error (MSE) of 39% and mean absolute error (MAE) of -0.63%

    An improved age invariant face recognition using data augmentation

    Get PDF
    In spite of the significant advancement in face recognition expertise, accurately recognizing the face of the same individual across different ages still remains an open research question. Face aging causes intra-subject variations (such as geometric changes during childhood & adolescence, wrinkles and saggy skin in old age) which negatively affects the accuracy of face recognition systems. Over the years, researchers have devised different techniques to improve the accuracy of age invariant face recognition (AIFR) systems. In this paper, the face and gesture recognition network (FG-NET) aging dataset was adopted to enable the benchmarking of experimental results. The FG-Net dataset was augmented by adding four different types of noises at the preprocessing phase in order to improve the trait aging face features extraction and the training model used at the classification stages, thus addressing the problem of few available training aging for face recognition dataset. The developed model was an adaptation of a pre-trained convolution neural network architecture (Inception-ResNet-v2) which is a very robust noise. The proposed model on testing achieved a 99.94% recognition accuracy, a mean square error of 0.0158 and a mean absolute error of 0.0637. The results obtained are significant improvements in comparison with related works

    Unifying the Visible and Passive Infrared Bands: Homogeneous and Heterogeneous Multi-Spectral Face Recognition

    Get PDF
    Face biometrics leverages tools and technology in order to automate the identification of individuals. In most cases, biometric face recognition (FR) can be used for forensic purposes, but there remains the issue related to the integration of technology into the legal system of the court. The biggest challenge with the acceptance of the face as a modality used in court is the reliability of such systems under varying pose, illumination and expression, which has been an active and widely explored area of research over the last few decades (e.g. same-spectrum or homogeneous matching). The heterogeneous FR problem, which deals with matching face images from different sensors, should be examined for the benefit of military and law enforcement applications as well. In this work we are concerned primarily with visible band images (380-750 nm) and the infrared (IR) spectrum, which has become an area of growing interest.;For homogeneous FR systems, we formulate and develop an efficient, semi-automated, direct matching-based FR framework, that is designed to operate efficiently when face data is captured using either visible or passive IR sensors. Thus, it can be applied in both daytime and nighttime environments. First, input face images are geometrically normalized using our pre-processing pipeline prior to feature-extraction. Then, face-based features including wrinkles, veins, as well as edges of facial characteristics, are detected and extracted for each operational band (visible, MWIR, and LWIR). Finally, global and local face-based matching is applied, before fusion is performed at the score level. Although this proposed matcher performs well when same-spectrum FR is performed, regardless of spectrum, a challenge exists when cross-spectral FR matching is performed. The second framework is for the heterogeneous FR problem, and deals with the issue of bridging the gap across the visible and passive infrared (MWIR and LWIR) spectrums. Specifically, we investigate the benefits and limitations of using synthesized visible face images from thermal and vice versa, in cross-spectral face recognition systems when utilizing canonical correlation analysis (CCA) and locally linear embedding (LLE), a manifold learning technique for dimensionality reduction. Finally, by conducting an extensive experimental study we establish that the combination of the proposed synthesis and demographic filtering scheme increases system performance in terms of rank-1 identification rate
    corecore